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Optimal design of the Wilcoxon–Mann–Whitney-test
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In scientific research, many hypotheses relate to the comparison of two independent groups. Usually,
it is of interest to use a design (i.e., the allocation of sample sizes m and n for fixed N = m + n)
that maximizes the power of the applied statistical test. It is known that the two-sample t-tests for
homogeneous and heterogeneous variances may lose substantial power when variances are unequal
but equally large samples are used. We demonstrate that this is not the case for the nonparametric
Wilcoxon–Mann–Whitney-test, whose application in biometrical research fields is motivated by two
examples from cancer research. We prove the optimality of the design m = n in case of symmetric and
identically shaped distributions using normal approximations and show that this design generally offers
power only negligibly lower than the optimal design for a wide range of distributions.
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1 Introduction

The comparison of two independent samples can be considered one of the most widespread applications
of statistics, being used for instance in medicine, biology, neuroscience, and psychology. For normally
distributed data, t-tests are applied to check whether the difference between the samples is significant.
When variances turn out to be equal across samples, the t-test for homogeneous variances (Thom)
is used. When variances are unequal, the t-test for heterogeneous variances (Thet ; Welch, 1938) is
the preferred method. In scientific experiments, researchers are free to choose how many subjects
to allocate to the first and second sample, respectively, while the total sample size N is commonly
limited due to time, money, or ethical restrictions. Almost always, researchers will use equally large
sample sizes m and n for both groups, because they were taught doing it so or maybe just because
“it feels right”. Indeed, Thom has the highest power if m = n, assuming normally distributed samples
and equally large variances (e.g., Holling and Schwabe, 2013). Less commonly known however, this
is not the case for Thet . Here, the sample size should be higher for the sample with higher variance
(again assuming normally distributed data), increasing proportionally with the ratio of the standard
deviations (Dette and Munk, 1997; Dette and O’Brien, 2004). Furthermore, using nonoptimal sample
size allocations may result in substantial loss of power as compared to the optimum (Dette and O’Brien,
2004). Unfortunately, it is usually unclear a-priori, how much (if at all) variances will actually differ.
For this reason, equally large sample sizes might be used nevertheless at the cost of potentially losing
nonnegligible amount of power.
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If the data are not normally distributed, t-tests may be invalid, especially for small samples. In this
case, the Wilcoxon–Mann–Whitney-test proposed by Wilcoxon (1945) and Mann and Whitney (1947)
— being arguably one of the most widely used nonparametric tests developed so far — is a powerful
alternative. It is applied in cancer research (e.g., Arap et al., 1998; Sandler et al., 2003), virology
(e.g., Di Bisceglie et al., 1989; Misiani et al., 1994), neuroscience (e.g., Shen et al., 2008), and clinical
psychology (e.g., Lanquillon et al., 2000), to mention only a few areas of application and related
studies. The study of Sandler et al. (2003) and another cancer study by Epping-Jordan et al. (1994) are
discussed in more detail in Section 2.2, to explain the usefulness of the Wilcoxon–Mann–Whitney-test
for biometrical research. Generally, Hollander et al. (2013, p. 1) define a nonparametric method as “a
statistical procedure that has certain desirable properties that hold under relatively mild assumptions
regarding the underlying populations from which the data are obtained”. The key aspect of most
nonparametric methods is that they are distribution free. That is, they are valid for samples from a
wide range of distributions and therefore no (or fewer) assumptions on the distribution of the data,
in particular no normality assumption, have to be made (c.f. Brunner and Munzel, 2002; Sprent and
Smeeton, 2007; Agresti, 2013; Hollander et al., 2013).

Considerable amount of research has been conducted on the optimal designs of classical parametric
methods such as t-tests (see above), linear and generalized linear models (e.g. see Atkinson et al., 2007;
Berger and Wong, 2009). However, it appears that alternative nonparametric methods are less well
represented in the optimal design literature. In particular, the optimal design of the Wilcoxon–Mann–
Whitney-test has not yet been investigated so far, despite its broad area of application.

In the following, we introduce some notation that is used throughout the paper. Let X and Y be two
independent random variables with distributions F and G from which we take m and n independent
realizations. In case of two-sample tests, an exact (experimental) design is the allocation of sample sizes
m and n, while keeping N = m + n constant. Define m := ωN as well as n := (1 − ω)N for ω ∈ [0, 1].
Using ω instead of m and n, every design can be symbolized by a number in [0, 1] independent of N.
Of course, not all values ω ∈ [0, 1] can be realized in practice, since m and n must be natural numbers,
and hence ω is called an approximate design (Berger and Wong, 2009).

The null hypothesis considered in this paper is

H0 : G(x) = F (x), (1)

implying an identical distribution underlying both samples. In the most general case, the alternative
hypothesis can be defined as

H1 : G(x) �= F (x), (2)

although it is often useful and necessary to make the H1 more specific, in order to ensure good
properties of the tests (see next section). The interpretation of a statistical tests’ outcome depends
heavily on the underlying pair of hypotheses. Accordingly, they should always be specified with care.

The power of a test is the probability that H0 is rejected when H1 is actually true. In the present paper,
an optimal design, denoted as ω∗, is a design that maximizes the power of a test for given N, F , and G.
In case of t-tests, maximizing the power is equivalent to achieving D-optimality (cf. Atkinson et al.,
2007; Berger and Wong, 2009), which is the most widely applied optimal design criterion. However,
this equivalence does not hold for the Wilcoxon–Mann–Whitney-test discussed in this paper, so that
optimality is defined by maximal power here.

As stated above, it is known that Thom has its optimal design exactly at ω∗ = 0.5 (e.g., Holling and
Schwabe, 2013), when F and G are normal with equal variances. That is, one should assign equal
sample sizes to both samples. However, when F and G have unequal variances σ 2

1 and σ 2
2 , Thet has an

locally optimal design that is close to ω∗ = 1
1+σ2/σ1

(Dette and Munk, 1997; Dette and O’Brien, 2004).

That is, the sample size should be higher for the sample with higher variance. It is now of interest to find
the optimal design for the Wilcoxon–Mann–Whitney-test, which serves as a powerful nonparametric
alternative to the classical t-tests.
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2 Wilcoxon–Mann–Whitney-test

The test statistic Umn of the Wilcoxon–Mann–Whitney-test (in the following abbreviated as TU ) is
defined as

Umn :=
m∑

i=1

n∑
j=1

χ(xi, y j ) (3)

with

χ(xi, y j ) :=
{

1 if xi ≥ y j
0 if xi < y j .

(4)

Under H0, the exact distribution of Umn is known and can be calculated using a recursive formula
(Mann and Whitney, 1947). This recursive formula further allows to calculate the central moments of
Umn. The mean and the variance for continuous F and G under H0 are given by

E0(Umn) = mn
2

Var0(Umn) = mn(m + n + 1)

12
. (5)

The original H1 for TU , often called stochastic ordering hypothesis (Fay and Proschan, 2010), states
that one of the two random variables is stochastically larger than the other assuming the overall shape
of the distributions to be the same. That is, there is an a �= 0 such that

H1 : G(x) = F (x + a). (6)

When using the above H1, TU is consistent (Mann and Whitney, 1947) as well as unbiased for any
one-sided hypothesis (i.e., a > 0 or a < 0; Van der Vaart, 1950; Lehmann, 1951). Unbiased means
that the test is less likely to reject the H0 when it is true than when any other hypothesis is true. This
property may not hold in the two-sided case (Van der Vaart, 1950). If samples are normal with equal
variances, Thom is uniformly most powerful among all unbiased tests (e.g., Lehmann and Romano,
2006). For this case of homogeneous variances, Mood (1954) has shown that the asymptotic efficiency
of TU relative to Thom is 3/π ≈ 0.955. This is quite large given that TU has higher power than Thom in
many nonnormal situations, even for N → ∞ (Hodges and Lehmann, 1956; Blair and Higgins, 1980;
Sawilowsky and Blair, 1992; Fay and Proschan, 2010).

When F �= G, we have no recursion available to determine the distribution of Umn, but it is never-
theless possible to calculate general formulae for the mean and the variance of Umn. In the following,
define P(X ≥ Y ) as the probability of X exceeding Y , that is the probability that some realization x
of X is greater or equal to some realization y of Y . Furthermore, define F̃ (x) := P(X < x) (note that
F̃ = F if F is continuous).

Lemma 2.1. Let F and G be some arbitrary distributions with densities f and g.

(i) We have

P(X ≥ Y ) =
∫

G(x) f (x)dx.

(ii) The mean and the variance of Umn can be written as

E(Umn) = mnP(X ≥ Y ) = ω(1 − ω)N2P(X ≥ Y ),

Var(Umn) = mn
(

P(X ≥ Y ) − (m + n − 1)P(X ≥ Y )2 +
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+ (n − 1)

∫
G(x)2 f (x)dx + (m − 1)

∫
(1 − F̃ (x))2g(x)dx

)
=

= ω(1 − ω)N2
(

P(X ≥ Y ) − (N − 1)P(X ≥ Y )2 +

+ ((1 − ω)N − 1)

∫
G(x)2 f (x)dx + (ωN − 1)

∫
(1 − F̃ (x))2g(x)dx

)
.

(iii) If F and G are symmetric with G(x) = F (x + a) for a ∈ R it holds that∫
G(x)2 f (x)dx =

∫
(1 − F̃ (x))2g(x)dx.

The proofs of Lemma 2.1 (i) and (ii) can be found in the Appendix of Lehmann and D’Abrera
(2006). The full version of Lemma 2.1 as well as the remaining proofs can be found in Appendix A
of the present paper. The asymptotic normality of Umn under H0 was originally proven by Mann and
Whitney (1947). Expanding this result, Lehmann (1951) used a theorem of Hoeffding (1948) to prove
the general asymptotic normality (holding also under H1) for a large class of estimators, including
Umn, under the assumption

m/n = constant as N → ∞. (7)

2.1 Optimal design of TU for the stochastic ordering hypothesis

If we assume the stochastic ordering hypothesis (6) to be true and focus on symmetric distributions
only, we are able to find the optimal design of TU analytically at least for larger sample sizes.

Theorem 2.2. Consider all designs ω ∈ [ε, 1 − ε] for any fixed ε ∈ (0, 0.5) and let N be sufficiently large
so that Umn is approximately normal for all those designs. Then, for symmetric continuous distributions
F and G with G(x) = F (x + a) for some a �= 0, the optimal design is given if ω∗ = 0.5.

Proof. We write UN (ω) instead of Umn to make the dependency on ω explicit. Transform UN (ω) so
that it has mean zero and variance one under H0. Applying the same transformation to UN (ω) under
H1, we arrive at

μN (ω) := E(UN (ω)) − E0(UN (ω))√
Var0(UN (ω))

and σ 2
N (ω) := Var(UN (ω))

Var0(UN (ω))
(8)

as the transformed mean and variance, respectively. As F and G are symmetric and continuous with
G(x) = F (x + a) for some a �= 0, then from Lemma 2.1 (iii) and the definitions in (8) we conclude

μN (ω) = ω(1 − ω)N2(P(X ≥ Y ) − 1/2)√
ω(1 − ω)N2(N + 1)/12

=
√

ω(1 − ω)N(P(X ≥ Y ) − 1/2)√
(N + 1)/12

(9)

and

σ 2
N (ω) = ω(1 − ω)N2(P(X ≥ Y ) − (N − 1)P(X ≥ Y )2 + (N − 2)

∫
G(x)2 f (x)dx)

ω(1 − ω)N2(N + 1)/12
=

= P(X ≥ Y ) − (N − 1)P(X ≥ Y )2 + (N − 2)
∫

G(x)2 f (x)dx
(N + 1)/12

. (10)

We see that σ 2
N is independent of ω and μN only depends on ω through

√
ω(1 − ω), which is maximized

at ω = 0.5. Thus, ω∗ = 0.5. �
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Figure 1 Graph of the approximate deficiency of the Wilcoxon-Mann-Whitney-test for symmetric
and identically shaped distributions.

Next we investigate the deficiency D, which corresponds to the percentage of additional sample size
needed so that a given design offers as much power as the optimal design. We see from (10) that for
larger N the variance σ 2

N is approximately independent of N. Thus, two designs have approximately the
same power if their corresponding means μN (ω) are identical. For larger N, this leads to the equation

√
ω(1 − ω)N(1 + D) =

√
N
4

(11)

with solution

D(ω) = 1
4ω(1 − ω)

− 1. (12)

The graph of the deficiency is displayed in Fig. 1. Interestingly, the same deficiency formula can be
found for Thom (Holling and Schwabe, 2013).

The independence of σ 2
N (ω) on ω will generally not hold if F and G are asymmetric or if the

stochastic ordering hypothesis is not satisfied, that is if F and G differ in their overall shapes. These
cases are considered in the next section.

2.2 Optimal design of TU for the general alternative hypothesis

In the following, we will use the general H1 from Eq. (2). Although TU was originally defined only
under the stochastic ordering hypothesis (6) (Mann and Whitney, 1947; Fay and Proschan, 2010),
many practically relevant cases, such as the comparison of two normal distributions with unequal vari-
ances or differently skewed distributions fall outside its scope. The latter appears quite frequently in bio-
metrical research fields, for instance, in cancer research and we want to present two case examples here.

Sandler et al. (2003) investigated the effect of regular aspirin to prevent the recurrence of colorectal
cancer by comparing a group receiving a small daily doses of aspirin to an equally large placebo control
group. Among others, they analyzed the number of adenomas detected after a certain time period as
well as the recurrence time of adenomas. Both types of variables are skewed if values are close to zero,
because they are naturally bound there. The distribution of the number of detected adenomas in both
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Figure 2 Smoothed densities of the distribution of cognitive avoidance for patients who managed to
recover from cancer (Success) and for patients who did not recover (Fail) in the study of Epping-Jordan
et al. (1994). Details are provided in Section 2.2.

groups were reported by Sandler et al. (2003). Most subjects did not have any adenomas (83% in the
experimental group vs. 73% in the control group), some had one (10% vs. 14%) or two (3% vs. 7%)
and even fewer and three or more (3% vs. 5%). It is immediately evident that the distributions are
highly skewed so that the application of t-tests might be at least questionable. Sandler et al. (2003) thus
compared the number of adenomas in both groups using TU and found that the experimental group
had significantly fewer adenomas.

In another study, Epping-Jordan et al. (1994) investigated the effect of cognitive avoidance on cancer
recovery, by comparing the group of patients successfully recovering from cancer to those who failed
to recover. The distribution of cognitive avoidance in both groups is displayed in Fig. 2. While the
distribution of patients not recovering is relatively symmetric, it is clearly right skewed for patients who
did recover. Among others, the optimal design of TU for this special case is examined below. Again, the
application of t-tests is questionable here and TU may be a sensible alternative. These examples show the
relevance of the Wilcoxon–Mann–Whitney-test in biometrical applications. Thus, it is of interest to in-
vestigate its optimal design when distributions are known to be skewed and/or have unequal variances.

Using the normal approximation, the power of TU can be approximated as well. In the one-sided
case, if the alternative hypothesis is P(X ≥ Y ) > 0.5 (equivalent to a > 0 under H1 (6) in case of
continuous X and Y ), we have

PowN (ω) = 1 − �

(
z1−α − μN (ω)

σN (ω)

)
. (13)

In the two-sided case P(X ≥ Y ) �= 0.5 (equivalent to a �= 0 under H1 (6) in case of continuous X and
Y ) we have

PowN (ω) = �

(zα/2 − μN (ω)

σN (ω)

)
− �

(z1−α/2 − μN (ω)

σN (ω)

)
+ 1. (14)

Here, α denotes the nominal α-level of the test, � the standard normal distribution function, and
zα the α quantile of the standard normal distribution. Unfortunately, finding the maximum of PowN
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Figure 3 Densities of the distributions used for the power calculations displayed in Fig. 4. The density
of G is plotted in bold. Abbreviations: N (μ, σ ) = Normal distribution with mean μ and standard
deviation σ ; χ2(df ) = Chi-square distribution with df degrees of freedom; LN(μ, σ ) = Log-normal
distribution with log-mean μ and log-standard deviation σ ; Exp(λ) = Exponential distribution with
rate λ.

in ω ∈ [0, 1] analytically turns out to be unfeasible. For this reason, we present some examples for
common distributions below and focus on the one-sided version of TU , as the two-sided case yields
nothing new concerning the optimal design despite a reduced power in general.

One of the most common cases of two-sample comparisons occurring for real data, which is not
covered by Theorem 2.2, is the comparison of two normal distributions with unequal variances. The
optimal design of TU was investigated for variance ratios ranging from 1/9 to 9 (or equivalently 1/3 to
3 in terms of standard deviation ratios), as the vast majority of real data comparisons can be expected
to fall within this interval. Figure 3A provides an overview on the applied normal densities. Recall
that, in case of two normal samples with unequal variances, the optimal design of Thet assigns a higher
sample size to the sample with higher variance. Also, one may lose substantial power when variances
are unequal but equally large samples are used (Dette and O’Brien, 2004). Using the asymptotic power
function (14), a different pattern can be found for TU (see Fig. 4A, B and C): When F and G are
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Figure 4 Power of TU for N = 50 and α = 0.05 unless otherwise specified. Vertical gray lines in-
dicate the position of the design ω = 0.5. DU (0.5) and Dhet(0.5) indicate the deficiency of ω = 0.5
relative to the optimal design for TU and Thet respectively. Abbreviations: N (μ, σ ) = Normal dis-
tribution with mean μ and standard deviation σ ; χ2(df ) = Chi-square distribution with df degrees
of freedom; LN(μ, σ ) = Log-normal distribution with log-mean μ and log-standard deviation σ ;
Exp(λ) = Exponential distribution with rate λ.
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Figure 5 Approximated densities of the distribution of cognitive avoidance for patients who managed
to recover from cancer (Success) and for patients who did not recover (Fail) in the study of Epping-
Jordan et al. (1994). Details are provided in Section 2.2.

normal with σ 2
1 �= σ 2

2 , the optimal design ω∗, quite surprisingly, does not always favor the sample
with the higher variance. Instead, the pattern appears to be more complex as displayed in Fig. 4A.
Furthermore, ω∗ depends on the total sample size N (see Fig. 4B) in a way that higher values of N lead
to slightly higher values of ω∗ at least for the presented examples. Also, the optimal design depends
very slightly on the α-level (see Fig. 4C). To demonstrate that these findings are not just artifacts of the
approximations, Fig. 4 contains the simulated power based on 10,000 trials (dashed lines) along with
the approximated power. From our perspective, the most important observation is that one generally
loses only little power when choosing ω = 0.5 as compared to the optimal design ω∗. To illustrate
that this property may indeed not hold for Thet when variances differ considerably (e.g., for a standard
deviation ratio of 3), its simulated power is also displayed in Fig. 4A, B, and C as gray lines.

Often enough, real data are not normally distributed, but skewed in some way as shown for the cancer
studies of Sandler et al. (2003) and Epping-Jordan et al. (1994). Even though the central limit theorem
ensures normally distributed means for N → ∞ and thus the validity of the two-sample t-tests, sample
sizes may be too small in many cases to ensure sufficient convergence to normality. Furthermore,
even for larger (or infinitely large) samples, TU will be more efficient than the t-tests for many skewed
distributions (Hodges and Lehmann, 1956; Blair and Higgins, 1980; Sawilowsky and Blair, 1992).
In fact, this can be considered one of the main reasons to apply the Wilcoxon–Mann–Whitney-test.
Accordingly, the optimal design of TU for skewed distributions is of primary interest. In the absence
of any general analytic solution for this case, we will again investigate the optimal design for selected
examples. We chose to use exponential, log-normal and χ2-distributions to represent different shapes
and amounts of skewness that are typically present in real data (e.g., for reaction or survival times).
We decided to include only unimodal distributions, as multimodal distributions appear pretty rarely
and usually indicate that different populations, each having a unimodal distributions, were mixed up
(something that should be avoided to allow clear interpretation of scientific results). First, consider
the canonical case of skewed distributions with the same shape but shifted mean, which, by definition,
satisfy the stochastic ordering hypothesis (6). See Fig. 3B for a visualization of their densities. As can
be seen from the power functions displayed in Fig. 4D and E, ω∗ varies with the degree of the shift,
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Figure 6 Power of TU applied to the study of Epping-Jordan et al. (1994). The vertical gray line
indicates the position of the design ω = 0.5. Deficiency of ω = 0.5 relative to the optimal design: 1%.
More details are provided in Section 2.2.

the total sample size, and (slightly) with the amount of skewness. Again, however, ω = 0.5 is generally
nearly as good as ω∗. Leaving the stochastic ordering hypothesis, distributions with different amount
of skewness were also compared to each other (densities are displayed in Fig. 3C and D). From the
power functions in Fig. 4F, G, and H, it is immediately evident that ω = 0.5 is again nearly optimal
for all displayed comparisons.

To end this section, we want to briefly and exemplary discuss the optimal design of TU for the cancer
study of Epping-Jordan et al. (1994) mentioned above. Overall, 67 patients participated in the study.
The distribution of patients successfully recovering from cancer can be nicely approximated by a χ2

distribution with 14 degrees of freedom, whereas the distribution of patients who failed to recover
is similar to a Student-t distribution with 3 degrees of freedom, location parameter of 17, and scale
parameter of 2.8 (see Fig. 5 for an illustration of the corresponding densities). When applying TU
under these conditions to test whether the first group has smaller values than the second, we find the
optimal design to be roughly ω∗ ≈ 0.45 (see Fig. 6) that is around 67 × 0.45 ≈ 30 people should be
assigned to the first group. Note that again, almost no power is lost when using equally large groups.

3 Conclusion

In the present paper, we demonstrated that assigning equally large sample sizes to both groups is
generally a very good design for the Wilcoxon–Mann–Whitney-test. Using normal approximations,
its optimality was proved for symmetric and identically shaped distributions. For a range of other
distributions, we could show that ω = 0.5 offers power only negligibly lower than the optimal design
that varies with the underlying distributions, the total sample size, and the α-level. Thus, in contrast
to the t-tests for homogeneous and heterogeneous variances, equally large sample sizes can be used
without the risk of substantially losing power. In this sense, the Wilcoxon–Mann–Whitney-test is not
only valid and powerful for a wide range of distributions because of its nonparametric nature, but also
offers a robust experimental design to be applied on.
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The examples presented in the figures are only a subset of the cases we analyzed in order to come to
our conclusions. However, since F and G come from an infinite space of distributions, there might still
be relevant combinations, for which the design ω = 0.5 has considerably lower power than the optimal
design, even for medium to large samples sizes. Ideally, we also wanted to provide a closed form of
the optimal design for arbitrary F and G. However, even when the (asymptotic) distribution under H1
is known, it is practically unfeasible to solve for ω∗ if F and G are not assumed to be symmetric and
identically shaped. If one has a clear idea on how the data will be distributed and wants to get a more
precise estimation of the optimal design (instead of just applying ω = 0.5), numerical optimization of
the power function still appears to be the best option.
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Appendix A: Proof of Lemma 2.1

Lemma 2.1 (full version). Let F and G be some arbitrary (discrete or continuous) distributions with
densities f and g.

(i) We have

P(X ≥ Y ) =
∫

G(x) f (x)dx.

(ii) The mean and the variance of Umn can be written as

E(Umn) = mnP(X ≥ Y ),

Var(Umn) = nm
(

P(X ≥ Y ) − (n + m − 1)P(X ≥ Y )2 +

+ (n − 1)

∫
G(x)2 f (x)dx + (m − 1)

∫
(1 − F̃ (x))2g(x)dx

)
.

(iii) If F and G are symmetric with G(x) = F (x + a) for fixed a ∈ R it holds that

∫
G(x)2 f (x)dx =

∫
(1 − F̃ (x))2g(x)dx.

(iv) (supplemental) For continuous F and G under the null hypothesis F = G, it holds that

E(Umn) = E0(Umn) and Var(Umn) = Var0(Umn)

that is the formulae above coincide with (5).
(v) (supplemental) For continuous F and G we have

∫
(1 − F (x))2g(x)dx =

∫ (∫ x

−∞
G(y) f (y)dy + G(x)(1 − F (x))

)
f (x)dx.

Proof. (i) and (ii) See the Appendix of Lehmann and D’Abrera (2006).

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



12 P.-C. Bürkner et al.: Optimal design of the Wilcoxon-Mann-Whitney-test

(iii) Without loss of generality assume E(X ) = 0 so that E(Y ) = −a because G(x) = F (x + a).
Due to symmetry of F and G and since G(x) = F (x + a), we have f (x) = g(−a − x) and G(x) =
1 − F̃ (−a − x) for all x ∈ R, which also means

f (x)G(x)2 = g(−a − x)(1 − F̃ (−a − x))2. (A.1)

In both integrals, integration is done over R so that the statement follows immediately.
(iv) The statement is trivial for E(Umn). For F = G we have P(X ≥ Y ) = 0.5 and hence∫

g(x)(1 − F (x))2dx = 1 − 2P(X ≥ Y ) +
∫

g(x)F (x)2dx =
∫

f (x)G(x)2dx. (A.2)

As per definition of the mean, we may write∫
f (x)F (x)2dx = E(F (X )2). (A.3)

The distribution of the random variable F (X ) is known to be uniform in [0, 1], if X has distribution
F . Accordingly, it holds that

E(F (X )a) =
∫ 1

0
xadx = 1

a + 1
. (A.4)

In particular for F = G, this means∫
f (x)G(x)2dx =

∫
g(x)(1 − F (x))2dx = 1

3
, (A.5)

which directly leads to

Var(Umn) = mn
(

1
2

+ m + n − 2
3

− m + n − 1
4

)
+

= mn(6 + 4(m + n − 2) − 3(m + n − 1))

12
+

= mn(m + n + 1)

12
. (A.6)

Note that this statement does not hold when F = G is discrete since P(X ≥ Y ) �= 0.5 in this case due
to the presence of ties.

(v) The proof relies on another derivation of a formula for Var(Umn): For t ∈ N, t ≥ max(m, n), we
may write every sequence of x1, . . . , xm, y1, . . . , yn ordered by size as

X1,Y1, X2, . . . , Xt,Yt (A.7)

with Xi ∈ {0, . . . , m} representing Xi values out of xi, . . . , xm and Yi ∈ {0, . . . , n} representing Yi values
out of yi, . . . , yn. For instance, suppose that t = m = n = 3 and that ordering the observations xi, yi
(1 ≤ i ≤ 3) have resulted in

x1, x2, y1, y2, x3, y3. (A.8)

Then, we could represent sequence (A.8) as

2(= X1), 2(= Y1), 1(= X2), 1(= Y2), 0(= X3), 0(= Y3). (A.9)
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Note that
∑t

i=1 Xi = m and
∑t

i=1 Yi = n. We can now write Umn as

Umn =
t∑

i=2

i−1∑
j=1

XiYj . (A.10)

Assume that both (X1, . . . , Xt ) and (Y1, . . . ,Yt ) are multinomial distributed with probabilities
( f1, . . . , ft ) and (g1, . . . , gt ) respectively. For every Xi, it holds that

E(Xi) = m fi and E(X 2
i ) = m fi(1 − fi + m fi). (A.11)

For i �= k we have

E(XiXk) = m(m − 1) fi fk. (A.12)

The same goes, of course, for Yi.
Defining f̃i,m := fi(1 − fi − m fi) and g̃i,n := gi(1 − gi − ngi), the second non-central moment

E(U 2
mn) equals

E(U 2
mn) = E

⎛
⎜⎝

⎛
⎝ t∑

i=2

i−1∑
j=1

XiYj

⎞
⎠

2
⎞
⎟⎠ =

=
t∑

i=2

j−1∑
j=1

E(X 2
i )E(Y 2

j ) +
t∑

i=3

∑
j,l<i
j �=l

E(X 2
i )E(YjYl ) +

+
∑
i,k≤t
i �=k

∑
j<i,k

E(XiXk)E(Y 2
j ) +

∑
i,k≤t
i �=k

∑
j<i; l<k

j �=l

E(XiXk)E(YjYl ) =

= mn

⎛
⎜⎝ t∑

i=2

i−1∑
j=1

f̃i,mg̃ j,n + (n − 1)

t∑
i=3

∑
j,l<i
j �=l

f̃i,mgjgl +

+ (m − 1)
∑
i,k≤t
i �=k

∑
j<i,k

fi fkg̃ j,n + (m − 1)(n − 1)
∑
i,k≤t
i �=k

∑
j<i; l<k

j �=l

fi fkg jgl

⎞
⎟⎠ =

= mn

⎛
⎜⎝ t∑

i=2

i−1∑
j=1

f̃i,mg̃ j,n + (n − 1)

⎛
⎜⎝ t∑

i=3

f̃i,m

⎛
⎜⎝

⎛
⎝∑

j<i

g j

⎞
⎠

2

−
∑
j<i

g2
j

⎞
⎟⎠

⎞
⎟⎠ +

+ (m − 1)

⎛
⎝∑

i,k≤t

∑
j<i,k

fi fkg̃ j,n −
∑
i≤t

∑
j<i

f 2
i g̃ j,n

⎞
⎠ +

+ (m − 1)(n − 1)

⎛
⎜⎝∑

i,k≤t

fi fk

∑
j<i

g j

∑
l<k

gl −
∑
i≤t

f 2
i

⎛
⎝∑

j<i

g j

⎞
⎠

2

−
∑
i,k≤t

∑
j<i,k

fi fkg2
j

⎞
⎟⎠
⎞
⎟⎠.

(A.13)
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For nonempty finite sets At, Bt with |At| = |Bt| = t define

fAt
(x) :=

⎧⎨
⎩

f (x)∑
x∈At

f (x)
if x ∈ At

0 otherwise
gBt(y) :=

⎧⎨
⎩

g(y)∑
y∈Bt

g(y)
if y ∈ Bt

0 otherwise
. (A.14)

We choose At and Bt so that xi < yi < xi+1 < yi+1 for all xi ∈ At and yi ∈ Bt as well as

lim
t→∞

∑
xi≤x

fAt
(xi) = F (x) lim

t→∞

∑
yi≤y

gBt
(yi) = G(y). (A.15)

Since F and G are continuous, we have

lim
t→∞ fAt

(xi) = lim
t→∞ gBt

(y j ) = 0. (A.16)

Together with
∑t

i=1 fAt
(xi) = ∑t

i=1 gBt
(yi) = 1, it follows that

lim
t→∞

t∑
i=1

fAt
(xi)

2 = lim
t→∞

t∑
i=1

gBt
(yi)

2 = 0. (A.17)

Setting fi := fAt
(xi), gi := gBt

(yi) in (A.13) and applying (A.17) leads to

E(U 2
mn) = mn lim

t→∞

⎛
⎜⎝ t∑

i=2

fAt
(xi)

∑
j<i

gBt
(y j ) + (n − 1)

t∑
i=3

fAt
(xi)

⎛
⎝∑

j<i

gBt
(y j )

⎞
⎠

2

+

+ (m − 1)
∑
i,k≤t

fAt
(xi) fAt

(xk)
∑
j<i,k

gBt
(y j ) +

+ (m − 1)(n − 1)

⎛
⎝∑

i,k≤t

fAt
(xi) fAt

(xk)
∑
j<i

gBt
(y j )

∑
l<k

gBt
(yl )

⎞
⎠ =

= mn lim
t→∞

⎛
⎝ t∑

i=2

fAt
(xi)

∑
j<i

gBt
(y j ) + (n − 1)

t∑
i=3

fAt
(xi)(

∑
j<i

gBt
(y j ))

2 +

+ (m − 1)
∑
i≤t

fAt
(xi)

∑
k≤t

fAt
(xk)

∑
j<i,k

gBt
(y j ) +

+ (m − 1)(n − 1)
∑
i≤t

fAt
(xi)

∑
j<i

gBt
(y j )

∑
k≤t

fAt
(xk)

∑
l<k

gBt
(yl )

⎞
⎠ . (A.18)

Going from sums to integrals and simplifying yields

E(U 2
mn) = mn

( ∫
f (x)G(x)dx + (n − 1)

∫
f (x)G(x)2dx +

+ (m − 1)

∫
f (x)

∫
f (y) G(min(x, y))dydx +
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+ (m − 1)(n − 1)

(∫
f (x)G(x)dx

)2 )
=

= mn
(

P(X ≥ Y ) + (n − 1)

∫
f (x)G(x)2dx +

+ (m − 1)

∫
f (x)

(∫ x

−∞
f (y)G(y)dy + G(x)(1 − F (x))

)
dx +

− (m + n − 1)P(X ≥ Y )2
)

+ E(Umn)
2. (A.19)

Since Var(Umn) = E(U 2
mn) − E(Umn)

2 the statement follows by comparing this variance formula to the
formula in (ii). �
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