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A B S T R A C T

Developmental studies of hormones and behavior often include littermates—rodent siblings that share early-life
experiences and genes. Due to between-litter variation (i.e., litter effects), the statistical assumption of in-
dependent observations is untenable. In two literatures—natural variation in maternal care and prenatal
stress—entire litters are categorized based on maternal behavior or experimental condition. Here, we (1) review
both literatures; (2) simulate false positive rates for commonly used statistical methods in each literature; and (3)
characterize small sample performance of multilevel models (MLM) and generalized estimating equations (GEE).
We found that the assumption of independence was routinely violated (> 85%), false positives (α = 0.05)
exceeded nominal levels (up to 0.70), and power (1−β) rarely surpassed 0.80 (even for optimistic sample and
effect sizes). Additionally, we show that MLMs and GEEs have adequate performance for common research
designs. We discuss implications for the extant literature, the field of behavioral neuroendocrinology, and
provide recommendations.

1. Introduction

Research on rodents sharing litters is at the core of developmental
studies of hormones and behavior. Common paradigms take advantage
of naturally occurring variation (Champagne et al., 2003a), for example
differential maternal care (Beery and Francis, 2011; Francis and
Meaney, 1999), or experimentally expose entire litters to the same
experience such as prenatal stress (Weinstock, 2017). While natural
occurring variation and variation due to experimental design seek to
answer different questions, each paradigm faces similar statistical
challenges due to between-litter variation (Holson and Pearce, 1992;
Lazic and Essioux, 2013): litters are comprised of siblings that share
early-life experiences and genes that can contribute to litter effects
(Lazic and Essioux, 2013). To be clear, between-litter variation is sy-
nonymous with litter effects that arise from within-litter similarities.
Both research designs categorize entire litters (i.e., siblings) based on
maternal behavior or whether they were exposed to the same experi-
mental condition (Fig. 1). Therefore, the statistical assumption that the
observations are independent will routinely be violated (Lazic, 2010).
The central question is thus the extent to which unaccounted for de-
pendencies (e.g., litter effects) can lead to erroneous conclusions in
realistic research settings.

In the present paper, we elucidate the importance of this issue for
the field of behavioral neuroendocrinology. Specifically, we: (1) review
contributions from two influential literatures—natural variation in
maternal care and prenatal stress; (2) provide theoretical rationale that
the assumption of independence will routinely be violated; (3) review
statistical methods commonly used in both literatures; (4) simulate type
I error (false positive) rates for statistical approaches found in the lit-
erature, in addition to multilevel models (MLM), generalized estimating
equations (GEE), and analyzing litter means with a t-test; and (5) ex-
amine how between-litter variation influences power, and thus ex-
perimental design.

1.1. Background

Developmental programming is a process by which early-life ex-
periences influence the phenotype of an organism, including physiolo-
gical and behavioral trajectories (Gore, 2008). Since the stress axis
plays a critical role in survival (Lupien et al., 2009; O’Connor et al.,
2000) and reproduction (Chatterjee and Chatterjee, 2009; McGrady,
1984), developmental effects on this neuroendocrine system have been
thoroughly characterized in laboratory rodents (McEwen, 2008;
Sapolsky and Meaney, 1986). The role of maternal care has played a
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central role in this research. Earlier studies used direct manipulations
such as handling (Deitchman et al., 1977) or separation (Hofer, 1973),
whereas more recent studies have investigated the role of naturally
occurring variation in maternal care (Cameron, 2011; Curley and
Champagne, 2016). In addition, the effects of prenatal experiences have
been investigated for decades (Bond and di Giusto, 1976; Joffe, 1977).
While many aspects of the prenatal environment have been examined,
we focus on prenatal stress because of the thoroughness of the litera-
ture: several prenatal stress manipulations have been developed and the
effects on offspring development described (Weinstock, 2008, 2017).

1.2. Natural variation: Maternal care

The finding that naturally occurring variation in maternal care can
influence development provided a foundation from which an organism
can be “programmed” by their environment (Cameron, 2011). For ex-
ample, maternal tactile stimulation—licking and grooming (LG)—has
been shown to induce changes in the hypothalamic-pituitary-adrenal
(HPA) axis of developing offspring (Liu et al., 1997). Behaviorally, this
reportedly allows for differential responsiveness to stressful stimuli
across the lifespan (Fish et al., 2004). Offspring from so-called high LG
mothers demonstrate less fear responsivity (Menard et al., 2004) and
more exploratory behavior in novel environments than offspring of low
LG mothers (Starr-Phillips and Beery, 2014). These opposing pheno-
types are thought to be modulated in part by differential glucocorticoid
activity in the hippocampus that promotes feedback inhibition of stress
reactivity (Jacobson and Sapolsky, 1991). In support of this notion,
high and low LG offspring where shown to differ in HPA responsiveness
(Liu et al., 1997), sensitivity to feedback inhibition (Liu et al., 1997),
expression profiles of glucocorticoid receptors (GR) (Hellstrom et al.,
2012), and epigenetic modifications to NR3c1 (McGowan et al., 2011).

1.3. Experimental: Prenatal stress

For several decades, it has been known that prenatal stress can in-
fluence offspring development (Archer and Blackman, 1971; Kapoor

et al., 2006). More recently, the notion of fetal programming was put
forth, where it is hypothesized that the in utero environment can make
offspring susceptible to adverse outcomes later in life (Seckl and
Holmes, 2007). One aspect of fetal programming is prenatal stress
(PNS) which has been investigated by exposing pregnant rodents to
stressors including restraint, electrical shock, and social stress across
the gestational period (Weinstock, 2017). Increased stress reactivity
and anxiety-like behavior have been observed in male and female PNS
offspring (Wilson et al., 2013). Later in life, PNS rodents show increased
HPA axis reactivity to stressors, such as increased corticosterone (Koehl
et al., 1999) and the adrenocorticotropic hormone (McCormick et al.,
1995), as well as up-regulated corticotrophin-releasing factor (CRF)
(Cratty et al., 1995). The feedback properties of the hippocampus on
the stress response are also affected by PNS (Boersma and Tamashiro,
2015). For example, hippocampal GR are differentially regulated in
offspring, but primarily in females (Szuran et al., 2000). In PNS males,
increased levels of CRF expression and reductions in GR expression
were detected (Mueller and Bale, 2008). Furthermore, the CRF gene
had reduced levels of methylation, whereas more methylation was
observed on NR3c1 (Gudsnuk and Champagne, 2012).

1.4. Rational for between-litter variation

Maternal care and prenatal stress are important components of the
early environment. However, there are many others factor that can
contribute to between-litter variation. That is, the fact that the early
environment influences development, also suggests that those sharing
the same environment (pre or postnatal) will be more alike than those
from different environments. Litters size has been shown to influence
many aspects of offspring development (Tanaka, 2004), including age
at sexual maturity and reproductive behaviors in females (Mendi,
1988). Furthermore, experimentally manipulating pre-weaning litter
sizes increased anxiety-like behaviors of adult rodents (Dimitsantos
et al., 2007). This has led to routine culling procedures that are often
used to control for the effects of variable litter sizes (Agnish and Keller,
1997). Littermates also share the same prenatal (Marceau et al., 2016)

Fig. 1. Both research areas—natural variation in maternal care and prenatal stress—categorize entire litters based on maternal behavior or experimental condition: littermates from High
LG/Prenatal Stress and Low-LG/Prenatal Control rat dams are coded the same way. Between-litter variation is illustrated with color. Littermates share the same color, whereas color
differs between litters. This shows that within-litter similarities are what produces between-litter variation. Suppose we were interested in some physiological outcome that is hy-
pothesized to differ between pups raised by high and low LG mothers. When groups are compared (dummy coded: 0 vs. 1), unaccounted for between-litter variation (i.e., dependent
measures) violates the statistical assumption of independence. Use of a t-test would be incorrect for this research design.
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and social environments (von Engelhardt et al., 2015), each of which
presents challenges for controlled experiments. Although litter size can
be held constant, the hormonal composition of placental fluid or be-
havioral types within-litter cannot be controlled. There is substantial
evidence that in utero hormonal milieus (Fowden and Forhead, 2004)
and the early social environment influence development (Turecki and
Meaney, 2016). While litter effects were not of primary interest in these
studies, they provide indirect evidence for between-litter variation.

The role of genes on physiological and behavioral phenotypes
cannot be understated, and this has been shown in a variety of species
(Inoue-Murayama, 2009). Like many questions, laboratory rodents
have provided valuable insight into the importance of genetics (Crabbe
et al., 1999; Wahlsten et al., 2007). For example, common strains of
inbred mice differ in locomotor activity, novelty seeking, fear re-
activity, and maternal care (Champagne et al., 2007; Ramos et al.,
1997). Neurobiological differences have also been observed such as
neurotransmitter levels (Brodkin et al., 1998), gene expression profiles
(Kimpel et al., 2007), and structural morphology (Scholz et al., 2016).
Whereas inbred mice are genetically identical, outbred rodents from the
same litter are effectively dizygotic twins (Lazic and Essioux, 2013). In
humans, dizygotic twins show correlations in cognitive ability
(Haworth et al., 2010), personality traits (Jang et al., 1996), and brain
structure (Scamvougeras et al., 2003). Furthermore, it is sometimes the
case that genes contribute more to the adult phenotype than the shared
environment in humans (Haworth et al., 2010). Although quantitative
genetic approaches are not common in the neuroendocrinology litera-
ture, a reasonable assumption is that between-litter variation due to
genetics would be found in littermates that are outbred rodents (Glowa
and Hansen, 1994).

The the natural occurring maternal variation and prenatal stress
literatures have proven extremely influential. Although an apparently
clean picture has emerged, these findings are dependent upon the sta-
tistical tests used and the assumptions of those tests (Scariano and
Davenport, 1987). An important question is whether group differences
were examined without accounting for the fact that individual rodents
were littermates. This would indicate methodological limitations in two
prominent research areas in the field of behavioral neuroendocrinology,
but would also provide useful information that could improve both
fields.

2. Methods and materials

2.1. Literature search

We examined how between-litter variation was accounted for in the
natural variation in maternal care and prenatal stress literatures. A
search was performed using Web of Science that included all studies
published before May 20, 2017. We sought to understand how litter was
broadly accounted for, which served as a foundation for simulating
false positive rates and power, as well as allowing for inferring the
extent to which our findings may apply. For naturally occurring var-
iation, the search term was “maternal care” AND “licking grooming.”
Only studies that categorized quasi-experimental groups based on the
amount of maternal care were considered. The search term for prenatal
stress was “prenatal stress.” Because this returned 2,799 hits, we in-
cluded the 100 most recent rodent studies directly related to the neu-
roendocrine system. For both literatures, outcomes could be either
behavioral or physiological.

The identified research articles were used to describe how litter
dependencies were accounted for. Based on previous work (Holson and
Pearce, 1992; Lazic and Essioux, 2013; Zorrilla, 1997), we expected
aspects of litter to be underreported. Accordingly, we attempted to
answer broad questions including: (1) how often multiple animals from
the same litter were included in the analyses; (2) whether the paper
considered litter effects; and (3) how often litter effects were reported.

To provide realistic simulation conditions, we also obtained the

following information: (1) the number of litters included in the ana-
lyses; (2) the number of observations used per litter; and (3) methods
used to account for litter effects. We documented the search procedure
and provided these documents on the Open Science Framework
(https://osf.io/fxy7h/).

2.2. Simulation: False positives

We examined type I error rates for commonly used approaches for
dealing with between-litter variation. We were specifically interested in
the degree to which between-litter variation inflates false positive rates.
From the literature search, we found that litter effects were not often
accounted for or were considered as a covariate. In three papers, a
statistical method was used that accounted for dependent measures
with a random effect (Barha et al., 2007; Neeley et al., 2011) or cor-
rected standard errors (Amugongo and Hlusko, 2014). In two studies
litter means were the unit of analysis (Caldji et al., 1998; Starr-Phillips
and Beery, 2014). We thus compared five models: (1) t-test (litter not
included in the model): (2) analysis of covariance (ANCOVA; litter in-
cluded as a categorical covariate); (3) multilevel model (MLM; Roux,
2002); (4) generalized estimating equation (GEE; Hanley et al., 2003);
and (5) t-test with litter means (i.e., each litter contributed one ob-
servation to the analysis).

For the MLMs litter was included as a random effect (varying in-
tercept) that accounts for within-cluster correlations (Gelman and Hill,
2007). A GEE similarly accounts for cluster-related variation, but does
so by estimating a population-average model that relaxes many as-
sumptions of MLMs (Hubbard et al., 2010). For example, a MLM as-
sumes that random effects are normally distributed and are un-
correlated with the fixed effects. The latter may or may not be plausible
when including litter and maternal care in the same analysis. In con-
trast, GEEs make no such assumptions. However, in small sample si-
tuations, GEEs require standard error corrections to ensure nominal
error rates (Gunsolley et al., 1995; Li and Redden, 2015). We de-
termined the appropriate bias correction with simulations (see litter-
Effects package).

Reasonable estimates for between-litter variation were obtained
from our own data and methodologically oriented papers. We found
that litter accounted for upwards of 60% of the residual variation (Lazic
and Essioux, 2013). In our simulations, variability between litters σ( )u

2

was computed as an intra-class correlation coefficient (ICC):

=

+

ICC
σ

σ σ
u

u e

2

2 2 (1)

that is the percentage of residual variance explained by litter (where σe
2

is the within-litter variance). The ICC can also be thought of as the
correlation between individual observations within a given litter. The
data generating model was a MLM, since it allows for specifying within-
cluster correlations. We found that few studies reported the number of
litters or the number of observations used per litter. As such, we as-
sumed a range of simulation conditions (litters = 4, 8, 12, and 24; per
litter = 2, 4, 6, and 8; ICC = 0–0.70 by increments of 0.05). For each
condition, observations from half of the litters were dummy coded as 0,
whereas observations from the remaining litters were coded as 1
(Fig. 1). The average difference between groups (0 vs. 1) was set to
zero—a true null hypothesis—thus the expected error rate was 5%.

2.3. Simulation: Conditional false positives

While not an approach we would advocate, common practice is to
use non-significance to exclude variables from a model (Barr et al.,
2013). We thus investigated whether false positive rates were condi-
tional on a significant litter effect (litters = 8 and per litter = 4). We
computed the significance of litter as a MLM random effect (via a
likelihood ratio test), then analyzed the data with a t-test. In this way,
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we obtained

< >− −p FE RE( 0.05| 0.05)p value p value (2)

< <− −p FE RE( 0.05| 0.05)p value p value (3)

where (2) denotes the probability that the fixed effect ( −FEp value) is
significant, given the random effect is non-significant ( −REp value). Al-
ternatively, (3) is conditioned on a significant litter effect.

2.4. Simulation: Power

We present three approaches to incorporate between-litter variation
into experimental design with power calculations: MLM, GEE, and
analyzing litter means with a t-test. We address two specific objectives:
(1) how differing ICC values influence power and how this varies with
the ratio of litters to observations per litter, holding the total sample
size constant. That is, we addressed whether it is more advantageous to
increase litters or pups per litter; and (2) incremental power increases
due to adding additional littermates to the analysis (holding litter
number constant). Here, if we assume obtaining more litters is not al-
ways feasible, this aim explicitly addresses expected power gains by
using more observations from a given litter.

For objective one, we found that group sizes varied but were typi-
cally small. We chose an optimistic value of 24 observations per group
(N = 48) that can be thought of as the best scenario, and varied the
composition of the samples (litters = 4, 6, 8, and 12; per litter = 12, 8,
6, and 4). Standard effect size measures (Cohen’s d) do not exist for
MLMs, since variance is partitioned among levels. We thus used an
effect size, delta total variance δT (Hedges, 2007), defined as

=

+

δ
β

σ σ
T

u e
2 2 (4)

where the difference between groups β( ) is divided by the square root of
the variance components summed. We found that significant effects in
the literatures were typically large (d > 1.0), but simulated power for
a range of values (δT = 0.20, 0.50, 0.80, 1.10). The interpretation of δT
follows Cohen’s d, so the selected values covered what are considered
small (0.20), medium (0.50), and large effects (0.80).

For objective two, we assumed 8 litters in total and varied the
number of observations per litter (2–10 by increments of 1). Power for a
large effect was investigated (δT = 0.80) across a range of ICC values
(0–0.80 by increments of 0.20). We also computed power for a t-test in
which observations were all obtained from different litters. This was
done for each sample size and presented with the simulation results.

2.5. Simulation: Uncertainty due to litter

This simulation demonstrated how between-litter variation influ-
ences uncertainty of the fixed effect estimate. This was achieved by
computing confidence intervals (CI) for an unstandardized group dif-
ference (β = 8.0) across a range of ICC values. Since a 95-% CI ex-
cluding zero is significant at the α = 0.05 level, this allowed for vi-
sualizing how between-litter variation effects false positives and power
(e.g., interval width according to between-litter variation).

For each combination of litters, observations per litter, and ICC
values, 5,000 simulations were performed for each of the models. False
positive rates and power were computed as the proportion of simula-
tions with p < 0.05. All computations were done with the R pro-
gramming language (R Core Team, 2016). The MLMs were fitted with
the package lmerTest (Kuznetsova et al., 2016) that is a front end to lme4
(Bates et al., 2015b), whereas gee (Ripley, 2015) was used for the GEEs
and saws (Fay, 2015) for the bias corrected standard errors. All code
and results for the simulations are publicly available (https://osf.io/
fxy7h/). To aid applied researchers, we developed a R package (litter-
Effects) that allows for simulating false positive rates, power, de-
termining the optimal GEE bias correction, and includes a tutorial
(Appendix and https://github.com/donaldRwilliams/litterEffects).

3. Results

3.1. Literature search

We identified 35 articles from the natural variations in maternal
care (MC) literature and 100 articles from the prenatal stress (PNS)
literature. We found that descriptions were too varied for obtaining
precise estimates for the number of litters and observations per litter.
However, multiple animals from the same litter were used in most
studies (MC = 100% and PNS = 89%). Although litter effects were
explicitly considered (MC = 22% and PNS = 31%), this often resulted
in reducing the number of littermates used. That is, dependent mea-
sures were still included in the study. In three studies (Amugongo and
Hlusko, 2014; Barha et al., 2007; Neeley et al., 2011), a statistical
method explicitly for correlated observations was used. In both litera-
tures, we found that the most common statistical approach assumed
independence of observations (MC = 86% and PNS = 85%). In other
words, a large percentage (> 80%; Table 1) of the reviewed studies
likely violated the assumption of independent observations.

We highlight two papers that, while not using a statistical method
for dependent measures, considered litter effects by either averaging
observations within litter or using one animal per litter. The former was
used in Starr-Phillips and Beery (2014):

To avoid the possibility that major findings arise from litter effects
rather than maternal care effects, effects of maternal care on social
behavior were also analyzed by litter, using litter means in place of
individual subject data points.

Both approaches produced similarly significant effects, but litter
means were only used for a subset of outcomes. Interestingly, one
prenatal stress paper mentioned that littermates are siblings and thus
selected only one animal per litter:

To avoid litter effects, only one rat from each of four litters per
group was tested in each experiment. Hence, for this study, “n”
implies that four unique (non-siblings) prenatally stressed or control
rats were used separately for each method of analysis (Baier et al.,
2015).

Table 1
Results from literature search.

Used multiple animals from the
same litter

Explicitly mentioned litter
effects

Reported litter effects Assumption of independence likely
violated

Natural variations in maternal care 24/24 (100%) 7/32 (22%) 0/33 (0%) 24/28 (86%)
Prenatal Stress 85/96 (89%) 31/99 (31%) 0/90 (0%) 82/96 (85%)

These estimates were obtained from the primary studies (natural variation in maternal care = 35 and prenatal stress = 100) that provided sufficient information for reliable estimates.
This means that not all reviewed studies contributed to the percentages: 84/89 (88%) for the prenatal stress literature indicates that 11 studies did not provide enough information to
answer that specific question.
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3.2. False positives rates

The results are presented in Fig. 2 and include type I error rates for
five methods: (1) t-test (green): (2) ANCOVA (blue); (3) MLM (black);
(4) GEE (pink); and (5) t-test with litter means (yellow). Each model
compared mean differences—assuming a true null hypothesis—between
two groups but differed in how litter effects were handled (see Section
2.1. Simulation: false positives).

The t-test (green) did not include litter and type I error rates ex-
ceeded nominal levels (α= 0.05; red dashed line), ranging from ap-
proximately 0.05–0.51. The latter is close to a 1000% increase from
0.05. Nominal error rates were achieved for all conditions in which the
ICC was 0%. That is, when littermates did not resemble one another, the
t-test had optimal performance. However, with an ICC of 5% error rates

approached 0.10 (litters = 12 and per litter = 8). For sample sizes
more commonly seen in behavioral neuroendocrinology, type I error
rates approached 0.30 (ICC = 40%; litters = 4 and per litter = 6).
Across all conditions, the ICC was directly related to error rates and this
became more pronounced with larger sample sizes. Importantly, for 24
litters and only two observations per litter, type 1error rates were also
compromised.

With litter as a categorical covariate in an ANCOVA (blue), we
observed the same patterns as the t-test: type I error rates increased
with the degree of between-litter variation and this was influenced by
the sample size. Furthermore, when the ICC was 0% nominal levels
(α= 0.05) were achieved. Across all conditions, however, there were
substantial differences between the t-test and ANCOVA in that the latter
had higher error rates (t-test: 0.05–0.51 vs. ANCOVA: 0.04–0.66). For a

Litters = 4 Litters = 8 Litters = 12 Litters = 24

Per Litter = 2
Per Litter = 4

Per Litter = 6
Per Litter = 8
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Fig. 2. t-tests and ANCOVAs have inflated type I error rates when between-litter variation is non-zero (ICC > 0%), and this is directly related to the degree of between-litter variation.
MLM, GEE, and analyzing litter means (t-test)—statistical approaches that account for dependent measures—have adequate performance across most conditions.
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total sample size of 24 (litters = 4 and per litter = 6) and an ICC of
40%, the ANCOVA had an error rate of 0.37 (640% increase from
α = 0.05).

We then examined type I error rates for three statistical approaches
that are specifically for dependent data: MLM (black); GEE (pink); and
t-tests with litter means (yellow). They showed similar performance
(i.e., substantial overlap in Fig. 2). This was expected and highlights
that all three methods generally performed well across conditions.
However, we also observed that MLMs and GEEs could be conservative
and anti-conservative (MLM: 0.03–0.08 vs. GEE: 0.04–0.07). The con-
servative estimates (i.e., < 0.05) were observed when samples were
small (N = 8; litters = 4 and per litter = 2) and the ICC values were
close to 0%. However, when the number of litters were more re-
presentative of both literatures (litters > 4), both methods had op-
timal performance in that error rates were close to 0.05. Additionally,
analyzing litter means consistently produced type I error rates around
0.05.

3.3. Conditional false positives rates

We examined type I error rates for the fixed effect (0 vs. 1) using a t-
test, conditional on a significant litter effect in a multilevel model (2.3.
Simulation: conditional false positives). The error rates were consistently
higher when there was a significant litter effect (Fig. 5a). However,
when the litter effect was non-significant error rates were also proble-
matic (ICC > 10%). For ICC values previously reported in the litera-
ture (60%; Lazic and Essioux, 2013) error rates exceeded 0.20, even
when the litter effect was non-significant.

3.4. Power

Since only MLM, GEE, and t-test with litter means achieved nominal
type I error rates (α= 0.05), power was examined for only these
methods. In the first simulation, we held the total sample size constant
and varied the ratio of litters to observations per litter (Fig. 3). The
second simulation investigated incremental power gains from in-
creasing the number of observations per litter (holding litter size con-
stant; Fig. 4).

The first simulation showed that power was related to the magni-
tude of between-litter variance and this was the case for all three
methods. For the largest effect investigated (δT = 1.1) power was
greater than 0.90 when the ICC was 0% (litters = 12 and per
litter = 4), but reduced substantially when the ICC was 70%
(MLM = 0.49; GEE = 0.47; t-test = 0.50). Indeed, even with optimistic
sample sizes (N = 48), power reached 0.80 in few conditions. For small
(δT = 0.2) and medium size effects (δT = 0.5) power did not exceed
0.32. There were some power differences between methods. MLM often
had greater power than GEE but this disparity was generally small
(i.e., < 3%). In some conditions (ICC = 0%), analyzing litter means
had more power than MLM and GEE. However, with larger ICC values,
MLM had more power than analyzing litter means. Power was directly
related to the sample composition and this was the case for all three
methods. For example, power exceeded 0.80 for each method when
there was 12 Litters and 4 observations per litter (grey line), but was
substantially lower for 4 litters and 12 observations per litter
(δT = 1.1).

The second simulation also showed that power was influenced by
between-litter variation, but in the context of incremental power
(holding the effect and litter size constant). When observations were
effectively independent (ICC = 0%) including additional littermates
increased power for all methods. However, with even some between-
litter variance (ICC = 20%) power gains quickly diminished: including
8 additional littermates (64 more observations in total) did not double
power. For the largest ICC (80%), 8 additional littermates increased
power by less than 2%. In fact, for all ICC values> 20%, each addi-
tional littermate increased power by less than 1%. Power was

consistently higher when no littermates were included in the analysis
(Fig. 4: dotted line).

3.5. Uncertainty due to litter

We used simulations to compute 95-% confidence intervals (from
the average standard error across simulations) for an unstandardized
effect size across a range of ICC values (0–0.70, Fig. 5b). When be-
tween-litter variation increased, the confidence intervals were wider.
Whereas the effect was significant with an ICC of 0%, it was no longer
statistically significant (interval included 0) with an ICC of 20%. Thus
between-litter variance decreased power to detect a true effect. The
same logic applies to type I error rates. When between-litter variance is
ignored, the width of the confidence interval will be too narrow. This
can increase the rate at which the confidence intervals erroneously
exclude zero.

4. Discussion

The present study investigated how between-litter variation has
been accounted for in two literatures—natural occurring maternal
variation and prenatal stress. Specifically, we determined how often
dependent measures (i.e., litter effects) have been considered and the
degree to which between-litter variation effects false positive rates and
power. Although aspects of litter were generally underreported (e.g.,
total litters included in the study), we found that litter effects were
never reported, most studies used several observations from the same
litter, and only 15% used a statistical method appropriate for data with
dependent observations (Table 1). The latter indicates our simulation
results apply widely, in that expected error rates (α = 0.05) are likely
compromised in both research areas. Furthermore, since litter effects
were never reported, our findings not only apply to analyzing data but
also to the design stage of experiments. That is, to accurately compute
power for a hypothesized effect one must consider between-litter var-
iation (Figs. 3 and 4). This is currently not possible given the current
state of both literatures (3.1. Literature search).

4.1. False positive rates

Based on the literature search, we computed false positive rates for
commonly used statistical approaches for handling litter effects. The
most common approach was to assume independent observations, fol-
lowed by including litter as a covariate. We showed that, across all
conditions in which there was between-litter variation (ICC>0%),
both approaches produced inflated error rates. While this was observed
for both t-tests and ANCOVAs, error rates were substantially higher for
the latter. The inclusion of covariates in an ANOVA is known to increase
power (Borm et al., 2007)—assuming an effect exists. This occurs be-
cause residual variance can be reduced (Cox and McCullagh, 1982),
thus increasing power to detect an effect for the variable of interest
(Borm et al., 2007). However, like ANOVA, an ANCOVA assumes the
errors are uncorrelated which is not plausible when littermates are
included in the same analysis (Keselman et al., 1998). In addition,
ANCOVA assumes there is no interaction between the independent
variable and the covariate (Levy, 1980). This may or may not be the
case in the published literature, but should be investigated going for-
ward. There is also growing realization that inclusion of covariates can
increase type I error rates and allow for substantial researcher degrees
of freedom. That is, covariates allow for a high degree of flexibility that
can be advantageous in certain settings, but not when explored until the
p < 0.05 threshold is crossed. To address this potential issue, metho-
dologists in human oriented psychology are advising to pre-register
covariates (van ’t Veer and Giner-Sorolla, 2016; Wang et al., 2017).

We also examined type I error rates of statistical methods specifi-
cally for dependent measures. Across most conditions, nominal error
rates were achieved for all three methods. It should be noted that, with
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small sample sizes (N = 8), MLM and GEE had error rates above or
below the expected level. In contrast, when litter means were the unit of
analysis, error rates were consistently close to expectations (α= 0.05).
It has been suggested that MLMs and GEEs should not be used with
small samples (Callens et al., 2005), such as those that are typical in
behavioral neuroendocrinology. When the goal is to account for de-
pendent measures, we showed that both methods can be used to
achieve nominal error rates for the fixed effect. With a total sample of
eight (N = 8), for example, adequate performance was achieved.

4.2. Conditional false positive rates

We also showed that type I error is not dependent upon a significant
litter effect (Fig. 5a). This can be thought of as mimicking a two-step
procedure: (1) the significance of litter was assessed; and (2) if non-
significant, litter was removed from the model. The important question
is not whether the effect of litter is significant, but whether it is ex-
actly—or very close to—zero. Thus, statistical significance is irrelevant
in this context and a better approach is to rely on knowledge of the
experimental design and study subjects, regardless of the observed p-
value. It should be noted that the idea of parsimony is often invoked
when analyzing data (Bates et al., 2015a). However, all decisions have
statistical consequences that need to be considered. In this case, pur-
suing the most parsimonious model can lead to erroneous conclusions
(Barr et al., 2013). Additionally, those who make inferences via the
standard error are making statements about long run expectations (i.e.,
hypothetical replications; Greenland et al. (2016)). Accordingly, even if
between-litter variance is estimated as zero, it is important to consider
whether this is a reasonable expectation in future studies.

4.3. Power

Power was investigated for three methods: MLM; GEE; and ana-
lyzing litter means (t-test). We addressed two specific objectives: (1)
how power is influenced by between-litter variation and sample com-
position (i.e., ratio of litters to observations per litter); and (2) incre-
mental power from increasing the number of littermates.

We found that it is more advantageous to reduce the number of
dependent observations. This was the case for all three methods.
Importantly, when the ICC was 0%, the t-test with litter means showed
consistently higher power than the MLMs and GEEs. Power was com-
parable between analyzing litter means and MLMs when there was
some between-litter variation (ICC > 0%) or sample sizes were large
(relatively). When the effect size was small (δT = 0.2) and medium
(δT = 0.5) there was negligible power and this suggests that effects
often go undetected in both literatures. This reduced power was not
attributable to these statistical methods. For example, if we assume a
total sample size of 48 and a small effect (d = 0.20), power for an

independent t-test is 0.10. This parallels power for MLM (0.07), GEE
(0.08), and litter means (0.10) with12 litters and 4 observations per
litter (ICC = 0%). Thus, even when observations are independent,
using a method for dependent measures does not substantially reduce
power.

The second simulation showed that power gains from increasing
littermates is directly related to between-litter variation. For in-
dependent observations (ICC = 0%), increasing littermates from 2 to
10 increased power considerably. However, power gains were quickly
diminished with between-litter variance. The ethical considerations of
this finding cannot be understated. That is, when sacrificing an addi-
tional sixty-four animals (assuming 8 litters and increasing littermates
from 2 to 10), power was not substantially improved for previously
reported ICC values (ICC = 60%; Lazic and Essioux, 2013). These re-
sults also show that optimal power is achieved when no littermates are
included in the analysis. Importantly, this is not equivalent to an ICC
value of 0%. This is a result of the degrees of freedom and corre-
sponding critical values. In an ANOVA framework, the degrees of
freedom for 12 litters and 4 observations per litter is 10 (Fcritical = 4.97).
In contrast, the degrees of freedom for 48 litters and 1 observation per
litter is 46 (Fcritical = 4.05).

Both simulations showed that power rarely reached 0.80. The im-
plications are twofold. First, statistical significance is a ratio between
signal (the effect) and noise (standard error). Small samples often
produce noisy estimates, so effect needs to be very large to reach sta-
tistical significance (Walum et al., 2016). This is problematic because
even a significant effect can be uninterpretable. To make this point, we
selected a significant effect from a reviewed paper and computed Co-
hen’s d (d = 2.3, 95-% CI = [0.42–4.17]) (Champagne et al., 2003b).
Here, we can reject values less than 0.42 and greater than 4.17 which
indicates that the true effect could be medium to unreasonably large in
magnitude (Kruschke, 2013). Second, non-significant effects are also
difficult to interpret. For example, assuming the same effect size and
interval width centered at zero (d = 0, 95-% CI = [−1.88–1.88]) in-
dicates that the true effect may be very large (in either direction) and
should not be confused with no effect (Lakens, 2017). Together, this
lack of power is directly related to small sample sizes and this affects
interpretation of significant as well as non-significant effects (Button
et al., 2013).

4.4. Comparison to methodological papers

Importantly, our results parallel methodologically oriented papers
on similar topics. For example, Holson and Pearce (1992) showed that
between-litter variation inflated false positive rates and Zorrilla (1997)
found that the assumption of independence was violated in 85% of the
reviewed papers (psychobiology). Additionally, Lazic and Essioux
(2013) found that 91% of studies reviewed in the valproic acid
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literature used invalid statistical methods for analyzing data with lit-
termates. We built upon these findings in several ways. First, our paper
addresses these issues specifically in the field of behavioral neu-
roendocrinology. Second, in addition to varying the sample sizes, we
investigated how the magnitude of between-litter variation influences
false positive rates and power. Third, we showed that ANCOVA inflates
error more than a t-test. Fourth, as an alternative to MLM, we char-
acterized the performance of GEE for common research designs. Fifth,
we developed a R package (litterEffects) that allows for investigating
power, determining the appropriate GEE bias correction, and includes a
tutorial. Sixth, implications were discussed in the broader context of
replication efforts in related fields.

4.5. Implications: Natural occurring maternal variation and prenatal stress

The naturally occurring maternal variation and prenatal stress lit-
eratures have proven influential in the field of behavioral neuroendo-
crinology (Curley and Champagne, 2016; Goldstein et al., 2014). The
former has provided a foundation in which developmental program-
ming could occur in nature (Cameron, 2011), whereas the latter has
provided insights into the etiology of neurobiological disorders such as
autism (Kinney et al., 2008) and schizophrenia (Markham and Koenig,
2011). Although empirical findings are well documented in both lit-
eratures, the present findings highlight areas for improvement. There is
substantial evidence that true effects likely exist. However, due to not
accounting for between-litter variation caution is warranted when in-
terpreting past research. In addition to our findings, it should be noted
that we are unaware of direct replications in either literature. As such,
we take the position that the general hypotheses may have support but
do not offer strong evidence for specific effects. That is, in the general
sense, maternal care probably does influence offspring development.
However, stating that maternal care can reliably induce gene-specific
epigenetic modifications is not currently supported by the literature.
Evidence for this can only be obtained through replication, in addition
to using appropriate statistical methods.

To be clear, we are not suggesting all previous studies that failed to
report or account for between-litter variation lack scientific value. In
fact, we see previous studies as providing a foundation from which to
build future research. There is a wealth of findings in both literatures
and these provide clear hypotheses to be evaluated going forward. In
addition, revisiting past data (where possible) can serve many purposes.
These data can be reanalyzed with the methods presented here, and the
results made publicly available or published. For the latter, the journal
Meta Psychology (to be released: https://osf.io/bktc7/) allows for re-
evaluating past findings with new methods. Assuming litter information
is available, we also view past studies as providing a rich resource for
all research areas that use rodent models. For example, estimates of
between-litter variance can be systematically quantified and made
publicly available. Where data cannot be revisited, these findings
should not be automatically discounted. This would underappreciate
the limitations of the present paper (4.10. Limitations) and ultimately be
counterproductive.

4.6. Implications: Reproducible science

The replication crisis has so far been dominated by human oriented
psychology in general, and social psychology in particular (OCS, 2015).
Yet, other research areas are also experiencing difficulties replicating
findings including biomedical related fields (< 25%; Prinz et al., 2011).
We showed that using inappropriate statistical methods can produce
unreliable results. This finding parallels a recent paper that examined
clusters in fMRI research in which they concluded that commonly used
software could produce false-positive rates upwards of 0.70 (Eklund
et al., 2016). In contrast to this paper, where it was suggested that in-
terpretation of “weakly” significant findings was mostly affected, we
cannot make this claim. Nevertheless, the take home for replication

efforts in neuroendocrinology is that we need not exclusively focus on
biases or ill-intent (e.g., p-hacking) on the part of individual re-
searchers. It is entirely plausible that misspecified statistical models will
account for many failed replications, in that the original effect was
possibly non-significant. Our simulations also showed that power de-
pends on the degree of between-litter variation (Figs. 3 and 4). In other
words, detecting a significant effect would prove difficult if the mag-
nitude of between-litter variation was larger in a replication attempt
than the original study. Importantly, in studies where the ICC of litter
was 0%, the originally reported p-value would not change by ac-
counting for between-litter variance.

Moreover, addressing issues surrounding reproducible science re-
quires greater action than improving methodological practices of in-
dividual researchers. For example, rodents are often purchased from
vendors in which litter information is not always readily available.
Standard ordering practice should allow for selecting rodents with
consideration for litter of origin. In both literatures, we found that as-
pects of litter were underreported but this is not necessarily attributable
to the study authors. Journals have different guidelines (e.g., some
allow for minimal description of statistical methods) and research fields
often differ in tradition. Vendors, statistical reporting guidelines, and
“cultural” norms may all work in concert to exacerbate the effects of
between-litter variance on the literature; addressing these issues will
take concerted effort at many levels. Importantly, these issues are not
restricted to these two areas (Lazic and Essioux, 2013; Zorrilla, 1997). It
is possible that litter effects are adversely impacting most (maybe all)
research areas that use rodent models.

4.7. MLM vs. GEE and litter means

In contrast to MLMs, GEEs are less documented in R (Bates et al.,
2015c; Halekoh et al., 2006; Pinheiro and Bates, 2000), present diffi-
culties for evaluating model fit (Horton et al., 1999), and there are few
examples of their use in the hormones and behavior literature (Muth
et al., 2016). When sample sizes are small, GEEs require bias correc-
tions to ensure nominal type I error rates (Gunsolley et al., 1995; Li and
Redden, 2015). In fact, many bias corrections exist which can introduce
substantial researcher degrees of freedom (Fay and Graubard, 2001;
Pan and Wall, 2002). While GEEs can only consider one source of
variation, MLMs offer greater flexibility and provide information for
prospective power analyses (estimates of between-litter variance). This
flexibility comes with a cost, however, as a misspecified MLM can
substantially inflate error rates. For example, when sex differences are
examined with multiple animals from the same litter, variability in sex
differences must be considered with a random slope, in addition to a
random intercept of litter (Aarts et al., 2015). In small sample situa-
tions, this presents challenges in a maximum likelihood (or restricted
maximum likelihood) framework since convergence issues can arise
when the number of estimated parameters exceeds the total number of
observations. In these situations, Bayesian methods can be used
(Baldwin and Fellingham, 2013).

MLM was comparable to analyzing litter means with a t-test. For
some simulation conditions (ICC = 0%), however, power was higher
when analyzing litter means. Importantly, when some between-litter
variance was present (ICC > 0%) power was almost identical and in
some cases MLM had more power. It should be noted that MLM pro-
vides richer information for inference than analyzing litter means. For
example, estimates of between-litter variance that are essential for
prospective power analyses. MLM also allows for answering many re-
search questions: one could examine whether the fixed effect (high vs
low LG; prenatal stress vs. control) explains between-litter variance. We
see this as especially important for the natural variations in maternal
care literature, because there is explicit interest in whether pups from
the same dam resemble one another (example provided in the
litterEffects tutorial). This analysis is not possible with litter means (t-
test).
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4.8. Statistical assumptions

Even a simple t-test can be thought of as modeling biological phe-
nomena, in which inference is dependent on many assumptions. To
ensure assumptions are met, further statistical tests are often used such
as Shapiro-Wilk for normality (Shapiro and Wilk, 1965). In contrast, we
do not know of tests explicitly for the assumption of independence.
Consideration of the research design, model organism, expert opinion,
and reason can all be used. If non-independence is suspected, but not
present, inclusion of a random intercept will give equivalent estimates
to a fixed effect only model (Gelman and Hill, 2006). These questions
are challenging and demonstrate the difficulty in modeling hierarchical
data structures such as those that include littermates. By clearly stating
the assumptions that the results depend on, however, would allow re-
searchers the opportunity to debate their validity. We consider the as-
sumption of zero between-litter variance untenable and that researchers
should always use a statistical method for dependent observations.

4.9. Statistical expertise vs. improved training

Certain research questions will inevitably require seeking statistical
expertise. However, expertise is also qualified with being highly spe-
cialized in a certain area. Specialists in multilevel modeling, or those
that know how to account for clusters more generally, may be a limited
resource (Lazic and Essioux, 2013). In addition, fruitful collaborations
require a certain amount shared knowledge of one another’s field and
specific research question. This would entail communication of the
necessary information so that the correct analysis is applied. In con-
trast, improved quantitative training for individual research could ad-
dress many of these issues. There are many resources available for in-
dividual researchers. While in the past fitting multilevel models was a
specialized task, free and easy to use statistical packages (Bates et al.,
2014; Kuznetsova et al., 2016), tutorials available on blogs
(Magnusson, 2016), as well as other social media forums (e.g., Face-
book methods groups) has made these methods accessible to all re-
searchers.

Despite these limitations, statistical expertise and improved training
are important and would likely advance quantitative methodology to
some degree. However, due to the near ubiquity of litter use, de-
pendencies mostly unaccounted for, reporting deficiencies, and inflated
false positive rates (Fig. 2), higher-level action by journals and/or
funding bodies may be required.

4.10. Limitations

There are several limitations that deserve attention. Simulations
entail generating data and numerous assumptions. A valid question is
whether the assumed values for between-litter variance are plausible.
We think they are, but it should be noted that precise values could not
be obtained from either literature. To address this limitation, we as-
sumed a range of values that spanned from 0% to 70%. Additionally, for
the ANCOVAs, we coded litter as a categorical covariate. This was an
assumption we made, because coding schemes were not reported in the
primary studies. We feel this decision was justified, because continuous
coding would not make sense for arbitrarily assigned numbers.
Although we carried out an extensive search, we were not able to obtain
exact estimates for litters or number of littermates included in an
analysis. Reporting was too variable, and stating likely values may be
misleading. With these limitations in mind, exact false positive rates
cannot be determined. Our simulations showed that between-litter
variation can increase false positive rates by some degree. This is im-
portant to consider when inferring meaning from the extant literature
and for planning future studies.

Not providing comparisons between statistical methods with actual
data may be viewed as objectionable or incomplete. Although using real
data may appear more tangible, this would present several difficulties

when examining optimal statistical methods. For example, with actual
data, we do not know whether a true effect exists and cannot determine
which method is arriving at the correct conclusion. As such, simulations
offer clear advantages in that we know the correct conclusion and can
therefore determine the appropriate method. In addition, commonly
used statistical quantities have meaning in the long run (hypothetical
replications) and this makes exploring expected error rates with one
data set impossible (Greenland et al., 2016).

It is also possible that estimates of between-litter variance were
biased in our simulations (Maas and Hox, 2005), which may have in-
fluenced type I error rates and power. Simulation studies have indicated
that small samples and few clusters (e.g., litters) can present challenges
for MLM (Maas and Hox, 2005) and GEE (Gunsolley et al., 1995). Here
it has been noted that power is low to detect cluster differences (e.g.,
litter effects) and that estimates of litter variance can be variable. These
findings do not suggest that litter should be ignored (excluded from the
model). We emphasize that litter must be considered to account for
dependent measures and that, with only four litters (Figs. 2 and 3),
expected error rates and optimal power can be achieved. Thus, even in
small sample situations, MLM and GEE can certainly be used to analyze
dependent data.

Our results are restricted to specific research designs (Fig. 1). This
limits the generalizability of our findings. We view this as a strength in
that specific questions were answered and not general quantitative
practices. Additionally, we provided resources for important research
topics in the field of behavioral neuroendocrinology. We also used two
different search strategies for each literature. The 100 most recent
studies were reviewed for the prenatal stress literature, whereas all
studies (found in the search) were reviewed in the maternal care lit-
erature. This decision was made because including 1000′s of studies
seemed unnecessary to achieve our goal of offering recommendations
based on current methodological practices.

4.11. Recommendations

We conclude that between-litter variation is underappreciated
(Table 1), can lead to increased false positive rates (Fig. 2), and reduce
one’s ability to detect a true effect (Figs. 3 and 4). Based on the strength
of these findings, we provide several recommendations. First, it should
be noted that these recommendations apply to research designs in
which entire littermates are categorized the same way (Fig. 1). Litters
often receive multiple treatments or sex differences are of interest. A
thorough discussion of the necessary model in these situations is be-
yond the scope of the present paper (but see here: Aarts et al., 2015).
However, when all littermates included in a study are categorized based
on the same characteristic or treatment (Fig. 1), we recommend the
following:

(1) Independence of observations from the same litter should never be
assumed.

(2) Including litter as a covariate in an ANCOVA is not appropriate,
since it does not account for dependent measures.

(3) A statistical method specifically for dependent measures is neces-
sary:
We prefer a multilevel approach. Importantly, estimates of be-
tween-litter variance are needed to conduct power analyses. GEEs
and analyzing litter means with a t-test cannot provide this in-
formation. Furthermore, GEEs require small sample for correc-
tions for p-values that require referencing relevant literature or
using simulations to obtain the appropriate correction. We thus
reemphasize our preference for multilevel models.

(4) When using a MLM, the random effect of litter should always be
included in the model (irrespective of statistical significance).

(5) To facilitate accurate prospective power calculations future papers
must report measures of between-litter variance (only possible with
MLM):
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We also recommend that researchers revisit previous studies (if
possible) and compute between-litter variance (see litterEffects
package). Establishing a public repository with this information
will provide a valuable resource for researchers in these fields, as
well as related fields.

(6) Prospective power calculations should assume a range of plausible
values for between-litter variance:
Of course, knowing exact values for between-litter variation is
not possible. This is like any power calculation in which one as-
sumes a value for the effect size of interest (which is unknown).
As such, assuming a range of values will provide richer in-
formation that allows for assessing realistic expectations.

(7) Between-litter variation has ethical implications that must be con-
sidered going forward.
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