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Testing for publication bias in diagnostic
meta-analysis: a simulation study
Paul-Christian Bürkner*† and Philipp Doebler

The present study investigates the performance of several statistical tests to detect publication bias in diagnos-
tic meta-analysis by means of simulation. While bivariate models should be used to pool data from primary
studies in diagnostic meta-analysis, univariate measures of diagnostic accuracy are preferable for the purpose
of detecting publication bias. In contrast to earlier research, which focused solely on the diagnostic odds ratio
or its logarithm (ln!), the tests are combined with four different univariate measures of diagnostic accuracy.
For each combination of test and univariate measure, both type I error rate and statistical power are examined
under diverse conditions. The results indicate that tests based on linear regression or rank correlation cannot be
recommended in diagnostic meta-analysis, because type I error rates are either inflated or power is too low, irre-
spective of the applied univariate measure. In contrast, the combination of trim and fill and ln! has non-inflated
or only slightly inflated type I error rates and medium to high power, even under extreme circumstances (at least
when the number of studies per meta-analysis is large enough). Therefore, we recommend the application of
trim and fill combined with ln! to detect funnel plot asymmetry in diagnostic meta-analysis. Copyright © 2014
John Wiley & Sons, Ltd.
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1. Introduction

The interest in research synthesis and meta-analysis has rapidly grown over the last few decades. From
today’s point of view, it is difficult to think of scientific research without the possibility to integrate
different findings into one big picture. This is especially true for research on the accuracy of diagnostic
tests, because clinical and health policy decisions as well as technology development and evaluation in
diagnostic medicine have to rely on a good empirical basis [1–3]. In general, studies of diagnostic accu-
racy compare the performance of an imperfect diagnostic test with an optimal diagnostic instrument,
which is also known as gold standard. Usually, using the gold standard is time consuming, expensive,
and/or invasive, so that it can only be applied in certain circumstances. Therefore, alternative tests that
are more economic but less accurate have to be evaluated in studies of diagnostic accuracy by compar-
ing them with the gold standard. These studies most often report pairs of sensitivity (Sen) and specificity
(Spe), the former being the percentage of correctly diagnosed diseased individuals and the latter being
the percentage of correctly diagnosed healthy individuals.

As in any other area of research synthesis, results in diagnostic meta-analysis may be biased by var-
ious effects such as study quality, heterogeneity of the examined populations, or, as most commonly
cited, publication bias (PB) [4]. PB arises when studies systematically remain unpublished so that they
cannot contribute to meta-analysis leading to biased and possible misleading results. ‘Systematically’
comprises that studies are not just missing at random, but that some of the study’s characteristics (most
often its outcomes) influence the probability of this study being published.

There are several reasons for researchers to refrain from publishing a study. Some of these reasons
occur at random and do not depend on the outcome of the study (e.g., the retirement of the responsible
researcher), so that they do not contribute to the emergence of PB, while other reasons do depend on
the outcome: For example, a study’s findings may be suppressed by the funding source supporting the
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research. Besides, the possibly most prominent reason is the non-significance of the results [5]. How-
ever, this non-significance rarely applies to diagnostic studies. Usually, findings on test accuracy contain
Sen and Spe (or univariate measures (UMs) computed on their basis) together with 95% confidence
intervals, but they do not state a null hypothesis [6, 7]. Hence, in most cases, there is no statistical test
that can potentially fail to be significant. Therefore, one might argue that PB is not a problem in diag-
nostic meta-analysis. Nevertheless, some approaches such as non-inferiority designs (in which a new
treatment or diagnostic test is compared with an already established one) are based on significance tests
even in diagnostic contexts [8–10]. In addition, as studies of diagnostic accuracy are often conducted as
part of routine clinical practice, they may be abandoned more easily, which should increase the prob-
ability of PB [3, 11]. Another reason accounting for PB in all types of meta-analysis is that dramatic
findings are more likely to occur in primary studies and meta-analyses that are methodically weaker
[12]. As scientific journals may prefer such findings, it is plausible that meta-analyses not only tend
to overestimate effects because of unpublished studies, but that researchers also base their results on
less elaborate literature search. This assumption has been supported by findings of Song et al. [11] who
showed that publication bias was increased in diagnostic meta-analyses in which only few databases
were used to find relevant studies. In addition, we share the view of one reviewer of this paper who
suspects that potential mechanisms of PB in the diagnostic context will depend on the type of test (e.g.,
imaging vs. biomarker vs. questionnaire) and the application (e.g., mass screening vs. confirmation of a
screen). In light of the preceding discussion, it becomes clear that the examination and evaluation of PB
in diagnostic meta-analysis should not be neglected.

An issue that complicates the detection of PB in diagnostic meta-analysis emerges from different and
sometimes implicit cutoff values used in different studies in order to decide which test scores indicate
disease and which do not. The choice of the cutoff value depends on the (somewhat subjective) impor-
tance of Sen and Spe in the respective research context. In one study, an individual may be diagnosed
as diseased, while in another study, with a different cutoff value, the same person may be diagnosed as
healthy. Therefore, even very different pairs of observed Sen and Spe might only be caused by different
cutoff values and may not indicate that the test accuracy itself varied between studies. Using univariate
effect measures such as the diagnostic odds ratio or its logarithm instead of Sen and Spe can reduce the
cutoff value problem [13] at the cost of a loss of information. However, the heterogeneity caused by
different cutoff values may still be interpreted as PB, even though there is none. In contrast, different
cutoff values can also mask an existing PB, so that it cannot be detected. Given all these complications,
we evaluated the performance of several statistical tests to detect PB in diagnostic meta-analysis in a
comprehensive simulation study.

In general, models of meta-analysis simultaneously have to cope with between and within study vari-
ance. Therefore, random effects models are of critical importance for many types of meta-analysis,
because they are able to separate within study variance from between-study variance. Rutter and Gatsonis
[14] were the first to develop a specific approach of random effects for diagnostic meta-analysis by using
hierarchical regression. A few years later, Reitsma et al. [15] formulated a different, bivariate model to
cope with random effects. It has later been shown by Harbord et al. [16] and likewise and independently
by Arends et al. [17] that the models of Rutter and Gatsonis [14] and Reitsma et al. [15] are very closely
related and even identical in the absence of covariates. In the present study, the model of Reitsma et al.
[15] was used to sample pairs of Sen and Spe, as a bivariate model should be used for the analysis of data
from primary diagnostic studies [18–20]. However, pairs of Sen and Spe are difficult to use directly to
detect PB, as the common graphical and statistical methods require UMs, and to our knowledge, bivariate
tests have not been developed so far [19]. In our study, four UMs that were computed on the basis of Sen
and Spe were each combined with every applied statistical test. The performance of these combinations
was evaluated by means of simulation.

Section 2 reviews the bivariate model, different UMs used in diagnostic studies, and existing statistical
tests to detect PB. The simulation process and its results are described in detail in Sections 3 and 4. In
Section 5, the findings, implications, and limitations of the present study are summarized and discussed.

2. Theory and methods

2.1. Bivariate sampling model

As mentioned earlier, the bivariate model of Reitsma et al. [15] was used as a sampling model for our
simulations. Let k be the number of studies summarized in the meta-analysis and i D 1; : : : ; k. The basic
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Table I. Data from a diagnostic study in a 2�2 table.

Diagnostic test

Positive Negative Total

Gold standard Positive x w n1
Negative y ´ n2
Total m1 m2 N

assumption is that the true pair of logit.Seni / D �A;i and logit.1 � Spei / D �B;i is bivariate normally
distributed with mean �D .�A; �B/T and between-study covariance matrix †:

�
�A;i
�B;i

�
� N.�; †/ with †D

�
�2A �AB
�AB �2B

�
: (1)

Despite that this model explicitly considers the bivariate nature of diagnostic data, it has the advantage
that it directly accounts for the covariance between Sen and Spe through �AB .

2.2. Univariate effect measures

Comparing diagnostic tests only on the basis of Sen and Spe can be problematic, as one test may have
a higher Sen, while the other test may have a higher Spe. If this is the case, it will be difficult to decide
which test is to be preferred unless one indicator is obviously more important. The advantage of UMs
combining the information on Sen and Spe is that different diagnostic tests are always comparable, at
the expense of losing some information due to the reduction to one single measure. With respect to the
present study, UMs are only of importance, as statistical tests to detect PB require UMs instead of pairs
of Sen and Spe [19]. In the following, four different UMs are introduced. The notation is given in Table I.

The probably most prominent UM in the context of diagnostic studies is the diagnostic odds ratio (!;
or its natural logarithm ln!). In general, one computes the standard error (SE) and the related confi-
dence interval of ln! as it is approximately normally distributed unless the observed frequencies (i.e.,
w, x, y, and ´) are too small. It holds that

ln! WD ln

�
x´

yw

�
(2)

with

SE.ln!/D

s
1

x
C
1

y
C
1

w
C
1

´
: (3)

The range of ln! is �1 to C1, with higher values standing for higher test accuracy and values lower
than zero representing tests that are worse than guessing. In case of zero cells in the underlying 2 � 2
table, it is generally recommended to add 0:5 to each observed frequency in order to calculate an approx-
imation of ln! [13, 21], although there are other methods that may be less biased [22]. Also, ln! is not
affected by unequal sample sizes [23]. Importantly, tests to detect PB in diagnostic meta-analysis are
almost without exception based on ! or ln!, while other UMs have not been discussed so far (see [24]
for the only exception known to the authors, in which the risk ratio was examined and performed worse
then ln!. Therefore, the risk ratio was not included in our simulations). Among other aims, the present
study investigated whether this focus on the diagnostic odds ratio can be regarded as justified.

Another UM proposed by Le [25] is derived from a model, which describes the relationship between
Sen and Spe using the Lehmann family:

SenD .1� Spe/# with 0 < # 6 1: (4)

This model allows to approximate the receiver operating characteristic (ROC), which is often used
to summarize diagnostic results that are continuous (i.e., not binary [25–27]). Solving for the natural
logarithm of # reveals
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ln# WD ln

�
ln.x/� ln.n1/

ln.y/� ln.n2/

�
(5)

with the SE

SE.ln#/D

s
1
x
� 1
n1

.ln.x/� ln.n1//2
C

1
y
� 1
n2

.ln.y/� ln.n2//2
: (6)

Similar to ln!, ln# is not affected by unequal sample sizes and ranges from �1 to C1 with values
greater than zero representing tests that are worse than guessing. Thus, in contrast to ln!, higher values
represent lower test accuracy. However, some tests for PB require higher values to be associated with
higher test accuracy. Therefore, � ln# was used in our simulations instead.

Youden’s index [28], in our notation, is written as

Y WD
x

n1
C
´

n2
� 1; (7)

is yet another UM used in diagnostic studies. The value of Y is fairly constant, even if Sen and Spe are
varying due to different cutoff scores [29]. Also, Y appears to be a better measure to choose an appropri-
ate cutoff value than ! [30]. These are important properties when dealing with the cutoff value problem.
Moreover, Y is very simple to calculate, it is unaffected by unequal sample sizes, and its values range
from �1 to 1. Assuming that a diagnostic test is equal or better than a random decision, Y only ranges
from 0 to 1 (the higher the Y , the better the test). It holds that

SE.Y /D

vuut x
n1

�
1� x

n1

�
n1

C

y
n2

�
1� y

n2

�
n2

: (8)

Due to the simplicity of Y and its usefulness when choosing an appropriate cutoff value, it has frequently
been applied in diagnostic studies. With respect to meta-analysis, Böhning et al. [29] proposed an overall
estimator for the performance of a diagnostic test based on Y , including the possibility to add mixtures
to cope with unobserved heterogeneity.

A measure that behaves somewhat similar to Y is Cohen’s kappa [31]:

K WD
2.x´� yw/

n1m2C n2m1
: (9)

Although it can be applied in diagnostic contexts [32, 33], K is generally known as a measure of the
agreement between two or (if generalized) more raters [34], but not as a measure of diagnostic accuracy.
Accordingly, when compared with the other measures mentioned earlier,K is less often applied in diag-
nostic studies. Calculating SE.K/ is quite complex. The SE used in the present study was proposed by
Fleiss et al. [35] (under a multinomial assumption) and is the most common:

SE.K/D

p
ACB �C

.1� .n1m1C n2m2/=N 2/
p
N
; (10)

where

A WD
1

N 3
.x.N � .n1Cm1.1�K//

2Cw.N � .n2Cm2.1�K//
2/;

B WD
1

N 3
.1�K/2.w.n2Cm1/

2C y.n1Cm2/
2/; (11)

C WD .K � .n1m1C n2m2/.1�K/=N
2/2:

When sample sizes are equal in both groups, K is identical to Y with SE.K/ and SE.Y / being very
similar. However, when sample sizes are unequal, both measures differ, because in contrast to the other
UMs, K depends on the sample sizes per group. For sample distributions of the UMs in the absence and
presence of PB, see Figure 2.
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Figure 1. Hypothetical funnel plot illustrating published studies (solid points) and unpublished studies (white
points). As the unpublished studies cannot be considered for meta-analysis, the funnel emerged from the solid

points is asymmetric and hints at the presence of PB.

2.3. Detecting publication bias using funnel plots

A basic graphical method to detect PB are funnel plots, in which effect measures (such as those men-
tioned earlier) are plotted against the total sample size N or the precision SE�1 of the effect measure
[36]. The shape of the funnel plot visualizes whether PB is existent or not. If not existent, the points
will form a symmetrical funnel around an overall estimated effect. More precisely, studies with low N

or high SE should spread more around the overall effect, while studies with high N or low SE should
be closer to it [4]. However, if small studies with low or non-significant effects remain unpublished, the
funnel plot should appear asymmetrical, which may lead to the conclusion that PB is existent. A sample
funnel plot of a hypothetical meta-analysis in which PB is present is depicted in Figure 1.

Notably, funnel plots and statistical tests cannot discriminate between PB and other sources that cause
funnel plot asymmetry [37]. The cutoff value problem in diagnostic meta-analysis further complicates
the detection of PB. As funnel plots of Sen and Spe do particularly suffer from this cutoff value problem,
UMs should be used instead. Glas et al. [13] showed that the diagnostic odds ratio might depend on the
cutoff (as implied by the model in [14]) but is reasonably constant nevertheless. In this sense, UMs alle-
viate the cutoff value problem. Moreover, three-dimensional funnel plots displaying Sen and Spe at the
same time are possible, but they may be too difficult for reasonable interpretation. Yet even without these
complications, funnel plots cannot be seen as a reliable method to detect PB [38]. Therefore, statistical
tests are needed.

2.4. Detecting publication bias using statistical tests

The present study examined the performance of several statistical tests that were developed to detect PB
by means of simulation. All of these tests were combined with each of the four UMs (i.e., ln!, ln# , Y ,
and K). The tests do all have in common that they are more or less based on funnel plots. Contrary to
funnel plots, however, formal instead of visual criteria decide if PB is present. When PB is genuinely
existent in diagnostic meta-analysis, studies that found low diagnostic accuracy remain unpublished and
cannot be considered for meta-analysis. Therefore, by using UMs with higher values corresponding to
higher diagnostic accuracy as in the present study, missing studies should appear on the left part of
the funnel. Conclusively, it seems reasonable to apply tests for detecting PB with one-sided (instead of
two-sided) hypotheses.

Concerning the performance of a statistical test, two types of errors are of importance. A type I error
(e1) occurs when the test is significant, even though there is no PB. In contrast, a type II error (e2) occurs,
when there is PB but the test fails to be significant. Let ˛ be the nominal ˛ level of a test and P.x/ the
probability of an event x. A test is called conservative when P.e1/ < ˛, whereas it is called liberal (or
anti-conservative) when P.e1/ > ˛. The power of tests is generally defined as 1�P.e2/. Taken together,
statistical tests are considered as good when they are not liberal and have a high power.

2.4.1. Egger regression. Egger et al. [39] used a linear regression approach to detect PB. They sug-
gested to regress an UM divided by its SE as dependent variable on the precision of that UM as
independent variable:

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014
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UM � SE�1 D b0C b1SE�1C "; (12)

where " represents the error arising from the prediction. In case of no PB, small studies are expected to
be close to zero on both axes (due to their high SE), whereas larger studies have a high precision and
are thus expected to deviate from zero. In this case, the regression line is assumed to go through the
origin, so that b0 does not differ significantly from zero. However, if PB is existent, most small studies
will have relatively high UMs, and b0 is thus assumed to be significantly greater than zero. The Egger
regression can be altered by replacing SE�1 in (12) by the total sample size N . In addition, each study
can be weighted by the inverse of the variance under a fixed or random effects assumption to control
for possible heteroscedasticity (cf. [40]). These variations of the Egger regression have in common that
they are mostly too liberal when combined with (diagnostic) odds ratio or its logarithm [4, 24, 41]. For
this reason, Harbord et al. [42] proposed another variation of Egger’s regression specifically designed
for meta-analysis of binary outcomes, which uses the efficient score of an UM and the variance of the
efficient score (for details, see [42]). Furthermore, there are alternative regression tests for meta-analysis
of binary outcomes, which utilize the arcsine transformation in order to hold the nominal ˛ level [43].

2.4.2. Macaskill regression. Macaskill et al. [41] introduced a different regression approach to detect
PB. They suggested to regress an UM as dependent variable on the total sample size N as independent
variable and weight the studies by the inverse of the variance:

UMD b0C b1N C ": (13)

In case of no PB, the values of the UM should be constant across different sample sizes, and b1 is thus
assumed to be close to zero. However, when PB is present, small studies should have greater UMs on
average, which causes b1 to be below zero. Deeks et al. [4] suggested to replace N by 1=

p
ESS (i.e., the

effective sample size calculated as ESSD .4n1n2/=.n1Cn2/) and weight the studies by ESS to achieve
a better performing test, especially when there are only few diseased persons in the sample. A similar
approach was suggested by Peters et al. [44], who replaced N by 1=N (for details on the weighting, see
[44, 45]). Note that, when ESS or 1=N are used, b1 > 0 has to be tested. Although it seems reasonable
to further variate the Macaskill regression by replacing N by SE, Sterne et al. [46] demonstrated that
the resulting test is equivalent to Egger’s regression. Notably, in the approach of Egger et al. [39], b0 is
tested for significance in order to detect PB, whereas the method of Macaskill et al. [41] uses b1.

2.4.3. Begg’s rank correlation. Begg and Mazumdar [47] proposed a non-parametric rank correla-
tion method to detect PB, which is based on Kendall’s tau (� [48]). Let ti be the effect measure and
Vari WD Var.ti /D SE.ti /2 the related variance of study i in the meta-analysis. Then one calculates

t�i WD .ti � Nt / =SEi (14)

with

Nt WD
�X

Var�1i ti
�
=
X

Var�1i (15)

being the common fixed effects estimator of the overall effect. It is then tested whether t�i and Vari
are significantly associated (i.e., if � differs significantly from zero). In the absence of PB, the variance
should be independent of the effect measure, and thus, � is assumed to be close to zero. In the presence
of PB, some small studies will have inflated effect measures and hence large values t�i . For that reason, a
� that is significantly greater than zero indicates the presence of PB. It has been shown that Begg’s rank
correlation is a little conservative and has less power than Egger’s regression when used with (diagnos-
tic) odds ratio or its logarithm [4, 41, 46]. Possible variations of Begg’s rank correlation can be obtained
by replacing Var by N�1 or ESS�1, respectively [4]. Further variation specifically designed for binary
data were proposed by Schwarzer et al. [49] and Rücker et al. et al. [43].

2.4.4. Trim and fill. Trim and fill is another non-parametric method to detect PB and was developed
by Duval and Tweedie [50]. It is based on the idea that there are k studies present in the meta-analysis
and k0 studies missing due to PB, which implies an asymmetrical funnel. With respect to trim and fill,
funnel plots are applied with an UM on the x-axis and its precision (or alternatively N ) on the y-axis. If
we assume to know the true overall effect ‚, we will be able to estimate k0. Let tCi WD ti �‚, rCi be the
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Table II. Short forms of the tests to detect PB.

Test Short form Additional notations

Egger E.t; v; w/ w: weights of each study
Macaskill M.t; v/
Begg B.t; v/
Trim and fill T.t; v;m/ m: estimator of k0

rank of jtCi j (1 6 r
C
i 6 k) and �C > 0 be the rightmost run of ranks associated with positive values of

tCi . Then k0 can be estimated by

R WD �C � 1 (16)

or

L WD
4
P
t
C

i
>0
rCi � k.kC 1/

2k � 1
: (17)

In addition, the authors of trim and fill proposed a third estimator of the number of missing studies but
did not recommend its usage [50]. Therefore, this estimator was not considered in the present study.

As‚ is usually unknown, it has to be estimated as well. Using an easily computed iterative algorithm
(discussed in detail in [50]), one arrives at a random effects estimator O‚ that is used in the preceding
formula. In the absence of PB (i.e., k0 D 0), the approximate distributions of R and L are known. Thus,
R and L can be tested for significance to decide whether PB is present or not. As O‚ can be seen as
corrected for PB [50], trim and fill is not only a method to test for PB, but it also offers to correct the
overall estimator (for further discussion, see [50, 51]). Note that trim and fill can only be applied with
one-sided hypotheses as apposed to all other tests mentioned earlier.

In literature, several alternative methods other than trim and fill were proposed to estimate the num-
ber of missing studies [52–54], but they are far more complex than any of the methods discussed in
this section. As a method’s success rests not only upon its performance but also upon its simplicity and
applicability in practice, these complex alternative methods were not considered in the present study.

All other statistical tests discussed in this section were included in our simulation, and each of them
was combined with every of the four UMs (and with every of the accuracy measures SE,N , and ESS) as
far as possible and feasible. In view of the large number of tests for PB simulated in our study, it makes
sense to introduce a short form at least for those combinations, which are frequently mentioned in our
results and discussion (Table II; for notational convenience, UMs are denoted as t , whereas measures
of its accuracy are denoted as v). Note that not all test variations have a short form in order to keep the
number of notations at an acceptable level.

For example, if Y is used in the original version of Egger’s regression with every study being equally
weighted (so that the weight argument can be suppressed), the resulting test will be shortened to

E.Y;SE/: (18)

If ln# is plotted against N and tested with trim and fill while k0 is estimated by the statistic R stated in
(16), we will write

T.ln#;N;R/: (19)

3. Simulations

In order to evaluate the performance of the tests to detect PB discussed earlier, diagnostic data were
simulated with and without PB. In addition, several other parameters such as the number of studies per
meta-analysis k or the mean quality � of the diagnostic test were systematically varied. In the present
simulation, k took on values of k D 30 (many studies) or k D 10 (few studies). The total sample size N
of each of the k studies was randomly sampled from a discrete uniform distribution and varied between
N D 50 and N D 1000. The prevalence � (i.e., the rate of diseased individuals) took on values of

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014
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Table III. Summary of all parameters varied.

� † k � Bias

Random decision: Fixed effects: Few studies: Balanced: None:

�D

�
0

0

�
†D

�
0 0

0 0

�
k D 10 � D 0:5 No PB

Low accuracy: Small random effects: Many studies: Unbalanced: Selection small:

�D

�
1

�1

�
†D

�
0:5 0:3

0:3 0:5

�
k D 30 � D 0:2 Removal of 0:2k studies with

the lowest Youden index
High accuracy: Large random effects: Selection large:

�D

�
2

�2

�
†D

�
1 0:5

0:5 1

�
Removal of 0:4k studies with
the lowest Youden index

High sensitivity: Mixture small:

�D

�
2

�1

�
Mixture of two distributions
with the mean of the second
shifted by .0:75; �0:75/T

Mixture large:
Mixture of two distributions
with the mean of the second
shifted by .1:25; �1:25/T

� D 0:5 (n1 D n2 D 0:5N ; balanced) or � D 0:2 (n1 D 0:2N , n2 D 0:8N ; unbalanced). The resulting
n1 and n2 were always rounded to nearest integer. Simulations were implemented in R [55–57] with
parts of the program coded in C++ in order to decrease the simulations’ duration.

In contrast to earlier simulation models concerning diagnostic accuracy (cf. [4]), for each study, the
true logits of Sen and 1 � Spe were directly sampled using the model of Reitsma et al. [15] stated in
(1), to consider the bivariate structure of diagnostic data. Both � and † were systematically varied (see
Table III for the exact values). With regard to the true mean � of the logit diagnostic accuracies, four dif-
ferent values were selected representing a random decision, a diagnostic test with overall low accuracy,
a test with overall high accuracy, or a test with only high Sen. The alternative of a test with only high
Spe was not considered, because its results were assumed to be similar to the high Sen condition due to
symmetry. Regarding the between-study variance †, which is, among others, assumed to be caused by
different cutoff values, three different values were selected representing a fixed effects assumption (in
which no between-study heterogeneity is present) or small/large random effects, respectively. The values
of † in the random effects conditions were chosen to be similar to real data of diagnostic meta-analysis.

Each point sampled from (1) can unambiguously be transformed back to its related Sen and 1� Spe
by taking the inverse of the logit. After the true pair of Seni and 1 � Spei of study i was sampled, a
binomial error was added in order to include the error of measurement:

xi � Binom.Seni ; n1;i / and yi � Binom.1� Spei ; n2;i /: (20)

Taken together, these values allowed to fill in the diagnostic 2 � 2 table (Table I) for each study, and
thus, every UM and its respective SE could be calculated on that basis.

3.1. Introducing publication bias

In general, PB is modeled in such a way that the probability of a study to be published depends on its
effect measure or its p-value [4, 41, 47]. The lower the effect measure (or the higher the p-value), the
lower the probability of the study to be published. For the present simulations, two different methods to
introduce PB were considered.

The first method was similar to that proposed in literature. It was based on the idea to exclude l stud-
ies with the lowest Youden index from the meta-analysis. In order to finally arrive at k studies (more
precisely at k D 30 or k D 10), k C l studies were simulated in a first step. In a second step, those l
studies with the lowest Y were excluded. In the following, this procedure is referred to as selection. As
not only the existence of PB but also its strength was varied, l took on values rounded to the nearest
integer of l D 0:2k (small PB) or l D 0:4k (large PB). Contrary to methods proposed in literature, the
decision to exclude a study from the meta-analysis depended on the outcomes of all other studies.
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Figure 2. In the first row, 70 simulated studies (under the condition of high accuracy, large random effects, and
unbalanced prevalence) are plotted at the ROC and logit ROC space. Solid points symbolize published studies,
and white points symbolize unpublished studies. The lines depict the cutoff criterion that decides which studies
are treated as unpublished. In the second and third rows, the related smoothed densities are illustrated in the

absence of PB (solid line) and its presence (dotted line).

In the second method, no studies were excluded from meta-analysis to introduce PB. Instead, it was
assumed that some studies do report systematically higher diagnostic accuracy than other studies. For
instance, as developers of diagnostic tests are usually interested in presenting their test in a good light,
they may choose certain experimental settings in order to obtain (possibly unrealistic) high diagnostic
accuracies. To model this assumption, two-thirds of the k studies were sampled from N.�;†/, whereas
one-third was sampled from N.� C �;†/. Here, � describes the strength of the PB. In the following,
this method is referred to as mixture. In the present simulations, � took on values of �D .0:75; �0:75/T

(small PB) or �D .1:25; �1:25/T (large PB). Although it may be argued that this kind of systematic het-
erogeneity can be addressed by adding moderators to the meta-analysis, well-performing tests to detect
PB should be able to detect this type of bias. A summary of all varied parameters is provided in Table III.

To obtain an impression on how the UMs are distributed when PB is either existent or not, Figure 2
illustrates the selection method and the resulting smoothed densities. One realizes that the UMs may
be asymmetrically distributed even in the absence of PB (the amount of asymmetry dependents on the
parameter values in the underlying simulation).

In the present simulations, all combinations of the values for the parameters were taken into account,
resulting in 240 unique combinations. For each of these combinations, 10,000 meta-analyses were sim-
ulated, so that the accuracy of the results was ensured up to the third decimal place. Each of these
meta-analyses was tested for PB with ˛ D 10% (which was recommended for tests to detect PB;
[39, 41, 47]). It was recorded which tests did indicate PB and which tests did not.
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4. Results

Although all combinations of UMs and tests to detect PB were simulated, only those findings of central
importance are discussed in this section. In a first step it is discussed which UM performs best when
combined with the common versions of Egger, Begg, and trim and fill. In a second step, the performance
of a broader variety of tests was each combined with the best UM resulting from the first step.

4.1. Comparison of the UMs

In case of random decisions and fixed effects, all common tests combined with each UM nearly held
the ˛ level of 10%, irrespective of the other parameters (Figure 3). However, the more � and † differed
from zero, the more liberal most tests combined with ln! or ln# were (for instance see plots j; k; l , and
p in Figure 3). In contrast, one-sided tests combined with Y andK mostly had zero type I error rates and
zero power when the diagnostic test was better than a random decision and when random effects were
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Figure 3. Type I error rates and statistical power for the comparison of the UMs. The conditions pictured in this
figure were selected for being most representative. S.s D selection with small PB, S.l D selection with large PB,

M.sD mixture with small PB, M.lD mixture with large PB.
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present (see third to fifth rows of Figure 3). As this was not found for two-sided tests, further explana-
tions follow in Section 5. For better comparison of the UMs, Figure 3 does also illustrate the results of
two-sided tests.

The UMs Y and K were not considered to be adequate for detecting PB for two reasons. First, they
cannot reasonably be used with one-sided tests, and second, they rarely performed better than ln! or
ln# when two-sided tests were applied. Although ln# had higher power than ln! when used with
E(SE), B(SE), or T(SE,R), it was also more liberal. More precisely, the greater the power difference
between ln# and ln!, the greater the type I error rate difference between ln# and ln!. Importantly,
T.ln!;SE; R/ had non-inflated or only slightly inflated ˛ levels (see fifth row of Figure 3). For these
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Figure 4. Type I error rates and statistical power in case of k D 30 for linear regression and rank correlation
tests using N or ESS combined with ln!. S.s D selection with small PB, S.l D selection with large PB, M.s D

mixture with small PB, M.lD mixture with large PB.

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014



P.-C. BÜRKNER AND P. DOEBLER

reasons, ln! indeed seemed to the best UM for detecting PB in diagnostic meta-analysis. Therefore, its
frequent application for research purposes can be considered as justified.

4.2. Comparison of the tests

The findings suggest to concentrate on ln!, so that this section only focuses on tests combined with
ln!. In the following, the UM argument in the short forms is suppressed for notational convenience. As
can be seen in Figure 3, E(SE) as well as B(SE) had highly inflated ˛ levels when the diagnostic test was
better than a random decision and when random effects were present, especially in case of many studies
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included in the meta-analysis. The highly inflated ˛ levels were also found when Egger’s regression was
weighted by the inverse of the variance. Furthermore, the variation of Egger’s regression proposed by
Harbord et al. [42] and the alternative rank correlation test proposed by Schwarzer et al. [49] (both not
shown in the figures) were less liberal and much less powerful than E(SE) or B(SE) but still had inflated
˛ levels in case of random effects.

However, tests based on Egger, Macaskill, or Begg that used the total sample size N or similarly used
ESS or 1=N instead of SE did not suffer from high ˛ inflation. Instead, they appeared more or less
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conservative even when many studies were included in the meta-analysis (Figure 4). In case of fixed
effects (see first and fourth rows of Figure 4), all tests had an acceptable amount of power, when PB was
simulated by the selection method. Notably, only rank correlation tests were able to identify PB, which
was simulated by the mixture approach. Unfortunately, all of these tests generally had low power in case
of random effects (rarely above the nominal ˛ level; see second, third, fifth, and sixth rows of Figure 4).
The same was true for the arcsine tests of Rücker et al. [43]. The prevalence � did only have small
effects (compare first to third with fourth to sixth rows of Figure 4), at least for the non-extreme values
of � that were chosen in this study. Taken together, when the investigated diagnostic test is better than a
random decision or when random effects such as different cutoff values are present, the methods based
on linear regression or rank correlation cannot be recommended for diagnostic meta-analysis, because
of inflated ˛ levels or very low power.

In contrast, trim and fill had non-inflated or only slightly inflated ˛ levels and medium to high power
(when k D 30; Figure 5), at least when the number of missing studies was estimated by (16). Generally,
the results of T.SE; R/ and T.N;R/ were independent of � , and they were able to detect both types of
PB (i.e., mixture and selection). T.SE; R/ had more power than T.N;R/ but was slightly liberal when the
diagnostic test had overall high accuracy or at least high Sen (see third and fourth columns of Figure 5),
whereas T.N;R/ was non-liberal in all cases. Both tests lost power in the presence of random effects.
Importantly, however, these losses were much smaller compared with all other non-liberal or slightly
liberal tests. When only a few studies were included in the meta-analysis (k D 10), trim and fill was
rather conservative and had quite low power, which was similar to other tests with non-inflated or only
slightly inflated ˛ levels (Figure 6). Interestingly, the estimator of the number of missing studies stated in
(17) did not work properly for almost all parameter combinations. Among others, this might be because
(17) tends to underestimate the number of missing studies [50].

5. Discussion

The present simulations confirmed that statistical tests based on funnel plots are able to detect PB in
diagnostic meta-analysis under diverse conditions. Summarizing the results, trim and fill combined with
the log diagnostic odds ratio, more precisely T.ln!; SE; R/ or T.ln!;N;R/, were best to detect PB
in diagnostic meta-analysis, although both lacked power when the number of studies per meta-analysis
was small. Furthermore, T.ln!;N;R/ was able to hold the nominal ˛ level in all cases and did not have
much less power than T.ln!;SE; R/, even in situations with between-study heterogeneity. This finding
demonstrates that funnel plots based on the total sample size N (but not on the SE) also provide enough
information, so that PB can be detected.

In contrast to trim and fill, the common tests of Egger, Macaskill, and Begg were too liberal in the
presence of random effects or they had very low power. Thus, earlier findings were replicated (for
instance, see [4, 42, 44]), and it can be concluded that those common tests cannot be recommended
for diagnostic meta-analysis. The advantage of the tests proposed by Deeks et al. [4], which use ESS,
was that those tests were mostly able to hold the nominal ˛ level, but at the expense of low power
when between-study heterogeneity was large. As most diagnostic tests are way better than random deci-
sions and as cutoff values often vary between studies, tests of Egger, Macaskill, and Begg will often be
misleading. Accordingly, these tests and their numerous existing variations cannot be recommended in
diagnostic meta-analysis.

Both the ˛ inflation of certain tests that were combined with ln! and ln# and the odd performance
of Y and K when combined with one-sided tests need some explanation. First, the distributions of the
UMs, especially the ones of Y and K are more symmetric in the presence of PB than in its absence
(Figure 2). Second, the SEs of all the four applied UMs are dependent on the underlying effect. With
N held constant, SE.ln!/ and SE.ln#/ reach higher values, when the underlying effect differs more
from zero. For SE.Y / and SE.K/, it is contrariwise. For example, consider Egger’s regression applied
to a meta-analysis of a well-performing diagnostic test in which PB does not exist. If ln! or ln# is
used, UM � SE�1 will be overly constant and greater than zero across different values of SE�1, because
the precision becomes higher when the UM is close to zero. Conclusively, the probability of b0 > 0

is increased, which results in a liberal test. In contrast, if Y or K is applied, small values of the UMs
will be associated with lower precision, so that the probability of b0 < 0 is increased, which results
in a conservative test with very low power (when the hypothesis is that b0 > 0). Trim and fill com-
bined with ln! seems to compensate for these problems. Therefore, we recommend its application in
diagnostic meta-analysis.
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Besides the fact that a simulation by design can never display reality exactly (and is therefore always
slightly wrong), there are some limitations of our modeling assumptions that have to be discussed in the
following. First, we decided to directly sample the true logits of Sen and 1�Spe from the random effects
model of Reitsma et al. [15]. This approach was different from and probably less intuitive than earlier
simulation models [4]. However, the bivariate model is a common and valid approach for performing
diagnostic meta-analysis [18–20], and therefore, its usage as a sampling model appears reasonable. Sec-
ond, it might be more realistic in some diagnostic settings to assume a long-tailed distribution for the
sample size N of each study instead of a uniform distribution, although this should only have a minor
impact on the results. Third, two distinct methods to introduce PB were applied in the present study
with one of them being very different from the methods proposed in literature. Interestingly, the mixture
approach to introduce PB yielded similar results to the selection approach, although both arose from
different theoretical assumptions. Fourth, the PB mechanisms we studied are not exhaustive: A reviewer
of the paper pointed out that a selection mechanism based solely on sensitivity would have been a pos-
sibility. Fifth, we assumed a perfect gold standard, which seems common in simulations of diagnostic
accuracy, but might not be adequate for every diagnostical setting. As the modeling of an imperfect gold
standard would have further complicated our simulations and might not have led to very different results,
this limitation was considered as acceptable.

Sixth and last, as described in Section 1, there are several reasons other than PB (such as different
cutoff values, study quality, or heterogeneity of the examined populations) that may cause funnel plot
asymmetry. In the present study, these biases were modeled by the covariance matrix of the true logits of
Sen and 1�Spe. As indicated by our results, only trim and fill could discriminate adequately between this
heterogeneity and PB. In contrast to PB, no other bias have an explicit directional effect on the funnel
plot asymmetry in our simulation model. Instead, the effect of the between-study heterogeneity largely
depended on the respective applied UM and its SE. However, in real diagnostic meta-analysis, other
biases may have directional effects on funnel plot asymmetry as well. Unfortunately, the direction is not
always known. In meta-analysis of treatment effects, smaller studies often have a poorer methodological
quality, which may lead to an overestimation of the effects in these studies. However, this may not be the
case in diagnostic meta-analysis: As larger retrospective studies may obtain their test results from large
clinical databases and do thus have more heterogeneous and possibly not fully appropriate samples for
the respective research question, they may be of poorer quality in contrast to studies with small but more
carefully chosen samples [4]. Depending on possible directions of other biases, the performance of tests
to detect PB may vary heavily, which further complicates the detection of PB.

Importantly, however, our results for those tests already investigated in literature turned out to be quite
similar to earlier findings [4, 42, 44], which supports our assumptions and also validates our findings.

In summary, the present study provides evidence that trim and fill combined with log diagnostic odds
ratios is superior to other combinations of tests and UMs when testing for PB in diagnostic meta-analysis.
Moreover, the tests based on linear regression or rank correlation cannot be recommended for diagnostic
meta-analysis, because of either highly inflated ˛ levels or very low power.
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