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Analysing ordinal data is becoming increasingly important in psychology, especially in the

context of item response theory. The generalized partial credit model (GPCM) is

probably the most widely used ordinal model and has found application in many large-

scale educational assessment studies such as PISA. In the present paper, optimal test

designs are investigated for estimating persons’ abilities with the GPCM for calibrated

tests when item parameters are known from previous studies. We find that local

optimality may be achieved by assigning non-zero probability only to the first and last

categories independently of a person’s ability. That is, when using such a design, theGPCM

reduces to the dichotomous two-parameter logistic (2PL) model. Since locally optimal

designs require the true ability to be known, we consider alternative Bayesian design

criteria using weight distributions over the ability parameter space. For symmetric weight

distributions, we derive necessary conditions for the optimal one-point design of two

response categories to be Bayes optimal. Furthermore, we discuss examples of common

symmetric weight distributions and investigate under what circumstances the necessary

conditions are also sufficient. Since the 2PL model is a special case of the GPCM, all of

these results hold for the 2PL model as well.

1. Introduction

Item response theory (IRT) provides a flexible and powerful approach for designing and

analyzing data of psychological tests. While IRT very often deals with dichotomous

responses (e.g., categorized as either ‘right’ (1) or ‘wrong’ [0]), there are many situations

where a more advanced scoring method is advisable. Consider, for instance, a

complicated task in which multiple intermediate results have to be obtained to correctly

solve thewhole task. Scoring such a task in a dichotomousway comeswith substantial loss

of information as someone solving all intermediate questions and failing only in the last

step would receive the same score as someone who did not even manage to take the first
step. A natural solution is to give persons partial credit for the intermediate results. The

response obtained is no longer dichotomous but ordinal, ranging from 0 (nothing

correct), via 1 (first step correct), to J (all J steps correct). An IRTmodel dealing with such

ordinal responses is the partial credit model (PCM; Andersen, 1973; Andrich, 1978) or its

extention, the generalized partial credit model (GPCM; Muraki, 1992, 1993). It is a

mathematically convenient generalization of the dichotomous two-parameter logistic

(2PL) model (which is in turn a generalization of the Rasch model) for more than two
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possible response categories. As such, it combines the ability of an examineewith the item

difficulty and discrimination andmaps them to the probability of each response category.

Although alternative ordinalmodels exist and are commonly applied inpractice aswell

–most notably the graded response model (Walker & Duncan, 1967; van der Ark, 2001)
and the sequential model (Tutz, 1990, 2011) – the GPCM is probably the most frequently

used ordinal model in psychological research. For example, it has been applied in many

large-scale educational assessment studies such as PISA, TIMSS, PIRLS, and NAEP (Allen,

Donoghue, & Schoeps, 2001;Martin, Gregory,& Stemler, 2000;OECD, 2017). In addition,

there is a great body of literature discussing application of the GPCM in large-scale

assessment studies from amore technical perspective (see, for example,Mazzeo&Davier,

2014; von Davier & Sinharay, 2010; von Davier & Sinharay, 2014). These studies have

mostly been concerned with the comparability of large-scale results as well as model
fitting itself, while to our knowledge optimizing the statistical properties of the resulting

parameter estimates has not yet been systematically investigated. We believe that, given

the GPCM’s broad application in practice, it is of great relevance to investigate the

conditions under which the GPCM performs best.

Applying principles of optimal design (Atkinson, Donev, & Tobias, 2007; Berger &

Wong, 2009; Holling & Schwabe, 2013) to IRTmodels can lead to considerable efficiency

gains and reduce costs of test administration by reducing the number of items and/or

subjects required to achieve the same level of precision (Holling & Schwabe, 2016). In
IRT, one typically distinguishes between two types of optimal design problem. The first is

about selecting items with specific properties for the efficient estimation of person

parameters, while the second is about selecting persons with specific abilities for the

efficient estimation of item parameters. These problems are referred to as optimal test

design and optimal sampling design, respectively (Holling & Schwabe, 2016), with the

former being the more common (van der Linden, 2006). Optimal test designs are relevant

in so-called calibrated tests, in which item parameters were estimated in prior studies and

can thus be considered as known with reasonable precision. The design question is to
select the items from the calibrated item pool most appropriate for the participating

persons. Optimal test designs are also applicable in tests making use of automatic item

generation (see, for example, Geerlings, Glas, & van der Linden, 2011). In this case, the

item parameters can be inferred from the set of rules whichwere used to create the items,

provided that the influence of the rules on the item parameters has previously been

investigated.

Most IRT models, including the GPCM, are non-linear in the parameters, so that the

related optimal designs are dependent on the parameters to be estimated. Such optimal
designs that are optimal only for certain parameter values – but not for others – are called
locally optimal designs. Among others, locally optimal designs for the GPCM will be

investigated in the present paper. Despite being relevant for theoretical reasons and often

being a prerequisitemore advanced optimal designs, locally optimal designs are of limited

practical use themselves as one has to guess the true value of the parameter before

constructing the design. If the guess is far away from the truth, such locally optimal design

might become relatively inefficient.

There are different possibilities for overcoming the problemof locally optimal designs.
One solution considered in the present paper are so-called Bayesian optimal designs.

Instead of trying to find an optimal design for a specific parameter value, one specifies a

weight distribution over the set of possible parameters to express the uncertainty in the

subject or itemparameters. For instance,when generating a test design, onemight assume

that a subject’s ability will be somewhere between�2 and 2, with all abilities in between
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beingequally likely. Thiswould translate into auniformdistributionover the interval [�2, 2].

A design that is optimal given the specified uncertainty in the parameter values is then

called Bayes optimal.

The paper is structured as follows. In Sections 2 and 3 the GPCM is introduced in detail
and locally optimal designs are investigated. In Section 4 Bayesian optimal designs are

introduced and discussed in relation to the GPCM. Examples for common weight

distributions are given in Section 5. The paper is concluded in Section 6with a discussion

of the findings. All proofs are provided in the Appendix.

2. The model

In a test situation with ordinal items, the response of person p on item i is denoted by

Ypi, which can take on one of J + 1 values ranging from 0 to J. In the GPCM, the

probability ppij that person p achieves category j 2 {0, . . ., J} on item i is given (cf.

Muraki, 1992, 1993) by

ppij :¼ pjðhp; si; aiÞ :¼ PðYpi ¼ j; hp; si; aiÞ :¼
exp

Pj
s¼1 aisðhp � sisÞ

� �
PJ

k¼0 exp
Pk

s¼1 aisðhp � sisÞ
� � ; ð1Þ

with

X0
s¼1

aisðhp � sisÞ :¼ 0 ð2Þ

for notational convenience. The model results from the assumption that, given only two

adjacent categories, the probability for the higher of the two is given by the dichotomous
2PL model,

PðY ¼ j; hp; si; aijYpi 2 fj; j� 1gÞ ¼ exp aij hp � sij
� �� �

1þ exp aij hp � sij
� �� � : ð3Þ

The parameter hp denotes the ability of the pth person. The higher hp, the higher the
probability of reaching higher categories (Agresti, 2010). The parameter vector
si = (si1, . . ., siJ) denotes the thresholds of the ith item. Thresholds in the GPCM can

be interpreted as follows. If a person has an ability equal to sij, the probabilities for this

person of achieving category j and j – 1 are equal, that is, ppij = ppi(j–1) (i.e. the sij are the
intersection points of the respective category response curves). The higher the

thresholds, the lower the probability of achieving higher categories. This does not imply,

however, that thresholdsmust be ordered in the sense that s1 ≤ s2 ≤ . . . ≤ sJ (Adams,Wu,

& Wilson, 2012). Rather, all thresholds may take on any real value. The vector

ai = (ai1, . . ., aiJ), where aij > 0, denotes the positive discrimination parameters of the
ith item. The higher aij, the steeper the curve favouring the jth category over the ( j – 1)th

category with increasing hp. Note that the GPCM is sometimes defined as having only a

single discrimination parameter, which is assumed constant across categories, instead of a

vector of discriminations. As the latter is a generalization of the former, all of our results

may be applied to GPCMs with a single discrimination parameter as well.
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Since the focus of the present paper is on optimal test designs, we consider the item

parameters si and ai to be known (i.e. chosen by the design) and the person parameters hp
as the quantities to be estimated. This situation arises in calibrated tests where item

parameters were estimated in prior studies and the design question is to select the most
appropriate items from the item pool. Assuming conditional independence of the items

for given hp, the joint density of all items is simply the product of the single-item densities

see (for a detailed discussion about conditional independence in IRT models; van der

Linden & Glas, 2010). For notational convenience, we will suppress the indices p and i in

the following where appropriate.

The original PCM was first derived by Rasch (1961) and subsequently by Andersen

(1973), Andrich (1978), Masters (1982), and Fischer (1995) each with a different but

equivalent formulation (considering the special case of discrimination parameters fixed
to1; cf. Fischer,1995;Adamset al., 2012).Andersen (1973)andFischer (1995)derived the

PCM in an effort to find amodel that allows the independent estimation of person and item

parameters – a highly desirable property – for ordinal variables. Andrich (1978, 2005)

provided another derivation: When two dichotomous processes are independent, four

results can occur: (0,0), (1,0), (0,1), (1,1). Using the Rasch model for each of the two

processes, the probability of the combined outcomes is given by the polytomous Rasch

model (Andersen, 1973; cf.Wilson, 1992;Wilson&Adams, 1993).When thinking of these

processes as steps between ordered categories, (0,0) corresponds to Y = 0, (1,0)
corresponds to Y = 1, and (1,1) corresponds to Y = 2. The event (0,1), however, is

assumed tobe impossiblebecause the secondstepcannotbe successfulwhen thefirst step

was not. For an arbitrary number of ordered categories, Andrich (1978) proved that the

polytomous Rasch model becomes the PCM (with discrimination parameters fixed to 1)

when considering the set of possible events only. The GPCM, which generalizes the 2PL

model tomore than twoordinal response categories,was laterproposedbyMuraki (1992).

3. Locally optimal designs

In the context of optimal test designs for the GPCM, an experimental design is the set

n :¼ fðs1; a1Þ; ðs2; a2Þ; . . .; ðsN ; aNÞg of known parameters of the N administered items.

It can be chosen by the experimenter in order to optimize the information of the

experiment. Note that each si and each ai (i 2 {1, . . ., N}) is a vector of length J. The

set of all designs is denoted by Ξ. When only considering a single item, we simply
write (s, a) instead of ξ and drop the index i.

There are several optimal design criteria discussed in the literature (see Atkinson et al.,

2007, for anoverview), but arguably themost commoncriterion isD-optimality. A design ξ
is called D-optimal if it minimizes the determinant of the estimator’s covariancematrix. In

the present context, the parameter h to be estimated is the unidimensional person

parameter so that the determinant of the covariancematrix reduces to the unidimensional

variance. Thus, we can define a D-optimal design as

n� :¼ argmin
n2N

Varð̂h; nÞ; ð4Þ

where ĥ is an estimator of the parameter h. According to the Cram�er–Rao bound (Cram�er,
2016; Rao, 1992), the variance of an unbiased estimator cannot be smaller than the inverse

of the Fisher information M,
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Varðĥ; nÞ�Mðh; nÞ�1: ð5Þ

Thus, for (asymptotically) efficient estimators, we can equivalently maximize the

Fisher information instead of minimizing the variance of the estimator. Under certain

regularity conditions (cf. Lehmann & Casella, 2006), M can be written as

Mðh; nÞ :¼ Var
d

d h
log f ðY ; h; nÞ

� �
¼ �E

d2

d h2
log f ðY ; h; nÞ

� �
; ð6Þ

where f(Y; h, ξ) is the product density of all items given the ability parameter h and the

design ξ, assuming conditional independence of the items. Due to additivity of the Fisher
information in this case, we could equivalently write (6) as the sum of the single-item

Fisher information values. Most often in optimal design theory, the aim is to minimize the

variance of the estimator. For asymptotic efficient estimators (such as maximum

likelihood estimators), which by definitionmeet the Cram�er-Rao bound, this is equivalent
to maximizing the Fisher information, and we will use this approach in the derivation of

optimal designs in the present paper.

Proposition 1. Defining Aj :¼
Pj

s¼1 as, the Fisher information M(h, s, a) of a single

item following the GPCM is given by

Mðh; s; aÞ ¼
XJ
j¼1

A2
j pj �

XJ
j¼1

Ajpj

 !2

: ð7Þ

If we treat M as a function of the probability vector p = (p0, . . ., pJ), we can obtain

the following theorem as an immediate consequence of Proposition 1.

Theorem 1. The Fisher information M of a single item treated as a function of the

probabilities p has a unique global maximum in fp 2 R
Jþ1
þ j PJ

j¼0 pj ¼ 1g, which is

given by p�0 ¼ p�J ¼ 1=2 and p�1 ¼ p�2 ¼ . . . ¼ p�J�1 ¼ 0 for given A = (A1, . . ., AJ).

Theorem 1 implies that an item following the GPCM would be optimal for a person

with ability h0,when the vectors s and a are chosen so that only the first and last categories
have non-zero probability and are equally likely. In other words, such an item is optimal if

it is from the dichotomous 2PLmodel (with scalar discriminationa = AJ). Due to additivity

of the Fisher information, all items of a locally optimal design ξ* for the PCMhave to satisfy
the above condition.

Wewant to briefly illustrate the efficiency gain achievedby optimal itemswith a simple

example. Suppose we administer a four-category item with threshold vector

s = (�1, 0, 1) and discrimination vector a ¼ ð1; 1; 1Þ. Then participants with low

(h = �1), medium (h = 0), and high (h = 1) ability achieve the categories 0–3 with

probabilities pl � (0.41, 0.41, 0.15, 0.02), pm � (0.13, 0.37, 0.37, 0.13), and

ph � (0.02, 0.15, 0.41, 0.41), respectively. Such values are not too uncommon in

practice. When compared to an item with optimal thresholds and a = (1, 1, 1), the
ratio of the Fisher information isM*/Mm � 2.86 for participants withmedium ability, and

M*/Ml = M*/Mh � 3.75 for participants with low or high ability. Hence, the variance of
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an efficient estimator is about three to four times higher when applying this item rather

than optimal items tailored to the participants’ abilities.

Unfortunately, there exists no itemwith a threshold vector s* that leads to the optimal

probabilities of Theorem 1, but it may be approximated:

Proposition 2. Define ~saðcÞ :¼ ðaJ c; 0; 0; . . .;�a1cÞ 2 R J with c > 0 and

CJ
a :¼

�
x 2 R J j 8k 2 f1; . . .; Jg : akxk ¼ �aJ�kþ1xJ�kþ1

�
ð8Þ

for some discrimination vector a 2 R
J
þ.

(a) We have ~saðcÞ 2 CJ
a.

(b) For each h 2 R, there is some q = q(h, a) with 0 < q < 1 such that

pJðh;~saðcÞ; aÞ ! q, p0ðh;~saðcÞ; aÞ ! 1� q and pjðh;~saðcÞ; aÞ ! 0 for 0 < j < J as

c ? ∞.

(c) We have q(0, a) = 1/2.

(d) For s 2 CJ
a with symmetric a satisfying ak = aJ–k+1, we have that pj(h, s, a) =

pJ–j (- h, s, a) for all j 2 {0, . . ., J}.

According to Proposition 2(b) and (c), we can formally define s* as s� :¼ limc!1 ~saðcÞ
when assuming h0 = 0, which can be achieved by a location shift without loss of

generality. Proposition 2 may be generalized to arbitrary h0, but because of the location

shift argument, this is not required for the present paper. The sequence ~saðcÞ is not the
only one that satisfies criteria (a–d) of Proposition 2. However, for the purpose of the

present paper, it is completely sufficient that we know at least one such sequence exists.
Of course, it is impossible to create itemswith a threshold vector exactly equal to s*. Such
an optimal item would have infinite and negative infinite first and last thresholds,

respectively, while all other thresholdswould not be estimable. In otherwords, for a fixed

number of more than two response categories, a locally optimal design does not exist.

However, one may choose reasonably large values of c so that the GPCM closely

approximates the dichotomous 2PL model with corresponding locally optimal design.

The latter is well known as a one-point design, in which all items have difficulty equal to

the person’s ability. If additionally the discrimination is treated as part of the design, items
should optimally have discrimination as high as possible. Thismay also be inferred directly

from Proposition 1 when considering the special case of only two response categories.

4. Bayesian optimal designs

From a Bayesian perspective, a locally optimal design is the result of setting all prior mass
to one point h0. This seems quite infeasible and is only justified if the true ability is not too

far away from h0, or otherwise the locally optimal design in h0 might perform poorly. One

solution is to account for the a priori uncertainty in the ability parameter by imposing a

non-degenerate weight distribution Π over the parameter space Θ. An optimal design

ξ* 2 Ξ taking this uncertainty into account is called a Bayesian optimal design. It is

obtained via some sort of averaging over the locally optimal designs’ Fisher information,

where the Fisher information of each locally optimal design is weighted according to the
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weight distribution (Atkinson et al., 2007). In the present paper, we will consider two

common Bayesian design criteria that each perform a different kind of averaging (Firth &

Hinde, 1997):

w0ðnÞ :¼ E logðMðh; nÞÞ½ �; ð9Þ

w�1ðnÞ :¼ �E Mðh; nÞ�1� 	
; ð10Þ

where

E X½ � ¼
Z

XPðhÞdh ð11Þ

is the expected value of a random variable X under the distribution Π of h. The
criterion w0 considers the average logarithm of the Fisher information, while the

criterion w–1 aims to minimize the average asymptotic variance. Of those two, w0 is
mathematically more convenient and has a natural Bayesian interpretation (Chaloner

& Larntz, 1989). Both criteria are concave with respect to the experimental design ξ
(Firth & Hinde, 1997). Note that, in general, these design criteria are

not fully Bayesian in the sense that they do not require computing a posterior

distribution. Instead, they borrow the concept of prior distributions to obtain robust

designs for frequentist analysis via maximum likelihood methods. Hence, the designs

discussed here are sometimes referred to as ‘pseudo-Bayesian’ designs (Firth &

Hinde, 1997). For a review of fully Bayesian design criteria, see Chaloner and
Verdinelli (1995).

In theory, the weight distributionΠ of hmay take any form. In practice, however, one

typically uses symmetric weights, both for mathematical convenience and because there

is rarely any prior information available that favours an asymmetricweight distribution for

an unbounded parameter such as the ability h. Accordingly, we will focus on symmetric

weight distributions in the following. Within this class, there are (among others) the

continuous uniform, normal, and logistic distributions, each forming a so-called location–
scale family of distributions.

For the Rasch model, Bayesian optimal designs have already been investigated in

Graßhoff, Holling, and Schwabe (2012), and the aim of the present section aims is to

generalize these results to the GPCM. The following lemma underlines the relevance of

locally optimal designs in the context of Bayesian optimal design criteria.

Lemma 1. If the weight distribution Π is symmetric around some ability h0, a is

fixed to any vector in R
J
þ, and only s is considered variable, the Bayes optimal

one-point design with respect to w0 and w–1 is the locally optimal design for h0,
that is, s = s*.

According to Lemma 1, the same problem that occurs for the locally optimal design

occurs for the optimal one-point design under the Bayesian criteria as well. That is, it does

not exist for a fixed number of more than two response categories, andwhen considering

the number of categories variable, the GPCM reduces to the dichotomous 2PL model.

Optimal designs for the GPCM 7



Accordingly, we need to investigate the optimal discrimination parameter a in the case of

only two response categories.

Lemma 2. If theweight distributionΠ is symmetric around someability h0, s is fixed to
s*, and a 2 Rþ is considered variable, then:

(a) w0 is maximized by the unique solution a�0 of

a
Z

h p1ðh; s�; aÞPðhÞ dh ¼ 1; ð12Þ

(b) w–1 is maximized by the unique solution a��1 of

a
Z

h
p0ðh; s�; aÞPðhÞ d h ¼

Z
1

p1ðh; s�; aÞp0ðh; s�; aÞPðhÞd h: ð13Þ

Lemma 2 is in line with our intuition that the optimal a decreases with

increasing scale of Π. Lemmas 1 and 2 do not state under what conditions the

optimal one-point design is Bayes optimal. To answer this question, we have to

make use of approximate design theory (cf. Kiefer, 1974) and introduce sensitivity

functions measuring the quality of a design (cf. Graßhoff et al., 2012). If the

sensitivity function is uniformly bounded at a certain value for a given design ξ*, no
improvement is possible and ξ* will be optimal. For non-linear models, sensitivity
functions of D-optimal designs are given in Firth and Hinde (1997). For the GPCM,

these sensitivity functions can be written as

/vðs; a; nÞ ¼
E Mðn; hÞvMðn; hÞ�1

Mðs; a; hÞ� 	
E Mðn; hÞv½ � � 1; ð14Þ

where v 2 {�1, 0} corresponds to the two Bayesian design criteria discussed above.

Since, for the GPCM, the design criteria are concave, Bayes optimality of a design ξ* is
equivalent to

sup
ðs;aÞ2X

/vðs; a; n�Þ ¼ 0; ð15Þ

where X denotes the design region of a single item. Moreover, when ξ* is optimal,
φv(s, a, ξ*) = 0 holds if and only if (s, a) is a design point of ξ*. It may now be asked under

what conditions the optimal one-point design is also Bayes optimal.

Theorem 2. Necessary conditions for the threshold s* to be Bayes optimal under a

symmetric weight distribution Π and fixed discrimination a are

w0 :

Z
pJðh; s�; aÞp0ðh; s�; aÞPðhÞ dh� 1

6
; ð16Þ
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w�1 :

Z
ðpJðh; s�; aÞp0ðh; s�; aÞÞ�1PðhÞ dh� 6: ð17Þ

For a fixed discrimination of a = 1, Theorem 2 provides the same conditions for the

GPCM as can be found for the Rasch model (see Graßhoff et al., 2012). By Jensen’s

inequality, the necessary condition forw–1 implies the condition forw0, that is, the former

condition is more restrictive. For scale families of symmetric weight distributions,

Theorem 2 may be further extended.

Theorem 3. Let (Πs)s>0 be a scale family of symmetric distributions around some

ability h0.

(a) There exist unique values s–1 and s0, with 0 < s–1 ≤ s0 ≤ ∞, such that the necessary

conditions of Theorem 2 on w–1 and w0 are satisfied for all s ≤ s–1 and s ≤ s0,

respectively, and violated otherwise.

(b) There exists a unique threshold ~s0, 0� ~s0\s0, such that the optimal one-point

design s* is Bayes optimal with respect to w0 for all weight distributions Π with

s� ~s0 and fails to be optimal for s[ ~s0.

According to Theorem 3, the optimal one-point design for a symmetric scale

distribution remains Bayes optimal as long as the scale parameter does not exceed a

certain value that depends on the design criterion, the (now scalar) discrimination a, and
on the location–scale family. As

R
pJp0PðhÞ dh decreases monotonically with increasing

a, the values ~s0, s0, and s–1 decrease monotonically with increasing a as well. For some

common distribution families, examples are discussed in more detail in the next section.

Finally, we want to turn our attention to Bayes optimal designs for the dichotomous

2PLmodel,whenboth s and a are allowed to vary. It is of particular interest to determine in
which cases the optimal one-point designs derived in Lemma 2 are also Bayes optimal. In

the next section we show numerically that for certain important weight distributions

under/0 or/–1, the optimal one-point design is never Bayes optimal. This implies that the

Bayes optimal designs under /0 or /–1 (if they exist) have to have at least two distinct

design points. Whether this holds in general for all symmetric weight distributions

requires further investigation.

5. Examples

Graßhoff et al. (2012), among others, discuss Bayes optimal designs for the Rasch model

for the continuous uniform, normal, and logistic families. They also derive the family-

specific values of s–1 and s0 (denoted s1 and s2, respectively, in their paper) for the Rasch

model (i.e. for discrimination fixed to 1).Wehave already established that,whenusing the

optimal one-point design, the GPCM is equivalent to the 2PL model. We can obtain s0 and
s–1 for the GPCMby dividing the respective values for the Raschmodel by the sum AJ of all

discrimination para-meters. Theoretically, this allows us to numerically investigate

whether the necessary conditions on the optimality of the one-point design are also

sufficient, by computing the sensitivity function across the design space. In practice, this

becomes increasingly complicated for items with more response categories, since the

design space is of dimension J (or 2Jwhen also varying a). Accordingly, we will focus on

items with up to three response categories, which may also be visualized conveniently.

Optimal designs for the GPCM 9



For each example, wewill consider two cases: (1) three response categories with varying

s and discrimination parameters fixed to 1 (hence Aj = j for all j); (2) two response

categories with varying s and a.

Example 1. (Continuous uniform distribution) For the continuous uniform distribution

with support in [h1, h2] = [h0 � s, h0 + s] and constant density f ðhÞ ¼ 1
2s
, we have

s–1 � 2.1773/J and s0 � 2.5757/J. The scalars 2.1773 and 2.5757 are numeric solutions of

the equations exp(s) � exp(�s) = 4s and (3�s) exp(s) = 3 + s, respectively (Graßhoff

et al., 2012). For J = 2, the sensitivity function is displayed in Figures 1 and 2,with s–1 and

s0 being displayed in the center. In the figures, yellowish regions are values of the

sensitivity function that are greater than zero, indicating non-optimality of the one-point
design. At s–1 and s0, or smaller values, the sensitivity functions donot exceed zero, and are

unimodal withmaximal value zero at s*. This demonstrates, at least numerically and for J =
2, that the necessary conditions of Theorem 2 are also sufficient for the continuous

uniform weight distribution. When s is further increased, the one-point design becomes

visibly non-optimal and a two-point design appears to be favoured.

For the dichotomous 2PL model with varying s and a, we have a��1 � 3:1560 for s =
s–1 � 2.1773. However, the necessary condition (17) for /–1 is only satisfied for

a� aþ�1 � 2, implying that the optimal one-point design ðs�; a��1Þ is not Bayes optimal (see
also Figure 3 (left)). The same result may be obtained for other values of the scale s in the

sense that a��1 exceeds aþ�1 independently of s. Similarly, we have a�0 � 3:6186 for

s = s0 � 2.5757, but the necessary condition (16) for /0 is only satisfied for a� aþ0 � 2,

(see also Figure 3 (right)). Again, a�0 [ aþ0 can be shown to hold for other values of s as

well.

Example 2. (Normal distribution) Similar results are obtained for the normal weight
distribution. Here, the scale s is simply the standard deviation parameter of the normal

distribution. The critical values are approximately s–1 � 1.177/J and s0 � 1.683/J. Again,

numerical computation shows that the sensitivity functions do not exceed zero for s ≤ s–1
or s ≤ s0 (see Figures 4 and 5). Thus, the necessary conditions appear to be sufficient for

the normal weight distribution when J = 2. Accordingly, the optimal one-point design

remains Bayes optimal for items with three response categories as long as the standard

deviation does not exceed the critical values.

s = 0.8 s = 1.0886 s = 1.5

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0
−5.0

−2.5

0.0

2.5

5.0

τ1

τ 2

−1.0

−0.5

0.0

φ−1(τ, ζ*)

Figure 1. Contour of the sensitivity function for w–1 for three response categories for a uniform

weight distribution with varying values of the scale parameter s.
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For the dichotomous 2PL model with varying s and a, we have a��1 � 1:3586 for s =
s–1 � 1.177, but the necessary condition (17) for /–1 is only satisfied for a� aþ�1 � 1.

Similarly,wehave a�0 � 1:7350 for s = s0 � 1.683, but the necessary condition (16) for/0

is only satisfied for a� aþ0 � 1:002. Thismay be shown to hold for other values of s aswell.

Example 3. (Logistic distribution) For the logistic distribution with scale parameter s,

the critical values are given by s–1 � 0.603/J and s0 = 1/J. According to Figure 6, the
necessary condition for w0 is also sufficient if J = 2. However, the sensitivity function of

w–1 behaves somewhat differently for the logistic weight distribution in the sense that the

necessary condition is apparently not sufficient (see Figure 7 [centre]). However, for

scale values only slightly below s–1, the optimal one-point design appears to be Bayes

optimal (see Figure 7 [left]), indicating the best possible sufficient condition, very close to

the necessary condition derived in the present paper.

For the dichotomous 2PL model with varying s and a, we have a��1 � 2:6518 for

s = s–1 � 0.603, but the necessary condition (17) for /–1 is only satisfied for

s = 1 s = 1.2878 s = 1.8

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0
−5.0

−2.5

0.0

2.5

5.0

τ1

τ 2

−1.0

−0.5

0.0

φ0(τ, ζ*)

Figure 2. Contour of the sensitivity function for w0 for three response categories for a uniform

weight distribution with varying values of the scale parameter s.

−0.6

−0.3

0.0

0.3

1 2 3 4
α

−0.6

−0.3

0.0

0.3

1 2 3 4
α

Figure 3. Illustration of the optimal one-point discrimination parameter of the 2PL model in

relation to the necessary condition for Bayes optimality. Left: criterion /–1 with a uniform weight

distribution with scale s = 2.1773. Right: criterion /0 with a uniformweight distribution with scale

s = 2.5757. The intersection of the blue and black lines indicates a��1 and a
�
0, respectively, while the

intersection of the red and black lines indicates aþ�1 and aþ0 , respectively. Note that a
�
�1 [ aþ�1 and

a�0 [ aþ0 .
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a� aþ�1 � 1:953. Similarly, we have a�0 � 2:9217 for s = s0 � 1, but the necessary

condition (16) for /0 is only satisfied for a� aþ0 � 1:6868. This may be shown to hold for

other values of s as well.

6. Discussion

In the present paper we investigated locally optimal designs as well as Bayes optimal

designs for the GPCM. We demonstrated that for a fixed number of more than two

response categories, the locally optimal design does not exist. However, when

s = 0.3 s = 0.5885 s = 0.7

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0
−5.0

−2.5

0.0

2.5

5.0

τ1

τ 2

−1.0

−0.5

0.0

φ−1(τ, ζ*)

Figure 4. Contour of the sensitivity function for w–1 for three response categories for a normal

weight distribution with varying values of the scale parameter s.

s = 0.5 s = 0.839 s = 1

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0
−5.0

−2.5

0.0

2.5

5.0

τ1

τ 2

−1.0

−0.5

0.0

φ0(τ, ζ*)

Figure 5. Contour of the sensitivity function for w0 for three response categories for a normal

weight distribution with varying values of the scale parameter s.

s = 0.25 s = 0.5 s = 0.6

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0
−5.0

−2.5

0.0

2.5

5.0

τ1
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−1.0

−0.5

0.0

φ0(τ, ζ*)

Figure 6. Contour of the sensitivity function for w0 for three response categories for a logistic

weight distribution with varying values of the scale parameter s.
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allowing the number of categories to vary, the locally optimal design exists and

assigns non-zero probability only to the first and last response categories indepen-

dently of a person’s ability. That is, when using such a design, the GPCM reduces to

the ordinary 2PL model. This perhaps paradoxical result will be discussed in more

detail later on.

When fixing the discrimination parameters, the locally optimal one-point design

proved to be relatively robust. In particular, when allowing the number of response
categories to vary, it turned out to be Bayes optimal under the two most common

Bayesian design criteria and symmetric weight distributions with not too large

variation. It must be emphasized that the maximum variation such that it remained

Bayes optimal for both criteria can be considered as sufficiently large for

applications. For instance, when using a normal weight distribution with standard

deviation of s � 0.59 as well as items with three response categories and a

discrimination of 1, subjects in the lowest 2.5% ability region (according to the

weight distribution) completely solve the task only with probability 9% or less, while
subjects in the highest 2.5% ability region completely solve the task with probability

91% or more. Thus, even for substantial variation in subjects’ abilities, one-point

designs remain comparatively viable.

When focusing on dichotomous responses and thus on the 2PL model, we

provided equations whose unique solutions are the optimal discrimination parameters

in the set of one-point designs when applying symmetric weight distributions.

However, for some important examples, we established numerically that these

discrimination parameters do not lead to Bayes optimal designs. That is, any Bayes
optimal design for the 2PL model with varying threshold and discrimination (if

existent) must have a minimum of two distinct design points at least for the examples

discussed in the present paper.

Despite being mathematically reasonable, our results reveal practical problems when

trying to design items with optimal properties. An item with more than two response

categories, on which subjects score on the first or last categories (nearly) always –
independent of their ability –may be practically impossible to construct. One could only

aim to reduce the probability of intermediate responses to approximate the optimal
design. However, this would contradict the very idea of using ordinal items instead of

dichotomous ones. The obvious solution, to completely remove partial credit from the

items and score only as true or false, might be tempting, but will definitely lead to

information loss – and thus less efficient designs – for complicated items consisting of

multiple tasks. This does not invalidate the GPCM in general, as the lack of a reasonable

s = 0.29 s = 0.3015 s = 0.32

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0
−5.0

−2.5

0.0

2.5

5.0

τ1

τ 2

−1.0

−0.5

0.0

φ−1(τ, ζ*)

Figure 7. Contour of the sensitivity function for w–1 for three response categories for a logistic

weight distribution with varying values of the scale parameter s.
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locally optimal design does not affect other mathematical or psychometric properties of

the model. Further, the Fisher information or other criterion may still be used to

compare items or to choose items with the highest information among those being

available.
Still, it is of great interest to study optimal designs of alternative ordinal models such as

the graded responsemodel (van der Ark, 2001;Walker &Duncan, 1967) or the sequential

model (Tutz, 1990, 2011), which potentially favour items with properties much closer to

real items. If so, one should also evaluate their potential use in large-scale educational

assessment studies such as PISA, which previously applied the GPCM.

For future research, some open questions remain. It is still unclear how the optimal

designs derived here perform for asymmetric weight distributions due to the complexity

of the derivatives and integrals involved. Furthermore, it must be noted that optimal test
designs and optimal sampling designs are not equivalent as there aremultiple threshold as

well as discrimination para-meters per item, but only one ability parameter per person.

Accordingly, derivation of optimal sampling designs for the GPCM still remains an open

topic. Finally, as discussed above, there are other reasonable ordinal models, whose

optimal designs are potentially of great relevance in practice. While locally optimal

designs for the graded response model have been derived in (Schmidt and Schwabe

(2015), Bayes optimal designs for this model as well as optimal designs in general for the

sequential model remain to be investigated.
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Appendix

The indices p and i for persons and items are suppressed for notational convenience.

Proof. (Proposition 1)We abbreviate the normalizing function in the denominator of (1)

as z (= 1/p0) for convenience. For a single item, the response Y 2 {0, . . ., J} is

categorically distributed so that the log-likelihood l equals

lðY ; h; s; aÞ :¼ log f ðY ; h; s; aÞð Þ ¼
XJ
j¼0

1jðY Þ logðpjÞ þ q

¼
XJ
j¼1

1jðY Þ logðpjÞ þ 1�
XJ
j¼1

1jðY Þ
 !

logðp0Þ þ q

¼
XJ
j¼1

1jðY Þ log pj
p0


 �
 �
þ logðp0Þ þ q

¼
XJ
j¼1

1jðY Þ
Xj
s¼1

asðh� ssÞ
 !

� logðzÞ þ q; ð18Þ

where f is the density of Y defined in (1), 1j is the indicator function for Y = j and q is a

constant independent of h. The first derivative of l with respect to h equals

dlðh; s; aÞ
dh

¼
XJ
j¼1

Aj1jðY Þ �
PJ

j¼1 Aj exp
Pj

s¼1 asðh� ssÞ
� �
z

¼
XJ
j¼1

Ajð1jðY Þ � pjÞ:
ð19Þ

Thus, M is equal to the variance of the random variable
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X :¼
XJ
j¼1

AJ1jðY Þ: ð20Þ

Since (1j (Y))
2 = 1j (Y) and 1j (Y) 1k(Y) = 0 for j 6¼ k, as well as Eð1jðY ÞÞ ¼ pj, we have

VarðXÞ ¼EðX2Þ � EðXÞ2 ¼
XJ
j¼1

A2
j pj �

XJ
j¼1

Ajpj

 !2

;

which completes the proof. h

Proof. (Theorem1) The random variableX, defined in (20), is bounded between 0 andAJ.

It is minimal if Y = 0 and maximal if Y = J. According to Popoviciu’s inequality for

variances (Popoviciu, 1965; Peajcariaac & Tong, 1992), Var(X) (and henceM) is maximal

if and only if p0 = pJ = 1/2 and pj = 0 for 0 < j < J. h

Proof. (Proposition 2)

(a) This can easily be checked.

(b) We have

XJ
k¼0

exp
Xk
s¼1

asðh� ~sasðcÞÞ
 !

¼ 1þ
XJ�1

k¼1

exp Akh� a1aJ c
� �þ expðAJhÞ: ð21Þ

Hence, for c ? ∞, we have that p0 = 1/(1 + exp (AJh)), pJ = exp (AJh)/(1 + exp (AJh))
and pj = 0 for all 1 ≤ j < J.

(c) This follows directly from the proof of (b).

(d) For s 2 CJ
a with a satisfying ak = aJ–k+1 (k 2 {1, . . ., J}) we have

exp
XJ�j

s¼1

asð�h� ssÞ
 !

¼ exp �AJ�jh�
XJ�j

s¼1

asss

 !

¼ exp �ðAJ � AjÞh�
Xj
s¼1

asss

 !

¼ expð�AJhÞ exp
Xj
s¼1

asðh� ssÞ
 !

ð22Þ

since AJ = Aj + AJ–j and
PJ�j

s¼1 asss ¼
Pj

s¼1 asss for all j 2 {0, . . ., J}. Again for s 2 CJ
a the

denominator of pJ–j(�h, s, a) can be written as
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XJ
k¼0

exp
Xk
s¼1

asð�h� ssÞ
 !

¼ expð�AJhÞ
XJ
k¼0

exp ðAJ � AkÞh�
Xk
s¼1

asss

 !

¼ expð�AJhÞ
XJ
k¼0

exp AJ�kh�
XJ�k

s¼1

asss

 !

¼ expð�AJhÞ
XJ
k¼0

exp
Xk
s¼1

asðh� ssÞ
 !

:

ð23Þ

Hence, we find that

pJ�jð�h; s; aÞ ¼ expð�AJhÞ
expð�AJhÞ pjðh; s; aÞ ¼ pjðh; s; aÞ: ð24Þ

h

In the following proofs, we will suppress the dependency of M, pj, and Π on h for

notational convenience.Whenever we apply the degenerate locally optimal design s*, we

implicitly reduce the number of categories to two, as in this case only two response
categories have positive probability. This way, the derived results remain valid without

writing down any limits of the form lims!s� , thus simplifying the notation.

Proof. (Lemma 1) For j ≥ i, the derivatives of pj with respect to si and ai equal

dpj
dsi

¼ ai exp
Xj
s¼1

asðh� ssÞ
 ! XJ

k¼i

exp
Xk
s¼1

asðh� ssÞ
 !

� z

 ! !
=z2

¼ aipj
XJ
k¼i

pk � 1

 !
¼ ai pj

XJ
k¼i

pk

 !
� pj

 !
:

ð25Þ

For j < i, the derivatives equal

dpj
dsi

¼ ai exp
Xj
s¼1

asðh� ssÞ
 ! XJ

k¼i

exp
Xk
s¼1

asðh� ssÞ
 ! ! !

=z2

¼ aipj
XJ
k¼i

pk

 !
:

ð26Þ

Thus, we find

XJ
j¼1

dpj
dsi

¼ ai

 XJ
j¼1

pj

 ! XJ
k¼i

pk

 !
�
XJ
j¼i

pj

!
ð27Þ

and hence
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dM

dsi
¼
XJ
j¼1

A2
j

dpj
dsi

� 2
XJ
j¼1

Ajpj

 ! XJ
j¼1

Aj

dpj
dsi

 !

¼ ai

 XJ
j¼1

A2
j pj

 ! XJ
k¼i

pk

 !
�
XJ
j¼i

A2
j pj

� 2
XJ
j¼1

Ajpj

 ! XJ
j¼1

Ajpj

 ! XJ
k¼i

pk

 !
�
XJ
j¼i

Ajpj

 !�
:

ð28Þ

Using Proposition 2(b), (28) evaluated at point s* is equal to

dM

dsi
ðs�; aÞ ¼ aiA

2
J pJp0ðpJ � p0Þ: ð29Þ

Under suitable regularity conditions on Π, differentiation with respect to si and

integration with respect to h may be interchanged, so that we arrive at

dw0

dsi
ðs�; aÞ ¼

Z
dM

dsi
ðs�; aÞMðs�; aÞ�1Pdh ¼ ai

Z
ðpJ � p0ÞPdh; ð30Þ

dw�1

dsi
ðs�; aÞ ¼

Z
dM

dsi
ðs�; aÞMðs�; aÞ�2Pdh ¼ ai

A2
J

Z ðpJ � p0Þ
pJp0

Pdh; ð31Þ

as

Mðs�; aÞ ¼ A2
kpJp0: ð32Þ

By symmetry of Π and pj( �, s*) (in the sense of Proposition 2(d)) we have

Z
p2J p0Pdh ¼

Z
pJp

2
0Pdh; ð33Þ

and hence

dw0

dsi
ðs�; aÞ ¼ dw�1

dsi
ðs�; aÞ ¼ 0

for all i ≤ J due to symmetry. Since wv (v 2 {�1, 0}) is concave (Firth & Hinde, 1997),

s* is a global maximum of the two design criteria within the set of one-point designs

independent of the choice of a. h

Proof. (Lemma 2) Althoughwe only need J = 1 for the proof, we compute the derivatives

of M with respect to a for arbitrary J. For j ≥ i, the derivatives of pj after ai equal
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dpj
dai

¼ �ðh� siÞ exp
Xj
s¼1

asðh� ssÞ
 ! XJ

k¼i

exp
Xk
s¼1

asðh� ssÞ
 !

� z

 ! !
=z2

¼ �ðh� siÞpj
XJ
k¼i

pk � 1

 !
¼ �ðh� siÞ pj

XJ
k¼i

pk

 !
� pj

 !
:

ð34Þ

For j < i, the derivatives equal

dpj
dai

¼ �ðh� siÞ exp
Xj
s¼1

asðh� ssÞ
 ! XJ

k¼i

exp
Xk
s¼1

asðh� ssÞ
 ! ! !

=z2

¼ �ðh� siÞpj
XJ
k¼i

pk

 !
:

ð35Þ

Thus, we find

XJ
j¼1

dpj
dai

¼ �ðh� siÞ
XJ
j¼1

pj

 ! XJ
k¼i

pk

 !
�
XJ
j¼i

pj

 !
; ð36Þ

and hence

dM

dai
¼
XJ
j¼1

2Aj

dAj

dai
pj þ A2

j

dpj
dai


 �
� 2

XJ
j¼1

Ajpj

 ! XJ
j¼1

dAj

dai
pj þ Aj

dpj
dai


 � !

¼ �ðh� siÞ
 XJ

j¼1

A2
j pj

 ! XJ
k¼i

pk

 !
�
XJ
j¼i

A2
j pj

� 2
XJ
j¼1

Ajpj

 ! XJ
j¼1

Ajpj

 ! XJ
k¼i

pk

 !
�
XJ
j¼i

Ajpj

 !!

þ
XJ
j¼i

2Ajpj � 2
XJ
j¼1

Ajpj

 ! XJ
j¼i

pj

 !
:

ð37Þ

Using Proposition 2(b), (37) evaluated at point s* is equal to

dM

dai
ðs�; aÞ ¼ AJpJp0 2� AJðh� s�i ÞðpJ � p0Þ

� �
; ð38Þ

which, for J = 1 (dichotomous 2PL model; AJ ¼ a 2 Rþ), can be written as
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dM

da
ð0; aÞ ¼ ap1p0 2� ahðp1 � p0Þð Þ: ð39Þ

Due to symmetry of p in the sense of Proposition 2(d) and sinceΠ is symmetric, we have

�
Z

hp1ðp1p0ÞxPdh ¼
Z

hp0ðp1p0ÞxPdh ð40Þ

for any x 2 Z. For symmetric Π, the integral
R
p1p0Pdh is monotonically decreasing in

a, whereas

I0ðaÞ :¼
Z

hp1Pvh ð41Þ

is monotonically increasing, which both is immediately evident from the graph of p1 and
p0 changing with a. For w0, we have

dw0

da
ð0; aÞ ¼

Z
dM

da
ð0; aÞMð0; aÞ�1Pdh ¼ 2

a

Z
ð1� ahp1ÞPdh: ð42Þ

Since I0(a) is monotonically increasing in a, aI0(a) is monotonically increasing and

unbounded. Furthermore, lima?0aI0(a) = 0 and hence there exists a unique solution a�0 of

a
Z

hp1Pdh ¼ 1; ð43Þ

which (togetherwith s*) constitutes the optimal one-point design forw0. Forw–1, wehave

dw�1

da
ð0; aÞ ¼

Z
dM

da
ð0; aÞMð0; aÞ�2Pdh ¼ 2

a3

Z ð1� ahp1Þ
p1p0

Pdh: ð44Þ

The integral

I�1ðaÞ :¼
Z ð1� ahp1Þ

p1p0
Pdh ð45Þ

is monotonically decreasing in a for symmetric Π, which again can be inferred from the

graph of p1 and p0 changing with a. Since lima?0I–1(a) = 4 and lima?∞I–1(a) = �∞,

there exists a unique solution a��1 of

a
Z

h
p0

Pdh ¼
Z

1

p1p0
Pdh; ð46Þ

which (together with s*) constitutes the optimal one-point design for w–1. h
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Proof. (Theorem2) For a symmetricweight distribution, the first derivatives of/0 andφ–1
are zero at point s*, which can be seen directly from the first derivatives ofw0 andw–1 in s*.
For i ≥ n, we compute the elements of the Hessian matrix of M as

d2M

dsisn
¼aian

 XJ
j¼1

A2
j pj

 ! XJ
k¼n

pk

 !
�

XJ
j¼n

A2
j pj

 ! ! XJ
k¼i

pk

 !

þ
XJ
j¼1

A2
j pj

 ! XJ
k¼i

pk

 ! XJ
v¼n

pv

 !
�

XJ
k¼i

pk

 ! !

�
XJ
j¼i

A2
j pj

 ! XJ
k¼n

pk

 !
�

XJ
j¼i

A2
j pj

 !

�2
XJ
j¼1

Ajpj

 ! XJ
k¼n

pk

 !
�

XJ
j¼n

Ajpj

 ! ! XJ
j¼1

Ajpj

 ! XJ
k¼i

pk

 !
�

XJ
j¼i

Ajpj

 ! !

�2
XJ
j¼1

Ajpj

 ! XJ
j¼1

Ajpj

 ! XJ
k¼n

pk

 !
�

XJ
j¼n

Ajpj

 ! ! XJ
k¼i

pk

 !

þ
XJ
j¼1

Ajpj

 ! XJ
k¼i

pk

 ! XJ
v¼n

pv

 !
�

XJ
k¼i

pk

 ! !

�
XJ
j¼i

Ajpj

 ! XJ
k¼n

pk

 !
�

XJ
j¼i

Ajpj

 !!!
:

ð47Þ

This holds for i < n as well due to symmetry of the Hessian matrix. Equation (47) can be

slightly simplified, but remains too complicated to determine analytically under what

conditions the Hessian matrix of /v (v 2 {0, �1}) is positive definite for some Bayes

optimal one-point design sΠ for aweight distributionΠof unspecified form. If, however,Π
is symmetric we know from Lemma 1 that s* is the Bayes optimal one-point design and

(47) simplifies considerably to

d2M

dsisn
ðs�; aÞ ¼ aianpJp0A

2
J ð1� 6pJp0Þ ¼ aianMðs�; aÞð1� 6pJp0Þ; ð48Þ

and hence

d2/0

dsisn
ðs�; aÞ ¼

Z
Mðs�; aÞ�1 d2M

dsisn
ðs�; aÞPdh ¼ aian

Z
ð1� 6pJp0ÞPdh: ð49Þ

Within the design space of the threshold vector s, this result is of limited use since the s* is
at the border of the design region and the Hessian matrix is constant. However,

considering that in s* the GPCM reduces to the dichotomous 2PL model, the necessary

condition for s* to be Bayes optimal for v = 0 can be directly inferred from (49) as
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Z
ð1� 6pJp0ÞPdh� 0 ð50Þ

or, equivalently,

Z
pJp0Pdh� 1

6
:

Similarly, when denoting C :¼ ðR Mðs�; aÞ�1PdhÞ�1, we obtain

d2/�1

dsisn
ðs�; aÞ ¼ C

Z
Mðs�; aÞ�2 d2M

dsisn
ðs�; aÞPdh

¼ aianC
Z

ðpJp0J2Þ�1ð1� 6pJp0ÞPdh

¼ aian C

Z
Mðs�; aÞ�1Pdh� C

6

J2

Z
Pdh


 �

¼ aian 1� C
6

J2


 �
:

ð51Þ

Thus, the necessary condition for s* to be Bayes optimal for v = �1 becomes

6�
Z

ðpJp0Þ�1Pdh: ð52Þ
h

Proof. (Theorem 3) This can be proved in the same way as Theorem 2 in Graßhoff et al.

(2012), so we do not spell out the details here. h
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