Perform posterior predictive checks with the help of the bayesplot package.
# S3 method for brmsfit pp_check( object, type, ndraws = NULL, nsamples = NULL, group = NULL, x = NULL, newdata = NULL, resp = NULL, draw_ids = NULL, subset = NULL, ... )
object | An object of class |
---|---|
type | Type of the ppc plot as given by a character string.
See |
ndraws | Positive integer indicating how many
posterior draws should be used.
If |
nsamples | Deprecated alias of |
group | Optional name of a factor variable in the model
by which to stratify the ppc plot. This argument is required for
ppc |
x | Optional name of a variable in the model.
Only used for ppc types having an |
newdata | An optional data.frame for which to evaluate predictions. If
|
resp | Optional names of response variables. If specified, predictions are performed only for the specified response variables. |
draw_ids | An integer vector specifying the posterior draws to be used.
If |
subset | Deprecated alias of |
... | Further arguments passed to |
A ggplot object that can be further customized using the ggplot2 package.
For a detailed explanation of each of the ppc functions,
see the PPC
documentation of the bayesplot
package.
if (FALSE) { fit <- brm(count ~ zAge + zBase * Trt + (1|patient) + (1|obs), data = epilepsy, family = poisson()) pp_check(fit) # shows dens_overlay plot by default pp_check(fit, type = "error_hist", ndraws = 11) pp_check(fit, type = "scatter_avg", ndraws = 100) pp_check(fit, type = "stat_2d") pp_check(fit, type = "rootogram") pp_check(fit, type = "loo_pit") ## get an overview of all valid types pp_check(fit, type = "xyz") }