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Developing meta-analytic methods is an important goal for psychological science. When
there are few studies in particular, commonly used methods have several limitations, most
notably of which is underestimating between-study variability. Although Bayesian methods
are often recommended for small sample situations, their performance has not been thor-
oughly examined in the context of meta-analysis. Here, we characterize and apply weakly-
informative priors for estimating meta-analytic models and demonstrate with extensive sim-
ulations that fully Bayesian methods overcome boundary estimates of exactly zero between-
study variance, better maintain error rates, and have lower frequentist risk according to
Kullback-Leibler divergence. While our results also show that combining evidence with few
studies is non-trivial, we argue that this is an important goal that deserves further consider-
ation in psychology. Further, we suggest that frequentist properties can provide important
information for Bayesian modeling. We conclude with meta-analytic guidelines for applied
researchers that can be implemented with the provided computer code.
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Introduction

An important goal for psychological science is devel-
oping quantitative methods that can combine evidence
from multiple studies (Carlsson, Schimmack, Williams, &
Bürkner, 2017; Scheibehenne, Jamil, & Wagenmakers, 2016;
Schmidt, 1992). When there are few studies in particular,
this allows for synthesizing evidence in the beginning stages
of a research questionwhich can provide important informa-
tion for future inquiry (Van Aert & Van Assen, 2017). How-
ever, even for registered replications, there is often hetero-
geneity due to experimental design, manipulation proper-
ties, and environmental context (e.g., varying cultures or
country of origin) (Klein et al., 2014; O’Donnell et al., 2017).
Because of these potential between-study differences, the
analytical decision is often posited as a choice between a
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fixed-effects (FE) or random-effects (RE) model (Schmidt,
Oh, & Hayes, 2009). The former assumes the effect-size is a
fixed unknown quantity and allows for conditional inference
about the set of k studies (Viechtbauer, 2007), even in the
presence of heterogeneity (Hedges & Vevea, 1998; Schmidt,
2008). In contrast, the RE model answers a distinct question
that allows for unconditional1 inferences about the average
effect in a population of studies, of which the k studies are
assumed to be a random sample (Curran & Hussong, 2009;
Hedges & Vevea, 1998).

In other words, in contrast to common thought (Rice, Hig-
gins, & Lumley, 2017), both the FE and RE models can pro-
vide valid inference in the presence of heterogeneity, but dif-
fer in the questions that they answer (Overton, 1998). How-
ever, when using the RE model to make the arguably richer
unconditional inference, there are several statistical issues
that can arise. For example, there is a large body of work
in medical statistics documenting difficulties in estimating
the between-study variance τ2 (Veroniki et al., 2016). This
has resulted in the development of a number of alternative
estimators, such as DerSimonian and Laird (Dersimonian &
Laird, 1986), Hunter and Smith (Hunter & Schmidt, 2004),
and Sidik and Jonkman (Sidik & Jonkman, 2005). However,
even the most common and well described estimators of τ2

can provide biased estimates under suboptimal conditions

1 By unconditional we refer to inferences that can generalize be-
yond the observed studies.
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(e.g., few studies). For example, Chung, Rabe-Hesketh, and
Choi (2013) showed in a simulation study that a large propor-
tion of the returned values for τ2 were estimated as exactly
zero (i.e., boundary estimates) when the true value was pos-
itive. This was a common finding for cases where the meta-
analysis comprised a limited number of studies (i.e., k = 5 to
10 studies) even when the true value for τ2 was large. This
suggests that, when we observe a zero estimate in practice,
it does not necessarily reflect the absence of between-study
variance but it is possibly a result of an estimation issue.

Importantly, this can influence inference regarding the
summary effect size estimate µ (Rhodes et al., 2016). Since
τ2 is a source of variation, underestimation or a boundary es-
timate results in an inaccurate summary estimate. Namely,
too small variance estimates typically result in liberal es-
timates of µ, as the confidence intervals are too narrow
(Hunter & Schmidt, 2000). That is, even for a random effects
model (Guolo & Varin, 2017), type I error rates and coverage
probabilities for meta-analytic estimates are not necessar-
ily at expected levels (Chung, Rabe-Hesketh, & Choi, 2013;
Hedges & Vevea, 1998; Rhodes et al., 2016)2. With few stud-
ies in particular, 95 % confidence intervals can have cover-
age probabilities in the 80 %’s (Brockwell & Gordon, 2001).

To overcome these challenges, Bayesian methods are of-
ten applied for meta-analysis, particularly for estimating
between-study heterogeneity when the number of primary
studies is small (Friede, Röver, Wandel, & Neuenschwan-
der, 2017; Rhodes et al., 2016). In fact, as summarized in
McNeish (2016), Bayesian methods are often recommended
with small samples sizes in the behavioral sciences. Com-
pared to classical3 approaches, Bayesian methods offer sev-
eral potential advantages: Estimation with Markov chain
Monte Carlo (MCMC) ensures that τ2 is not estimated at
the boundary of the sample space (Gelman et al., 2014). This
occurs because MCMC sampling for variance components
is restricted to positive values and explores the whole (pos-
terior) distribution of the parameter and not just the mode.
This guarantees non-zero variances. In contrast, classical
estimators can estimate negative values, which are then set
to zero because of a lack of alternative options (Kolenikov &
Bollen, 2012; Viechtbauer, 2007)

However, Bayesian meta-analytic approaches remain rel-
atively uncommon in practice and, in simulation work, it
was shown that they tend to have the opposite problem of
the classical estimators: τ2 is often overestimated resulting
in a conservative estimate for the summary effect (Lambert,
Sutton, Burton, Abrams, & Jones, 2005; Rhodes, Turner, &
Higgins, 2015). The approaches adopted in the Bayesian lit-
erature have ranged from approximate (modal estimation)
methods to using informative priors (Chung, Rabe-Hesketh,
& Choi, 2013; Lambert et al., 2005; Rhodes et al., 2016). Im-
portantly, when Bayesian methods have been shown to out-
perform classical methods, informative priors are often de-

rived from subject-specific expertise or directly from previ-
ous studies (McNeish, 2016). Because specific prior infor-
mation is not always available, an important goal is to ex-
plore prior distributions that are not only informative but
also general enough to apply to many situations. This class
of prior is referred to as weakly informative (Gelman, 2006;
Gelman, Simpson, & Betancourt, 2017) and, in the context of
psychological meta-analyses, has not been examined with
fully Bayesian methods.

In the present paper, we aim to bring awareness to
methodological issues for estimating τ2 in meta-analysis.
This topic has received little consideration in the psychologi-
cal literature, but has serious implications for cumulative sci-
ence (Kenny & Judd, 2017). The estimation issues are most
pronounced with few studies, for example, and this can hin-
der ongoing replication efforts that rely on meta-analysis
to synthesize a potentially small number of studies (Garri-
son, Finley, & Schmeichel, 2017; Gronau et al., 2017). To ad-
dress this issue, we first describe the random-effects meta-
analytic model and classical methods used to estimate τ2.
Next, Bayesian methods for meta-analysis are introduced
where we focus on the various proposed prior distributions
for τ2 and describe the use of weakly informative priors. To
make the topic more tangible, we use a simple simulation
and real data to demonstrate that these issues are not just a
statistical curiosity. Then, with extensive numerical exper-
iments we compare frequentist properties between classi-
cal and Bayesian estimators of between-study variance and
the meta-analytic summary estimates. We end by providing
guidelines for fitting random effect meta-analyses in prac-
tice, where we emphasize advantages of Bayesian methods.

Random-Effects Model

Meta-analytic methods are the most common way to syn-
thesize evidence (Borenstein, Hedges, Higgins, & Rothstein,
2009), and are considered to provide the most accurate ef-
fect estimate given the covered literature (Haidich, 2010).
However, empirical studies on the same topic are often het-
erogeneous with respect to sample characteristics and mea-
sures (Higgins & Thompson, 2002). Thus, the quality of in-
ference depends on incorporating between-study variance
into estimating the summary effect. The random-effects
model allows for estimating an average effect from heteroge-
neous studies (Raudenbush, 2009), while also accounting for
between-study variance (τ2) and allowing for generalizable
inferences (Hedges & Vevea, 1998). This can provide nomi-
nal frequentist properties–coverage probabilities and error

2 It should be noted that we do not think type I error is the best
concept to base statistical inference. However, we take
the pragmatic position that most researchers in psychology
currently do not yet share this belief.

3 Weavoid the term frequentist, because all methods and statistics
can be evaluated with respect to frequency properties.
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rates–for the meta-analytic effect µ. Some have suggested
that zero between-study variance is untenable (Brockwell &
Gordon, 2001), and it is more reasonable to always assume
a random effect model that is defined as

yi ∼ N(δi, σ2
i ), (1)

δi ∼ N(µ, τ2),
i ∈ {1, ..., k},

where i indexes the individual study. Here, yi is the observed
effect size, δi is the latent true effect size, respectively, and
σ2

i is the variance from the ith study. The study-specific
effects are assumed to share a common distribution with
mean µ and variance τ2. Accordingly, the random-effects
model has two sources of variation σ2

i and τ2, each of which
contributes to the confidence interval for µ. A common ap-
proach uses a (1 − α)100% Wald-type interval as

µ̂ ± z1−α/2

( ∑
i

(σ2
i + τ

2)−1
)− 1

2

, (2)

where σ2
i is generally obtained from the individual studies

and are assumed to be known (i.e. measured without er-
ror), while τ2 is a model parameter that has to be estimated
(Chung, Rabe-Hesketh, & Choi, 2013). From Equation (2), it
is clear that inferences about µ depend critically upon esti-
mating τ2 accurately.

Classical Estimators

TheDerSimonian and Laird (DL) method is the default es-
timator for τ2 in commonly used software such as, for exam-
ple, Comprehensive Meta-Analysis (Borenstein, Hedges, Hig-
gins, & Rothstein, 2005; Dersimonian & Laird, 1986). How-
ever, Veroniki et al. (2016) recently reviewed 16 alternative
methods for estimating τ2 and provided a qualitative recom-
mendation to use restricted maximum likelihood (REML) in-
stead of DL, but noted further simulations were needed. In
the present paper, due to popularity and current recommen-
dations, we consider the DL and REML estimators for τ2.

DerSimonian and Laird

The DL method is a non-iterative approach that is based
on Cochran’s Q-statistic (Dersimonian & Laird, 1986). The
Q statistics provides a measure of discrepancy between
subject-specific effects and the pooled estimate from a fixed
effect (µ̂FE) analysis

Q =
k∑

i=1

(yi − µ̂FE)2

σ2
i

. (3)

Here, the sum of the ith squared difference between the
study-specific effect yk and µ̂FE are divided by the study vari-
ance σ2

k . The DL estimator of τ2 is then obtained with

τ2
DL = max

{
0,

Q − (k − 1)∑
wi,FE −

∑
w2

i,FE∑
wi,FE

}
, (4)

where ∑
wi,FE denotes the sum of the study weights wi,FE =

1
σ2

i
from a fixed-effect meta-analysis. In simulations, the DL

estimator was shown to have adequate frequentist proper-
ties when k is large and the values for τ2 are very small
(Sidik & Jonkman, 2007). With increasing values of τ2, how-
ever, the DL estimator can show substantial downward bias
which then affects the coverage properties of µ (Equation:
5) (Chung, Rabe-Hesketh, & Choi, 2013).

Restricted Maximum Likelihood

In contrast to the DL method, REML is an iterative ap-
proach that is not specific to meta-analysis and is commonly
used in multilevel models (Bates, Mächler, Bolker, &Walker,
2014), of which a random-effects meta-analysis is a spe-
cial case. Indeed, REML is often preferred over maximum
likelihood (ML), because random effect variances show less
downward bias (Raudenbush & Bryk, 2002). The REML es-
timator (τ2

REML) is computed with a two-step approach, in
which the first obtains maximum likelihood estimates τ2

ML
and µ2

ML. These then serve as initial estimates for the follow-
ing

τ2
REML = max

{
0,

∑
wi,RE(

[
δi − µ̂REML

]
) − σ2

i∑
wi,RE

+
1∑

wi,RE

}
,

(5)
with the random effect study weights as 1

δi+τ
2
REML

. Impor-
tantly, this two-step procedure ensures the initial estimate
is greater than zero, and that each step produces a non-
negative value (Veroniki et al., 2016). A number of stud-
ies have shown that the REML method shows less down-
ward bias in the estimate of between study variance than the
DL estimator (Chung, Rabe-Hesketh, & Choi, 2013; Sidik &
Jonkman, 2007), although both estimators produce similar
proportions of boundary estimates (Chung, Rabe-Hesketh,
& Choi, 2013).

Bayesian Meta-Analysis

Bayesian methods provide an alternative to classical ap-
proaches (Higgins & Spiegelhalter, 2002; Sutton, Abrams, &
Health, 2001). They are often recommended for estimating
parameters on the boundary of the sample space and when
samples are small (Baldwin et al., 2005; McNeish, 2016). For
example, Bayesian methods ensure non-boundary estimates
(τ2 > 0; Chung, Rabe-Hesketh, Dorie, Gelman, & Liu, 2013)
and can thus guard against liberal estimates for the sum-
mary effect (Chung, Rabe-Hesketh, & Choi, 2013), as well as
estimating the full posterior distribution of τ2. A Bayesian
model begins with specifying a joint probability distribution
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(Gelman et al., 2014). For a summary statistic yi (i ∈ {1, ..., k})
generated from a normal distribution with a study-specific
mean δi and variance σ2

i , Bayes theorem states that

p(θ|y) ∝ p(y|θ)p(θ) =
k∏

i=1

p(yi|δi, σ2
i )p(δi|µ, τ2)p(µ, τ2), (6)

with the parameters θ = (δ1, ..., δk, µ, τ2): µ is the population
average, δi is the study-specific effect, and τ2 is the between
study variance. In meta-analytic notation, the Bayesian
model follows

yi ∼ N(δi, σ2
i ) (7)

δi ∼ N(µ, τ2)

(µ, τ2) ∼ p(.), τ2 > 0.

While this closely resembles a classical model, there are no-
table differences, such as the definition of prior distributions
p(.) for µ and τ2, in addition to restricting τ2 to positive val-
ues.

Prior Distributions

The prior distribution is a controversial concept in
Bayesian statistics that has been source of many debates
(Berger, 2003; Gelman, Jakulin, Pittau, & Su, 2008). Objec-
tions are often raised that incorporating prior information
into a statistical model is subjective (Goldstein, 2006). As
such, certain priors are often assumed so that Bayesian and
likelihood only methods produce similar estimates (Berger,
2006). Indeed, when assuming an improper uniform prior
distribution (a prior which puts equal weight on all possi-
ble parameter values), the likelihood is proportional to the
posterior distribution. However, for estimating variances
in particular, uniform prior distributions are not generally
recommended as they give too much prior weight to unrea-
sonably large values (Gelman, 2006). In other words, the
notion of an non-informative prior is a misnomer, as it can
be very informative (Gelman et al., 2017). For example, data
in psychological meta-analyses are generally on a standard-
ized scale (e.g., Cohen’s d, Fisher’s z, etc.). Assuming the
d scale for yi, this suggests that τ2 > 0.25 and µ > 1.0
are unlikely to occur. This information is useful and can be
formally incorporated into a Bayesian meta-analytic model.
To be clear, we are not suggesting to include unverifiable
subjectivity into an analysis. Rather, just like the assumed
likelihood (e.g., Gaussian) or other assumptions (e.g., homo-
geneity of variances), the prior can be viewed as a verifiable
component of the model and is open to criticism (Gelman,
2013). We can thus examine how a proposed prior distribu-
tion influences performance measures such as bias and the
variance of our estimators.

0.0 0.5 1.0 1.5 2.0

Between−study Standard Deviation

Prior Distribution
HC(0, 0.30)
IG(1, 0.15)
Student−t(10, 0, 0.20)

Figure 1. Probability densities for three types of prior distri-
butions, the half-Cauchy (HC), the inverse-gamma (IG), and
the Student-t+. The heavy tails of HC allows for the possibility
of large values, which provides a general prior distribution for
many applications.

In clinically oriented fields, substantial effort has been
invested into deriving an informed prior distribution
for between-study variances from empirical studies (Pul-
lenayegum, 2011; Rhodes et al., 2015; Turner, Davey, Clarke,
Thompson, & Higgins, 2012). Recently, van Erp, Verha-
gen, Grasman, andWagenmakers (2013) extracted estimates
of between-study heterogeneity from psychological litera-
ture. This consisted in obtaining estimates of τ from meta-
analyses ranging from 1990 – 2013. Based on this distribu-
tion of estimates, van Erp et al. (2013) recommended the fol-
lowing prior distribution as a default for psychology

τ ∼ inverse-gamma(α = 1, β = 0.15), (8)

where α and β denote the shape and scale parameters of the
inverse-gamma (IG) distribution. However, the recommen-
dation of van Erp et al. (2013) and Gronau et al. (2017) did
not include verification (e.g. with simulations) of perfor-
mance. This is unfortunate, as this prior may be problem-
atic for meta-analysis in particular (Polson & Scott, 2012): It
was shown to have undesirable characteristics when on the
boundary of the sample space, as the parameter estimates
can be especially sensitive to the values for α and β (As-
parouhov & Muthén, 2010; Gelman, 2006). Due to its conju-
gate properties, the inverse-gamma prior is generally used
for computational convenience that enables efficient Gibbs
samplings (Gelman, 2006; Gelman & Dyk, 2007), which is
probably the reason, why this prior family was chosen by
van Erp et al. (2013) in the first place (with parameter values
adjusted according to the obtained effect sizes). The Gibbs
sampler has largely been superseded by more efficient meth-
ods such as the Hamiltonian Monte Carlo (HMC) NO-U-
Turn Sampler (used in this present paper) (Betancourt, 2017;
Hoffman & Gelman, 2014). This allows not only for more
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flexibility in prior distributions, but also more stable pa-
rameter estimates and faster computation—especially in the
case of multilevel problems with high correlations among
estimated parameters (Monnahan, Thorson, & Branch, 2017;
Zhang & Sutton, 2014).

Moreover, a prior does not necessarily have to reflect his-
torical or empirical data, but can be chosen based on de-
sirable mathematical properties. Here the goal is a weakly
informative prior (Gelman, 2006; Gelman et al., 2017): a
middle ground between a fully informative and “uninforma-
tive” (flat) prior distribution. For variance components, the
folded-t family provides such a trade-off.

τ ∼ Student − t+(xo, s, ν), (9)

where xo is the location, s is the scale, and ν is the degrees
of freedom parameter that controls the tail-heaviness. In
the vast majority of cases, we should set x0 = 0 so that the
folded-t distribution becomes the half-t distribution, which
can take on all positive values only. As ν → ∞ the distribu-
tion approaches normality (i.e. a folded normal distribution).
This mathematical property provides the ability to control
the tail-regions and this allows for specifying a prior that is
both informative and generic. As a special case, for example,
the half-Cauchy (HC) distribution (xo = 0, ν = 1) coincides
with the Student-t+ distribution with one degree of freedom.
This distribution has very heavy tail regions which allows
for the possibility of large values (Figure 1). This prior in par-
ticular has been recommend for variance components (Gel-
man, 2006) and was also shown to perform well in terms of
frequentist risk (Polson & Scott, 2012). This provides several
benefits for applied researchers conducting meta-analyses.
For example, this prior can reflect that the distribution of τ2

can only be positive, is often right skewed (van Erp et al.,
2013), and that smaller values are more plausible than large
values (Rhodes et al., 2015). However, the heavy-tailedness
ensures that these assumptions are not too strong and can
apply to many situations (i.e., a middle-ground).

While there are examples in applied settings (Bürkner,
Williams, Simmons, & Woolley, 2017; Williams & Bürkner,
2017), the performance of weakly informative priors–
specifically folded-t distributions–has not been character-
ized in the context of meta-analysis. However, finding an
optimal estimator for τ2 is important for several reasons.
In psychology, meta-analyses are often performed with few
studies and inference (if relying on interval exclusion of 0)
can largely depend on the estimator used (Gronau et al.,
2017; Scheibehenne et al., 2016). Second, developing meth-
ods for use in the beginning stages of a research program
(when there are few studies) can improve cumulative sci-
ence. We thus examine the recommended inverse-gamma
compared to weakly informative priors, in addition to the
previously described classical estimators (DL and REML).
For clarity, we first demonstrate how boundary issues can

influence estimation and inference with two motivating ex-
amples.

Boundary Issues

Motivating Example: Simulation

This section provides an example to illustrate the issue
of estimating parameters at their boundary. We also now
refer to between-study standard deviation τ instead of the
variance τ2, as this corresponds to the parameterizations of
the fitted Bayesian models. A meta-analysis scenario was
simulated (with 500 simulation trials) with generic values
for µ = 0 and τ = 0.15. We assumed the sampling distri-
bution for σ2

i is known and follows a uniform distribution
σ2

i ∼ U(0.05, 0.35). We then computed the sampling dis-
tribution for τ̂ with the classical estimators (DL and REML)
and Bayesian methods using two prior distributions: (1) the
recommended inverse-gamma distribution (Equation 8) and
(2) a half-Cauchy distribution where xo = 0, s = 0.3, and
ν = 1 (Equation 9). This value for s was based on both prior
information about reasonable values for τ and knowledge
of the Cauchy distribution (Figure 2). Specifically, this prior
assumes there is a 50 % prior probability that values of τwill
be less than 0.3. To demonstrate how estimating between-
study heterogeneity influences µ, we also computed the dis-
tribution of p-values which should be uniform for this exam-
ple (µ = 0). For comparative purposes, we approximated a
two-sided Bayesian p-value from the posterior distribution
for µ as

p-value = min
{

p(µ > 0|y,M), p(µ < 0|y,M)
}
× 2, (10)

where the minimum directional posterior probability, con-
ditional on the data y and fitted modelM, is multiplied by 2.
This approximation is justified by the relationship between
posterior probabilities and one-tailed p-values (Greenland &
Poole, 2013), although it requires very specific assumptions
(Gelman, 2013).

The results are presented in Figure 2, where panels A
show the sampling distributions and panels B the distribu-
tion of p-values. The boundary issue is clearly seen with the
DL and REML estimator. For example, the sampling distri-
bution of τ is bimodal with considerable density at zero. In-
deed, for both estimators, a large proportion of the returned
values were exactly zero (DL = 31 % and REML = 25%). In
contrast, the Bayesian models produced a unimodal sam-
pling distribution in which the returned values show con-
sistent right-skew. The boundary issue is not just of statisti-
cal interest. Figure 2 shows the distribution of p−values for
the summary effect µ, which should be uniform under the
null hypothesis of no effect. The classical estimators showed
an increase in small p-values such that error rates exceeded
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Bayes:  HC Bayes:  IG Classical:  DL Classical:  REML
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Sampling Distribution of τ^ (τ = 0.15)

Bayes:  HC Bayes:  IG Classical:  DL Classical:  REML

0 0.25 0.50 0.75 10 0.25 0.50 0.75 10 0.25 0.50 0.75 10 0.25 0.50 0.75 1

Distribution of p−values (µ = 0)

A

B

Figure 2. A: Sampling distribution of τ. The classical methods (DL = DerSimonian and Laird; REML = Restricted Maxi-
mum Likelihood) are caught on boundary of sample space, as indicated with the bimodality. The Bayesian models (HC =
Half-Cauchy; IG = Inverse-gamma) provided all non-zero estimates. B: Distribution of p-values under the null hypothesis
(µ = 0), which should be uniform. Underestimation of τ is resulting in to many small p-values (< 0.05) for the classical
methods.

nominal levels. This occurs because, when τ is estimated as
zero, we effectively fit a fixed effects model. Notably, the
Bayesian p-value shows the opposite pattern. There are not
enough p-values below 0.05. Since 1 - α is coverage for 0,
this suggests the true value was covered more often than
expected.

Motivating Example: Real Data

We analyzed two data sets that can be found in the R
package metaBMA (Heck, Gronau, & Wagenmakers, 2017).
The first reports the effects of social norms on towel reuse
in hotels (k = 7), whereas the second is from a recent meta-
analysis on power pose experiments (k = 6). We estimated
random-effects models described in Equations (1) and (7) .
The individual effects yi for both data sets were analyzed
on Cohen’s d scale. As seen in Table 1, boundary estimates
of zero are present for both the DL and REML estimators.
For the towel reuse analysis, DL estimated τ as 0.07 and the
REML estimate was on the boundary of the sample space
(τ = 0). For the power-pose data, both estimators returned
values of zero which would lead to the inference of zero
variability between studies. In contrast, the Bayesian mod-
els always estimated positive values for τ. There were dif-
ferences between the posteriors, however, with the half-
Cauchy prior consistently producing both smaller point es-
timates and wider probability intervals than the inverse-
gamma prior. The Bayesian intervals for the summary effect
µ were always wider than those obtained with the DL and

REML estimators. For the towel reuse analysis, the Bayesian
intervals for µ included zero, whereas the frequentist inter-
vals excluded zero. That is, there was inconsistent evidence
for what is traditionally used to argue for the presence of an
effect.

Simulation Study

The above motivating examples clearly demonstrated is-
sues that can arise in meta-analysis, and how the estimates
can differ more than one might expect. We now perform
extensive numerical experiments to fully characterize per-
formance between methods. Rather than assuming known
sampling distributions for σ2

i (i ∈ {1, ..., k}), we instead gen-
erated individual studies with the following steps:

1. Generate k effect sizes δi from N(µ, τ), where k ∈ (3,
5, 10, 20, and 40), µ ∈ (0 and 0.4) and τ ∈ (0, 0.10, 0.20,
0.30, 0.50, and 0.60).

2. Randomly select k sample sizes {N | l ≤ N ≤ u} with
lower l and upper bounds u as 10–22, 22–78, and 78–
122.

3. Generate k studies consisting of two groups of N size
as y1 ∼ N(δi, 1) and y2 ∼ N(0, 1).

4. For the ith study ∈ (1, …, k), compute the summary
statistics yi and σ2

i .5. For each set of k studies, estimate the meta-analytic
model following Equations (1) and (7).

The sample sizes and effect size (d = 0.4) corresponded to
sets of studies with average power of 20%, 50%, and 80%.
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Table 1
Meta-analytic models fitted to psychological data, in which 3 of 4 of the classical estimates for τ are zero. For the Towel Reuse
data in particular, the Bayesian (HC = Half-Cauchy; IG = Inverse-gamma) and classical models (DL = DerSimonian and Laird;
REML = Restricted Maximum Likelihood) would lead to opposing inferences for the summary effect, assuming the decision rule is
interval exclusion of zero. CI denotes confidence intervals for the classical methods and highest density intervals for the Bayesian
methods.

Towel Reuse Power Pose
Model Cohen’s d 95% CI τ 95% CI Cohen’s d 95% CI τ 95% CI
Bayesian
HC(0, 0.3) 0.11 [-0.05, 0.22] 0.07 [0.00, 0.24] 0.22 [0.07, 0.36] 0.06 [0.00, 0.21]
IG(1, 0.15) 0.10 [-0.04, 0.23] 0.09 [0.02, 0.23] 0.22 [0.07, 0.37] 0.08 [0.02, 0.20]
Classical
DL 0.11 [0.01, 0.22] 0.07 [0.00, 0.69] 0.22 [0.10, 0.34] 0.00 [0.00, 0.10]
REML 0.12 [0.04, 0.21] 0.00 [0.00, 0.69] 0.22 [0.10, 0.34] 0.00 [0.00, 0.10]

This value was chosen because it corresponds closely to the
median observed effect size in psychology.

For the classical estimators, we used Wald-type intervals
for the summary effect µ, from which coverage and type I
error rates were computed. We fitted four Bayesian models
that differed in the prior distributions for τ. The first two
used HC with xo = 0 and two values for the scale s (0.3,
and 0.5). We also used another half-t prior but with lighter
tails (ν = 10, xo = 0, s = 0.2). For this prior in particular,
we expected poor performance at large values of τ. The fi-
nal Bayesian model was fitted with the inverse-gamma de-
scribed in Equation (8). To improve sampling efficiency, we
used a diffuse prior on µ ∼ N(0, 1) which presumes a 95%
prior probability the value is within -2 and 2 on d scale. Each
model consisted of two-chains of 1,000 post-warm-up poste-
rior samples each (after excluding 1,000 iteration of warm-
up per chain). The posterior distributions were summarized
with medians and 95% highest density intervals. Before be-
ginning the simulation, we determined convergence by ex-
amining model diagnostics (e.g., R̂, effective sample size, vi-
sual inspection) for several different conditions.

All computations were done in R and included 1,000
simulation trials for each condition. We used the pack-
age metafor for the classical models (Viechtbauer, 2010),
whereas the Bayesian meta-analytic models were fitted with
the probabilistic programming language Stan (Stan Devel-
opment Team, 2015) that employs a modern Markov chain
Monte Carlo algorithm (Hamiltonian Monte Carlo with
the No-U-Turn Sampler). The highest density intervals
were obtained withHDInterval (Meredith & Kruschke, 2016)
(https://osf.io/9n4zp/)

Results

Between-study Variation

Boundary Estimates. For each simulation condition,
we computed the proportion of estimated values τ̂ that were

exactly zero as

P =
1
n

n∑
i=1

{
0 if τ̂ > 0
1 if τ̂ = 0

}
, (11)

where n is the number of simulation trials. The results are
presented in Figure 3 (panel A). Here we see the Bayesian
models estimated all values as positive and thus obtained no
boundary estimates. Of course, in case of τ = 0, this is not
an ideal result, because the fitted models suggest existent
between-study variation. However, it has to be noted that,
for τ = 0, REML and DL both estimated many positive val-
ues for all conditions, as well. The largest proportion of posi-
tive estimates was obtained with k of 40. For positive values
of τ (> 0), the classical models showed clear boundary issues
which coincides with the motivating example based on sim-
ulation (Figure 2). While this issue was most pronounced
with the smaller values for k, boundary estimates of zero
were observed for all conditions, but with declining propor-
tions for large values of τ. Moreover, when the primary stud-
ies consisted of small sample sizes (Small N: average power
of 20 % to detect d = 0.4), boundary estimates persisted with
the largest value for k. In fact, with 40 studies included in
themeta-analyses and themedian observed value for τ (0.20)
reported in van Erp et al. (2013), DL estimated 20 % of the
values as zero, whereas REML provided a slightly smaller
proportion of boundary estimates.

Loss Functions. We approached evaluating the com-
peting models as a decision problem. That is, given a set
of estimators, one must decide which to use in practice but
also understand the associated risk inherent to all estima-
tion problems. We thus draw upon decision theory and use
loss functions for assessing the frequentist (i.e., averaged
across the sampling distribution) risk associated with each
estimate. With the parameter spaceΘ consisting of true val-
ues for θ, we considered two loss functions, the first of which
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Figure 3. A: Boundary estimates (proportion τ = 0). B: Mean absolute error. C: Root mean squared error. DL = DerSimonian
and Laird; REML = Restricted Maximum Likelihood; HC = Half-Cauchy; St = Student-t; IG = Inverse-gamma. The total studies
included in each meta-analysis is denoted with k. The sample sizes in the primary studies correspond to average power of 20 %
(Small N), 50 % (Medium N), and 80 % (Large N) to detect Cohens’s d of 0.4.
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Figure 4. A: Type I error rates (µ = 0). B: Mean absolute error. C: Root mean squared error. DL = DerSimonian and Laird; REML
= Restricted Maximum Likelihood; HC = Half-Cauchy; St = Student-t; IG = Inverse-gamma. The total studies included in each
meta-analysis is denoted with k. The sample sizes in the primary studies correspond to average power of 20 % (Small N), 50 %
(Medium N), and 80 % (Large N) to detect Cohens’s d of 0.4.
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Figure 5. A: Coverage probabilities (µ = 0.4). B: Mean absolute error. C: Root mean squared error. DL = DerSimonian and Laird;
REML = Restricted Maximum Likelihood; HC = Half-Cauchy; St = Student-t; IG = Inverse-gamma. The total studies included in
each meta-analysis is denoted with k. The sample sizes in the primary studies correspond to average power of 20 % (Small N), 50
% (Medium N), and 80 % (Large N) to detect Cohens’s d of 0.4.
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Figure 6. Kullback–Leibler Divergence (lower is closer to the true meta-analytic distribution) A: True null hypothesis (µ = 0).
B: False null hypothesis (µ = 0.4). DL = DerSimonian and Laird; REML = Restricted Maximum Likelihood; HC = Half-Cauchy;
St = Student-t; IG = Inverse-gamma. The total studies included in each meta-analysis is denoted with k. The sample sizes in the
primary studies correspond to average power of 20 % (Small N), 50 % (Medium N), and 80 % (Large N) to detect Cohens’s d of 0.4.
Error bars represent the standard deviation.

is root mean squared error (RMSE) that is defined as

RMSE =

√√
1
n

n∑
i=1

(θ̂ − θ)2, θ ∈ Θ, (12)

where the risk is averaged across the n simulation trials.
This loss function was selected because it is most commonly
used to evaluate estimators and predictions in many con-
texts. However, it has been noted that RMSE is sensitive to
outliers (due considering the squared difference) and may
not accurately reflect the true risk associated with an esti-

mator (Berger, 2013). Therefore, we also computed mean
absolute error (MAE) that is defined as

MAE = 1
n

n∑
i=1

|θ̂ − θ|, θ ∈ Θ. (13)

The results for the loss functions related to the estimation
of τ are presented in Figure 3 (panels B and C). When τ was
zero, the classical methods for estimating τ had lower risk,
except for RMSE with k of three. For positive values of τ,
however, the Bayesian methods consistently had lower risk
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when the number of studies in the meta-analyses were 3 and
5. This was the case for both RMSE and MAE. Interestingly,
the errors were related to the sample sizes in the primary
studies. That is, when the original studies had 80 % power
to detect d of 0.40, the risk was consistently lower than for
underpowered studies. Furthermore, both RMSE and MAE
increased with larger values of τ, particularly when k was
small. In other words, when primary studies weremore vari-
able, there was greater risk associated with the estimates of
τ. With k = 3 and τ = 0.60 in particular, RMSE indicated
that the estimates had substantial variability. Importantly,
for all models the risk diminished with larger values for k
and the models became similar to one another.

While the different priors were very similar, there were
some notable differences. For example, with smaller values
for τ, the Student-t prior often had the lowest risk, whereas
higher risk was observed for larger values. As shown in Fig-
ure 1, this prior has light tails and a small scale, which in
this case shrunk larger values towards zero and resulted in
the distinct risk function. We also noted that the HC prior
often had superior performance than IG for smaller values,
whereas the opposite pattern was observed for larger values
of τ.

Population Average

Type 1 Error Rates. Type I error rates were computed
as the proportion of simulation trials in which the confi-
dence or highest density intervals of µ excluded zero. In
other words, we evaluated coverage probabilities for µ = 0.
The results are presented in Figure 4 (panel A), and reflect
what was implied by the motivating examples (Figure 2).
That is, the distribution of p-values showed opposing pat-
terns between the classical and Bayesian models: the clas-
sical method had too many small p-values, whereas the
Bayesian methods did not “have enough” small p-values to
maintain the expected error rate (α = 0.05). As shown in
Figure 4, this resulted in substantial differences in terms of
error rates. For the small k values (3 and 5), for example, the
error rates for the classical methods approached 0.20, which
was much larger than the error rates for the Bayesian mod-
els. Moreover, error rates were associated with the sample
sizes in the primary studies. Also, as k increased all mod-
els eventually converged to the expected error rate of 0.05,
irrespective of between-study variability.

All of the prior distributions lead again to very similar
results, but there were still some notable differences to con-
sider. The Student-t+ prior, for example, had the highest
error rates of all models when τ was large. This was not
surprising, because we expected the thin tails (Figure 1) to
shrink larger values for τ which then produced overly con-
fident (too narrow) probability densities. There were slight
difference betweenHC andIG, in that the latter had higher
error for larger values of τ. This highlights that the heavy

tails of the half-Cauchy distribution are useful across a range
of situations. When between-study variance was absent
(τ = 0), the classical methods were close to nominal levels
(α = 0.05), whereas the Bayesian methods almost always
covered the population value. This suggests that uncer-
tainty was overstated (the intervals were too wide), which
may not be desirable when simply using null-hypothesis
significance-testing for inference.

Coverage Probabilities. Herewe assumed the null hy-
pothesis was false, and examined coverage probabilities for
a non-zero population value (d = 0.4). We expected similar
performance as the type I error rates. Indeed, the results
were so similar that we do not reiterate them here (note
that 1 minus the type I error rate is coverage for the value
0). Nonetheless, the results are informative with respect to
the prior we chose for the population value: µ ∼ N(0, 1),
which we considered as diffuse (at least for typical Cohen’s
d values). The results presented in Figure 5 confirmed that
this level of informativeness does not have much (if at all)
influence on the estimates compared to when the true value
was zero (Figure 4).

Loss Functions. We considered the same loss func-
tions for estimating µ than we did for estimating τ2. The
results are presented in Figures 4 (µ = 0) and 5 (µ = 0.4).
Here the differences between classical and Bayesian meth-
ods were not as pronounced as for estimating τ. For the
smaller k values (3, 5, and 10), the Bayesian estimates had
lower risk than the classical estimators for larger values of
between-study variation. Furthermore, as τ increased, the
differences between methods in terms of risk became larger.

These results also highlight general issues in estimating
meta-analytic models with few studies. The estimates of the
population averages had substantial variability according to
RMSE, and the risk became even greater with more variabil-
ity between-studies. Of course, with more studies included
in the meta-analyses, both RMSE and MAE decreased to
what may be considered more tolerable risk. Nonetheless,
even for estimating the population average µ, these results
suggest that evaluating the corresponding risk function can
provide valuable information.

Kullback–Leibler Divergence

The previous loss functions (RMSE and MAE) considered
τ and µ separately. However, for a given model, both val-
ues are estimated at the same time. We thus considered
Kullback-Leibler (KL) divergence–entropy loss–which mea-
sures divergence between probability distributions over the
same variable (Kullback & Leibler, 1951; McElreath, 2016).
We computed the divergence between the estimated meta-
analytic distribution

p = N(µ̂, τ̂), (14)
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and the true meta-analytic distribution

q = N(µ, τ). (15)

Here, p and q represent the corresponding densities of the
distributions. When comparing continuous distributions,
KL divergence follows

KL(p(x)||q(x)) =
∫ ∞

−∞
p(x) ln p(x)

q(x)
dx (16)

where KL(p||q) denotes divergence from q to p. We then
took the average KL-divergence across the simulation trials,
where lower values indicate less discrepancy from the true
meta-analytic distribution.

The results are presented in Figure 6. There were clear
differences, in that the Bayesian methods consistently pro-
vided a better approximation to the true meta-analytic dis-
tribution than the classical methods. The degree of discrep-
ancy was surprising, so we investigated what was respon-
sible for the observed differences. We found that the di-
vergence was larger and more variable due to boundary
estimates or estimates very close to zero. Indeed, the ob-
served pattern was very similar to that presented in Figure
6 (panel A). The Bayesian models had very similar perfor-
mance across all conditions, such that for positive values (τ
> 0) the risk was consistent and generally lower than the
classical methods. Importantly, for the largest k value and
sample sizes in the primary studies (Large N), the classi-
cal methods eventually achieved similar performance as the
Bayesian models.

Discussion

In the present paper, we compared several classical and
Bayesian meta-analytic random effects models with regard
to their frequentist properties. Models mainly differed in
the way the between study variance τ2 was estimated: We
used two classical estimators (REML and DL) and three dif-
ferent priors in the Bayesian models. Overall, results indi-
cate better performance of the Bayesian models both with
respect to the estimation of the meta-analytic effect µ and
the between study variance τ2. Possibly most striking were
the differences in the latter parameter, which was mainly
the result of Bayesian models not producing any boundary
estimates (τ2 = 0), while classical methods suffered heav-
ily from this problem especially in case of very few studies.
Importantly, the results demonstrated that estimating τ2 is
not only relevant for its own purpose, but also influences
estimation of the summary effect µ and the corresponding
inferences.

It is also clear that summarizing evidence with few stud-
ies is a difficult task. However, as indicated by the motivat-
ing examples (Figure 2), this is often done in psychology and
it is thus important to chose a method that minimizes risk.

In this regard, classical methods often provided less than
nominal coverage of the summary effect µ, thus overstating
the certainty in the estimates. In contrast, Bayesian meth-
ods were more (sometimes too) conservative, but often had
smaller risk for the quadratic and absolute loss functions.
With respect to Kullback–Leibler divergence that consid-
ered µ and τ simultaneously, the Bayesianmodels had far su-
perior performance (Figure 6 ). We should note that neither
of the methods performed particularly well in case of small
number of studies and large between-study heterogeneity,
which is not uncommon psychological meta-analyses (van
Erp et al., 2013). These results therefore suggest that, as a
field, we might have for too long relied upon very few stud-
ies to make strong claims, without appreciating the risk as-
sociated with such inferences.

Weakly-Informative Priors

Within the Bayesian approach, we demonstrated the
usefulness of weakly-informative priors (as compared to
“non-informative” flat priors) (Gelman, 2006; Polson & Scott,
2012). Such weakly-informative priors can be derived with-
out much specific subject-matter-knowledge, but just by un-
derstanding the metric of the study effects and properties of
probability distributions. For instance, in psychology, typi-
cal effect sizes such as Cohen’s d and Pearson’s correlation
r are well understood by the vast majority of researchers.
This allows for inferring an expected range for the sum-
mary effect. Based on this knowledge, specifying associated
weakly-informative priors is not a very complicated task (R-
code provided in the Appendix). Through both our case
studies and extensive simulations, we demonstrated that re-
searchers do not need to be worried about making their anal-
ysis overly ’subjective’ (and thus less credible) by adding
weakly-informative priors. In fact, such priors are generally
advised to guard against overfitting by restricting estimates
to plausible values (McElreath, 2016). Notably, this view of
prior distributions is analogous to penalized maximum like-
lihood (Cole, Chu, & Greenland, 2014), so similar goals can
be achieved with classical methods (e.g., LASSO), although
not for variance components (to our knowledge) and with-
out parameter uncertainty (Park & Casella, 2008).

The applied weakly-informative half-Cauchy prior and
the informed inverse-Gamma prior led to very similar pos-
terior estimates, despite being somewhat different (Figure
1). This similarity in performance is important, because
it demonstrates that informative priors do not need to be
based on empirical data to achieve improved performance.
In contrast, the more narrow half-t-prior led to an underes-
timation of τ2 in case of high between study heterogeneity.
This is of course not surprising, as this prior puts not enough
weight on larger values of τ2, but it nicely demonstrates that
using priors with small tails can lead to an underestimation
of parameters. Thus, when specifying appropriate weakly-



14 WILLIAMS, RAST & BÜRKNER

informative priors, one has to balance between penalizing
(putting few prior weight on) large and unrealistic parame-
ter values, while still allowing larger values to be possible if
the data suggests they are reasonable (Gelman et al., 2017).

Frequentist Properties of Bayesian Models

Bayesian methods are often promoted in stark contrast
to classical methods (Kruschke, 2013). Indeed, some au-
thors explicitly state that inferential goals differ between
Bayesian and frequentist approaches. We agree, but a dis-
tinction must be made between investigating frequentist
properties of our models and making frequentist inferences.
Examining properties under repeated use has a long tradi-
tion (Rubin, 1984) and is the dominant approach to Bayesian
statistics (Berger, 2006). In simulation, we know the truth
and random sampling allows for investigating contexts un-
der which a proposed method has suboptimal performance
(Gelman, 2011). For example, our results demonstrated that
the posterior probability density of the summary effect was
influenced by between-study variation. We view examining
our models’ expected performance as extremely useful for
evaluating statistical models and Bayesian evidential quan-
tities (Rubin, 1984). However, hypothetical data frequen-
cies should inform rather than determine statistical practice
(Greenland, 2017), such as guiding the selection of a method
based on risk minimization.

Further, there are other concepts such as type S (sign)
and M (magnitude) errors (Gelman & Carlin, 2014; Gelman
& Tuerlinckx, 2000), which are arguably more appropriate
to describe errors in statistical inference than type I and
II errors (Chen et al., 2017; Gelman, Hill, & Yajima, 2012).
For the present paper, we still went with the latter as the
most common and well understood approach to not only al-
low for comparisons with other simulation studies, but also
to reach a wider audience. Finally, all statistics have fre-
quency properties (Hoijtink, van Kooten, & Hulsker, 2016),
whereas not all statistics have probabilities for evaluation.
That is, it is not possible to assess classical methods in terms
of Bayesian assumptions (e.g., parameters as random vari-
ables) (Andradóttir & Bier, 2000) such as posterior quantile
(Cook, Gelman, & Rubin, 2006) and prior predictive calibra-
tion (Garc & Chen, 2005) as well as Bayesian risk (Berger,
2013). Bayesian methods are more general; for example,
measures of central tendency for frequency evaluation mini-
mize a specific Bayesian loss function (mean = squared error;
median = absolute error; mode = 0 - 1 loss function) across
the posterior probability distribution, whereas only a point
estimate is provided by classical estimators and thus require
repeated sampling to assess risk (Robert, 2007).

Limitations

There are several potential limitations to consider. First,
we investigated only random effects but no fixed effects

models in our simulations, although the latter constituted
the true model for some simulation conditions. This was
done because (a) between study heterogeneity is the norm
rather than the exception in psychology (van Erp et al., 2013)
and we thus focused on the model class with far more prac-
tical relevance; (b) random effects models are a generaliza-
tion of fixed effects models and will thus reduce to fixed ef-
fects model if enough evidence is provided (Schmidt et al.,
2009); and (c) the random effects model allows for uncondi-
tional inferences, in which inferences are not restricted to
the observed studies (Hedges & Vevea, 1998). Second, we
did not consider statistical tests of the “significance” of τ2

to choose between fixed and random effects models. Al-
though common in practice, these tests have undesirable sta-
tistical properties (Hardy & Thompson, 1998) and are from
our perspective not advised to determine the most appropri-
ate meta-analytic model (Viechtbauer, 2010). Further, the
desired inference should guide which model to use and not
a null hypothesis significance test (Hedges & Vevea, 1998).
Third, there are many reasonable (families of) prior distri-
butions to consider. Here we focused only on two families
of which we choose three particular priors. They serve as
illustrative examples and are not meant to be representa-
tive for the whole set of options in this regard. Further, the
scale of the applied priors is not necessarily reasonable for
effects sizes other than Cohen’s d, and this should be investi-
gated going forward. Fourth, we did not consider a so-called
uninformative prior (e.g. uniform), which may be viewed
as a limitation. The decision was made because, in several
studies, it was shown that these priors should not be used
for variance components (Depaoli & Clifton, 2015; Polson
& Scott, 2012), in addition to being unjustifiable based on
previous information about τ in psychology (van Erp et al.,
2013).

Guidelines for Applied Researchers

Although uncommon in psychology, researchers can
view choosing a statistical model as an explicit decision. The
figures in this work represent risk functions and amodel can
then be selected based on risk minimization of a particular
loss function (Berger, 2013). Given strong theoretical jus-
tification (McElreath, 2016; Shlens, 2014), we would find it
difficult to chose a loss function other than KL-divergence,
but this is of course a question specific consideration that
can be informed by Figure 6. In this light, if we restrict our
choice to these simulation conditions and methods, there is
a clear justification for using Bayesian meta-analytic meth-
ods withweakly-informative priors that does not depend on
critiquing p-values or arguing that Bayesian methods are in-
herently superior.

We also encourage researchers to not rely exclusively on
statistical estimates, but also to think about whether they
make sense for their particular research question, especially
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in the context of relevant information. Notions such as un-
biasedness depend on fitting the true model (e.g., as in these
simulations), in which bias is assessed from a user defined
population. Without consideration of relevant information,
this can result in misleading inferences and may conflict
with common observations (Clarke, 2009; Harris & Robin-
son, 2007). Researchers can consider whether zero variance
(e.g., a boundary estimate) makes sense, or is a realistic ex-
pectation, for example, rather than rely exclusively on a
statistical model to make this determination. Indeed, some
have argued that zero between-study variance is untenable
(Brockwell & Gordon, 2001).

For Bayesian meta-analysis, we would avoid adopting
the 0 - 1 loss function implicit to null hypothesis signifi-
cance testing (Robert, 2007). Of course, as the present re-
sults demonstrate, researchers can also make frequentist in-
ferences from Bayesian models. However, the estimated
posterior distributions can be interpreted probabilistically
as plausible values for the true effect (Greenland & Poole,
2013; Harrell & Shih, 2001), thus avoiding categorizing con-
tinuous evidence into significant vs. non-significant (Am-
rhein & Greenland, 2017; Mcshane, Gal, Gelman, Robert, &
Tackett, 2017). This can be accomplished with highest den-
sity intervals, in addition to posterior probabilities in the
predicted direction (e.g., p(µ > 0|y,M)). Importantly, while
these probabilities are conditional on the observed data and
all other model assumptions (e.g., the prior distribution),
they overcome conditioning on the truth being zero. Fur-
thermore, sensitivity analyses should be conducted to see
how evidence changes by varying reasonable prior distribu-
tions, especially for the between-study variance (Carlsson et
al., 2017). This can be done to not only demonstrate robust-
ness, but also as an attempt to provide more cautious conclu-
sions. Finally, since inference can be viewed as what would
follow from the assumptions, all must be clearly articulated
and justified (Depaoli & van de Schoot, 2017). This does not
only apply to the prior distribution, but also to other assump-
tions such as the likelihood (e.g., a normal distribution for
observed effect sizes).

We have provided annotated R-code in the Appendix to
fit Bayesian meta-analytic models with the R package brms
(Bürkner, 2017), which is based on Stan (Stan Development
Team, 2015) and thus uses the same engine as the Bayesian
models in our simulations.

Appendix
R-code

1) install Stan: windows install and mac or linux install
2) install brms: brms installation
3) install metaBMA metaBMA installation
4) install metafor metafor installation
library(brms)
library(metaBMA)
library(metafor) # to compare code needed to fit the Bayesian model

data(power_pose)
# Set prior
# Cauchy on tau; normal on mu ("Intercept")
prior_c <- c(set_prior("normal(0, 1)", class = "Intercept"),

set_prior("cauchy(0, 0.3)", class = "sd"))

# fit model
mod_bayes <- brm(effectSize|se(SE) ~ 1 + (1|study), prior = prior_c,

data = power_pose)
summary(mod_bayes)

# fit classical model
mod_clscal <- rma(effectSize, sei = SE, data = power_pose)
summary(mod_clscal)

We refer readers to Depaoli and van de Schoot (2017) for a
checklist of items to ensure the Bayesian model makes sense
(e.g., chain convergence) and can be reproduced.
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