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Ordinal predictors are commonly used in regression models. They are often incorrectly

treated as either nominal or metric, thus under- or overestimating the information

contained. Such practices may lead to worse inference and predictions compared to

methods which are specifically designed for this purpose.We propose a newmethod for

modelling ordinal predictors that applies in situations in which it is reasonable to assume

their effects to bemonotonic. The parameterization of suchmonotonic effects is realized

in terms of a scale parameter b representing the direction and size of the effect and a

simplex parameter 1 modelling the normalized differences between categories. This

ensures that predictions increase or decrease monotonically, while changes between

adjacent categories may vary across categories. This formulation generalizes to

interaction terms as well as multilevel structures. Monotonic effects may be applied

not only to ordinal predictors, but also to other discrete variables for which a monotonic

relationship is plausible. In simulation studies we show that the model is well calibrated

and, if there is monotonicity present, exhibits predictive performance similar to or even

better than other approaches designed to handle ordinal predictors. Using Stan, we

developed a Bayesian estimation method for monotonic effects which allows us to

incorporate prior information and to check the assumption of monotonicity. We have

implemented this method in the R package brms, so that fitting monotonic effects in a fully

Bayesian framework is now straightforward.

1. Introduction

Over the last few decades, a substantial amount of statistical research has been devoted to

handling ordinal response variables in regression models, starting with the seminal paper

of McCullagh (1980; for an overview, see also Agresti, 2010; B€urkner & Vuorre, 2019; Liu

& Agresti, 2005; Tutz, 2011). In psychology, for instance, this kind of data is omnipresent

in the formof Likert scale items,which are often treated as continuous out of convenience
without ever testing this assumption (Liddell & Kruschke, 2017). With researchers

realizing the importance of correctly modelling ordinal responses, the related models –
often simply called ordinalmodels – are now increasingly applied in scientific practice. In

the statistical language R (R Core Team, 2018), for instance, several packages are available

to fit ordinal models, such as ordinal (Christensen, 2018), VGAM (Yee, Stoklosa, &

Huggins, 2015), and brms (B€urkner, 2017, 2018), to name the perhapsmost general ones.
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Ordinal predictors seem to have received less attention in statistical research. In R, for

instance, the standard treatment of ordinal predictors is still to compute orthogonal

polynomials on their integer representations to model linear, quadratic, cubic, etc. terms

of the predictors (Chambers & Hastie, 1992). We believe this approach to be suboptimal
for various reasons, most notably because it assumes the ordinal categories to be

equidistant, which is clearly an oversimplification, and because it yields parameter

estimates we would consider hard to interpret.

The literature on ordinal predictors may be divided into three partially interconnected

lines of research: the first is based on penalized regression/spline approaches specifically

designed for ordinal predictors (Alvarez, Bailey, & Katz, 2011; Gertheiss, 2014; Gertheiss

& Oehrlein, 2011; Gertheiss & Tutz, 2009; Gu, 2013); the second are categorical types of

isotonic regression (Barlow, Bremner, Brunk, & Bartholomew, 1972; Robertson, Wright,
& Dykstra, 1988); and the third are ordinal latent variable models (J€oreskog, 1994;
Winship & Mare, 1984). We begin by explaining the penalized regression approach. The

main idea of the method proposed by Gertheiss and Tutz (2009) is to penalize large

differences between adjacent categories. This is done by imposing a penalty on the

squared differences between the means of adjacent categories, that is, on

ðgðxÞ � gðx� 1ÞÞ2, where x denotes values of the ordinal predictor and gðxÞ denotes
thepredictedmean at category x. Thepenalty reflects the expectation that, if a predictor is

ordinal, changes may happen smoothly and larger differences should thus be unlikely.
This approach allows for a principled and flexible handling of ordinal predictors in a way

closely related to regression splines (Gertheiss & Tutz, 2009; Gu, 2013). It also has a

Bayesian interpretation in terms of priors on the categorymeans (Gertheiss &Tutz, 2009).

In the original version of this approach (used in Gertheiss, 2014; Gertheiss & Oehrlein,

2011; Gertheiss & Tutz, 2009), the direction of the changes remains unspecified and may

vary across the range of the ordinal variable.

In many practical settings, we do often expect the changes between adjacent

categories to bemonotonic, that is, consistently negative or positive across the full range
of the ordinal variable (e.g., Barlow et al, 1972). For instance, subjectivewell-beingmay be

monotonically related to measures of physical or psychological health, which we would

typically assess via Likert scales and hence in an ordinal manner. If we have theoretical

reasons to expect a monotonic relationship, wemaywant to incorporate this assumption

into our model to improve accuracy of the parameter estimates and predictions, but of

course also to test whether this assumption was justified in the first place. Even when

monotonicity is justified, the size of the changesmay still vary across ordinal categories by

a substantial amount as ordinality does not contain information about the distance
between categories.

The major line of statistical research which concerns itself with regression models

subject to order constraints (i.e., monotonicity) is known as isotonic regression1 (Barlow

et al., 1972; Robertson et al., 1988). Depending on the research question and nature of the

variable onwhichwewant to impose amonotonicity constraint, different techniquesmay

be more favourable. If the variable is essentially continuous, such as time intervals or the

dose of a drug, we can use parametric functions which are known to be monotonic (e.g.,

the log or logistic function in simple cases) or use semi-parametric approaches such as
monotonic splines (Gu, 2013; He & Shi, 1998; Helwig, 2017; Kelly & Rice, 1990; Lee,

1 The term “isotonic” is mostly used synonymously with “monotonic” in the mathematical-statistical literature.
We prefer the latter as we believe it to be understandable by a wider audience outside of mathematics.
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1996; Leitenstorfer &Tutz, 2006; Pya&Wood, 2015; Ramsay, 1988;Wang& Small, 2015).

If the variable under study is categorical, the monotonicity assumption reduces to an

ordering constraint on the predicted category means. Using frequentist approaches, the

latter case has been studied extensively in Barlow et al. (1972) and Robertson et al. (1988;
see also Best & Chakravarti, 1990; Dykstra & Robertson, 1982; Lee, 1981; Rufibach, 2010;

Wu, Woodroofe, & Mentz, 2001). Bayesian approaches to order constraint category

means and testing of these constraints have been developed as well (e.g., Danaher, Roy,

Chen, Mumford, & Schisterman, 2012; Klugkist &Mulder, 2008; Mulder & Raftery, 2019).

For the purpose of studying ordinal predictors, we are primarily interested in the

categorical type of isotonic regression although continuous types may provide useful

predictions also for categorical predictors if they have a sufficient number of categories

(e.g., seeHelwig, 2017). Building on the penalized regression ofGertheiss andTutz (2009)
and Gu (2013), Helwig (2017) proposed to impose order constraints on the category

means so that the implied relationship between response and ordinal predictor is

monotonic. Combining the two approaches can lead to improved predictions compared

to penalized or isotonic regression alone, provided that the true relationship ismonotonic

(Helwig, 2017).

The above-described approaches to modelling ordinal predictors, especially those

which induce some regularization, have good theoretical and practical propertieswhen it

comes to predictive accuracy (e.g., Gertheiss & Tutz, 2009; Gu, 2013; Helwig, 2017).
Furthermore, the parameter estimates are easy to interpret as they simply consist of the

(regularized) response means for each ordinal predictor category. As such, they are

conceptually closer to how categorical predictors, rather than continuous predictors, are

handled in regression models. In contrast, in the present paper, we introduce a new

monotonicity imposing parameterization for ordinal predictor terms which behaves

much like a continuous predictor term. However, we do not make the assumption of

equidistance of the predictor values, which is clearly unwarranted for ordinal variables.

The proposed parameterization is designed to fit naturally into generalized linear
modelling frameworks and their extensions. As such, it can be seamlessly combined with

other types of predictor terms to model parameters of arbitrary response distributions,

andmay even be usedwithin interactions ormultilevel structures. Tomake this approach

easy to remember, we simply call it monotonic effects, by which, of course, we do not

wish to imply that this is the only possible way to impose monotonicity. As explained in

detail in the next section, the estimated parameters have an intuitivemeaning and are thus

easy to interpret and communicate. In contrast to existing approaches, wework in a fully

Bayesian framework for model specification and estimation, which increases the
complexity of models in which monotonic effects can be incorporated and also allows

us to specify prior distributions on the corresponding parameters. The latter may be used

not only to incorporate additional subject-matter knowledge into the model that would

otherwise remain unused, but also to regularize the model’s predictions and make it

robust against overfitting even in the absence of such specific knowledge.

The method proposed in the present paper, as well as other approaches discussed

above, model ordinal predictors as manifest variables, that is, do not explicitly consider

potentialmeasurement error in these predictors. In contrast, in latent variablemodels, it is
common to model ordinal variables as indicators of an underlying latent continuous

variable, from which the observed ordinal variable originated via categorization (e.g.,

Finney&DiStefano, 2006; J€oreskog, 1994; Lei, 2009;Winship&Mare, 1984). Suchmodels

then estimate the relationship between this latent variable and the (manifest or latent)

response variable. Thisway, latent ordinalmodels are able to takemeasurement error into
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account and provide estimates of how the relationship between variables would have

been if we had been able to directly observe the underlying true continuous construct.

Importantly, this also implies a monotonic relationship between the manifest ordinal

predictor and the response variable. A latent approach may be a reasonable modelling
choice if there is substantial measurement error and/or we are interested in the

(hypothetical) latent relationships between variables. In contrast, a manifest approach

maybe a reasonable choice if the variables are measured very precisely or simply known

by design (e.g., discrete points in time in a longitudinal study), if the main focus is on

making predictions for new response values, and/or if the observable manifest

relationships between variables are simply those which are of interest. It is beyond the

scope of this paper to make a general point about manifest versus latent approaches for

ordinal variables. However, wewish to point out that our proposedmethod treats ordinal
predictors as manifest variables, as is the case for a lot of other prominent approaches

(e.g., Gertheiss & Tutz, 2009; Gu, 2013; Klugkist & Mulder, 2008).

The structure of this paper is as follows. In Section 2 we will introduce monotonic

effects as well as their mathematical foundation in detail. We continue by explaining a

software implementation of monotonic effects in the R package brms (B€urkner, 2017,
2018) in Section 3, which supports a wide and growing range of Bayesian regression

models. In Section 4 we perform a simulation study to investigate parameter recovery of

monotonic effects and compare their performance to other approaches proposed in the
literature. In Section 5 we discuss a case study dealing with measures of chronic

widespread pain (Cieza et al., 2004; Gertheiss, Hogger, Oberhauser, & Tutz, 2011), in

which we make extensive use of monotonic effects. We conclude with a discussion in

Section 6. Mathematical proofs concerning the properties of monotonic effects are

presented in Appendix A and further simulation results are presented in Appendix B.

2. Monotonic effects

Wewill developmonotonic effects in the context of a distributional regression framework

(B€urkner, 2018) in which the response y is distributed according to distributionDwith P

distributional parameters w1; . . .;wP. We write

yn �Dðw1n;w2n; . . .;wPnÞ
to stress the dependence on the nth observation. The domain of each parameter wp

depends on the distributionD. For instance, the mean parameter of a normal distribution
might take on all real values,while the probability parameter of a binomial distribution can

only take on values in the interval [0, 1]. Eachwp (1� p�P; with individual elementswpn)

may be predicted by a vector of predictor variablesX ¼ ðx1; . . .;xKÞ, where each variable

xk is itself a vector of length N. To regress wp on X, we formulate wp in terms of a

generalized linearmodel (GLM). To reduce the burden of notation, wewill drop the index

p in the following as the GLM is formulated in the same way for all distributional

parameters. We write w ¼ gðgÞ, where g is the response function (i.e., inverse link

function) and g 2 R
N is a linear predictor term. Its nth element, gn, may be written as.

gn ¼
XJ
j¼0

bjfjðXnÞ: ð1Þ

In equation (1), Xn denotes the vector ðx1n; . . .; xKnÞ of predictor values of the nth

observation, the fj are (possibly nonlinear) transformations of the predictor variables and
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the bj are the regression coefficients. Typically, f0 = 1 is a constant function to include an

intercept into the model. The notation above is a slightly non-standard formulation of a

GLM (in factwe could speak of a generalized additivemodel in this context; Hastie, 2017).

We use this notation in order to naturally generalize the framework to monotonic effects
as explained in what follows.

A predictor variable which wewant to model as monotonic must have discrete values

in an ordered set, which are coded as integers. The integer value may represent, for

instance, count data, discrete points in time, or categories of an ordinal variable. Since the

latter is possibly the most relevant use case in psychology and related disciplines, in the

following, we will concentrate on this example of an application for a monotonic

predictor. We will refer to the values of such a variable as predictor categories. As

opposed to the values of a continuous predictor, predictor categories should not be
assumed equidistant with respect to their effect on the response variable. Instead, the

distance between adjacent predictor categories is estimated from the data and may vary

across categories.

Suppose we have an ordinal predictor x which we want to model as having a

monotonic effect. Ordinal variables contain no information about the distance between

adjacent categories. Thus, without loss of generality, we can code the categories of x so

that the lowest possible category is 0,2 and the largest isD. Sincewe start counting at 0,D is

equal to the number of differences between two adjacent categories and also equal to the
total number of categories minus 1. For any value x 2 f0; . . .;Dg that x can take on, we

define.

mo: f0; . . .;Dg ! ½0;D�; x ! moðx; fÞ ¼ D
Xx
i¼1

fi ð2Þ

and call it themonotonic transform. For notational convenience,we set
P0

i¼1 fi ¼ 0. The

vector f is defined as a simplex, which means that is it satisfies fi 2 ½0; 1� andPD
i¼1 fi ¼ 1.

By definition, the elements of f represent the normalized distances between consecutive

predictor categories. As we can identify any set of D + 1 ordinal categories with

f0; . . .;Dg, the monotonic transform is invariant under ordinality preserving transforma-
tions of x.

The additive increment of xn (i.e., the nth value of x) to gn can be written as

bmoðxn; fÞ ¼ bD
Xxn
i¼1

fi; ð3Þ

where b can take on any real value. In the above parameterization, b represents the size

and the sign of the effect similar to an ordinary regression coefficient. That is, we do not

have to specify the sign of the monotonic effect a priori but let the model find out itself if
the effect is positive or negative, just as we do for coefficients in ordinary regression

models. To explicitly bringmonotonic effects into our GLM framework from equation (1)

we can set bj = b and fj ¼ moð�; fÞ. However, monotonic effects cannot be included in

standardGLMs because the transformations fj are not fully known a priori but contain the

2Note that this convention differs of the one customarily used in statistical software, where indices of vectors,
matrices, etc. usually start at 1. However, starting at 0 simplifies the notation of monotonic effects and so we
adopt this approach in the present paper.
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parameter f, which needs to be estimated alongwith all othermodel parameters. As such,

monotonic effects have some similarities with regression splines, a fact we will return to

later on.

If the monotonic effect is used in a linear model, b can be interpreted as the
expected average difference between two adjacent categories of x, while fi describes
the expected difference between the categories i and i – 1 in the form of a proportion

of the overall difference between lowest and highest categories. Thus, this parame-

terization has an intuitive interpretation while guaranteeing the monotonicity of the

effect (see Section A.1 in Appendix A). As visualized in Figure 1, we can understand

monotonic effects as implying a piecewise linear curve of which all components have

the same sign. In a simple linear model, monotonic effects are equivalent to categorical

isotonic regression (see Section A.2). A conceptual advantage of monotonic effects over
isotonic regression – or other approaches working directly on the category means – is

that the former outputs a single regression coefficient, b, which can directly be post-

processed further. An example where this is useful are path models, in which

regression coefficients are multiplied along the paths of interest, and monotonic effects

can naturally be incorporated in such models.

Interaction terms including a monotonic predictor x can be canonically written as.

bmoðxn; fÞf ðXnÞ: ð4Þ

where f(�) is an arbitrary function on the set of predictor variables X, and may of course

include further monotonic effects. In more complex predictor terms, monotonic effects

ofxmay also appearmultiple times. As such, onemodelling choice to bemade is whether

different simplex parameters related to x should be the same or allowed to have different

values. For example, a linear predictor term consisting of an intercept as well as the main

effects and two-way interaction between a monotonic predictor x and a continuous (or

coded nominal) predictor z could be formulated as

b D

bD ζ1

bD ζ 2

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3
x

y

Figure 1. Visualization of amonotonic effect withD + 1 = 4 predictor categories. Parameters were

set to b = 100/3 and f = (.6, .3, .1).
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gn ¼ b0 þ b1zn þ b2moðxn; f2Þ þ b3znmoðxn; f3Þ; ð5Þ

where f2 and f3 are two simplex parameters related to x. If f2 and f3 are different, xmay

not necessarily be conditionallymonotonic for all values of z (see SectionA.4 for a counter-
example). Rather the monotonicity being modelled depends on the chosen parameter-

ization. For instance, if the predictor z is dummy-coded as 0 and 1, representing the two

categories of a dichotomous variable, the formulation above models the effect of x being
monotonic for category 0 aswell as for the change between category 1 and 0. Conversely,

when using cell mean coding rather than dummy coding for z, the model assumes a

differentmonotonic effect ofx for both categories of z. In the latter case,x is conditionally

monotonic on z. If we fix all simplex parameters corresponding to the same monotonic

variable x to the same value, conditional monotonicity is achieved in general (see

Section A.3).

Proposition 1. Let g be an arbitrary linear predictor term containing the monotonic

predictorxwith the corresponding simplex parameter fbeing the sameacross all terms

including x. Then g is monotonic in x conditionally on all possible combinations of all

other predictor variables.

While fixing all simplex parameters associated with x to the same vector guarantees

conditional monotonicity, it may be too restrictive for many common situations. For

instance, if one wanted to model different monotonic effects for two groups, it would
imply the shape (f) of the predictions being the same across groups with just their

overall effect scale (b) being different. As explained in Section 2.2, in brms we make

use of both parameterizations (varying and constant f) at different places in the

package.

2.1. Monotonic effects in a Bayesian framework

The present paper describes monotonic effects as embedded in a fully Bayesian
framework. We consider every statistical model a Bayesian model if it quantifies the

uncertainty in all observed and unobserved variables (conventionally denoted as data and

parameters, respectively) by means of probabilities. This is often expressed in terms of

Bayes’ theorem, which states that the posterior distribution pðhÞ of the model parameters

h given the data y can be expressed in terms of the product of the likelihood pðyjhÞ and the
prior distribution pðhÞ as well as a normalizing constant p(y):

pðhjyÞ ¼ pðyjhÞpðhÞ
pðyÞ : ð6Þ

A thorough introduction to Bayesian statistics is outside the scope of the present

paper. Instead, we refer to well-established textbooks such as McElreath (2016),

Kruschke (2014), and Gelman et al. (2013).

With respect to monotonic effects, a fully Bayesian framework has two main

implications. First, such a framework allows us to incorporatemonotonic effects in a large

class of regression models without the need to develop any model-specific estimators.

Second, it implies that we can think of prior distributions for b and f. Such prior
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distributions enable us to incorporate information, which does not come directly from

data in terms of the likelihood contribution, such as expert knowledge or findings from

previous studies.

Priors for b can be derived based on the a priori expectation regarding the average

difference between adjacent categories. Any family of prior distributions typically applied

to regression coefficients can be applied to b, as well. As a weakly informative prior for b,

we can understand any location-scale distribution (such as a normal of Student t

distribution) centred around zero and with a scale parameter large enough to allow for

large but plausible average differences, while penalizing implausibly large differences.

This scale will necessarily depend on the scale of the response distribution, the range of

the monotonic predictor and the chosen link function (Gelman, Simpson, & Betancourt,

2017). Alternatively, one may use an improper flat prior that treats all real values as being
equally likely a priori, in the hope that the data alone are sufficient to identify b.

Importantly, when setting up a prior on b, we do not need to take into account the

individual differences between adjacent categories since the latter are fully handled by the

simplex parameter f.

Setting a prior on the simplex parameter f requires a different approach. A natural

choice for a prior on simplex parameters is the Dirichlet distribution, a multivariate

generalization of the beta distribution (Frigyik, Kapila, & Gupta, 2010). It is non-zero

for all valid simplexes (i.e., for f with fi 2 ð0; 1Þ and PD
i¼1 fi ¼ 1) and zero otherwise.

The Dirichlet prior has a single parameter vector a of the same length as f. Its density is

defined as

f ðfjaÞ ¼ 1

BðaÞ
YD
i¼1

fai�1
i ; ð7Þ

where BðaÞ is a normalizing constant (Balakrishnan, 2014). As the a priori expectation of

fi is given bywi ¼ EðfiÞ ¼ ai=a0, with a0 ¼
PD

i¼1 ai, higher values of ai in comparison to

the sum over a imply higher a priori values of fi. Moreover, the higher the sum over a, the

higher the certainty in each of the proportions wi.

In the absence of any problem-specific information, a reasonable default prior on f

would surely be one that assumed all differences between adjacent categories to be the

same on average while being considerably uncertain about this expectation. Such a

prior would imply, on average, a linear trend but with enough uncertainty to allow for

all other possible monotonic trends as well. The Dirichlet prior with a constant a = 1

puts equal probability on all valid simplexes and can thus be understood as the

multivariate generalization of the uniform prior on simplexes. Since we have wi = 1/D,

this prior centres f around a linear trend with large uncertainty and thus appears to be

a good default prior in the absence of any problem-specific information.
If the prior on b is centred around zero and the prior of f is centred around a

linear trend, the implied joint prior of the monotonic effect is centred around zero,

with potentially substantial uncertainty around it, depending how uncertain the priors

on b and f are. That is, the data has to provide enough evidence for a non-zero effect

in order to overcome the prior. The stronger the prior in favour of a zero effect, the

more evidence we need from the data in order to be convinced of a non-zero effect.

This property actually enables shrinkage priors for regression coefficient (e.g.,

Carvalho, Polson, & Scott, 2009; Piironen & Vehtari, 2017) to be applied to
monotonic effects.
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2.2. Regularizing larger changes between categories

In a Bayesian framework, larger differences between adjacent categories can naturally

be penalized (i.e., made less likely a priori) by means of priors on b and f.

Importantly, when we speak of penalizing larger differences, we do not mean making
the overall functional form smoother. Since monotonic effects are piecewise linear,

priors on b or f will not make them look smoother (unless the effect turns out the be

exactly linear across all predictor categories). This is an important difference from

other approaches such as monotonic regression splines and should be taken into

account when interpreting the influence of priors on the parameter estimates

obtained.

If we expect the total effect b to be small, we can use a zero-centred prior on b with

comparatively small tails. For instance, if we expect b to be between �10 and 10 with
probability 95% as well as higher probabilities for values closer to zero, we can use a

Normal(0, 5) prior. The logic behind this choice is straightforward as the normal

distribution has approximately 95% probability between �2 and 2 standard deviations

around its mean.

When it comes to the shape of the monotonic effect, we have to take a closer look at

the prior on f. As discussed above, a constant vector a of the Dirichlet prior on f implies a

linear trend in expectation. In otherwords, for constant a, the priormeans of all changes fi
between adjacent categories are the same. The higher the sum over a, the higher the
certainty in that expectation. Thus, if we expect a linear trend with some certainty, we

assign all elements of a to the same value a. To get an intuition for what is a reasonable

value for a, wemay use the standard deviation of the elements fi, which can be computed

as (see Balakrishnan, 2014).

SDðfiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wið1�wiÞ
a0 þ 1

s
; ð8Þ

where wi ¼ ai=a0 is the expectation of the ith component. Although the standard

deviation is an imperfect measure of variability for the Dirichlet distribution as the latter is

not symmetric in general, we still believe the former to be helpful in better understanding

the implications of one’s chosen priors. For the default of a = 1 and a total of D + 1 = 5

categories, we get a rather large standard deviation of SDðfiÞ = 0.19. If we set, for

example, a = 5, we get SDðfiÞ = 0.09 and thus much higher certainty in changes of equal

size.
Of course, the process of increasing a on average works equally well even if we do

not expect all changes to be the same a priori. For instance, if D = 4 and we expect a

three times larger change between the first two categories than between all the other

categories with some certainty, we may set a = (9, 3, 3, 3). As a result, we get w1 = 1/2

and otherwise wi = 1/6. As standard deviations, we get SDðfiÞ = 0.11 and SDðfiÞ = 0.09

otherwise.

Alternatively, and perhaps favourably, we can directly plot the marginals of the

Dirichlet distribution. These marginal priors are known to be beta distributions with
shape parameters s1 ¼ ai and s2 ¼ a0 � ai (Balakrishnan, 2014). For a = (9, 3, 3, 3), the

marginal distributions of f are shown in Figure 2. All of the above approaches to better

understand the Dirichlet prior have in common that they ignore the dependence

between elements of f. More precisely, elements of f are always negatively correlated
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as an increase in one element needs to be reflected in a decrease in the other elements

to satisfy the sum-to-one constraint (Balakrishnan, 2014):

Corðfi; fjÞ ¼ � wiwjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wið1�wiÞwjð1�wjÞ

p : ð9Þ

A possible solution would be to plot the multivariate density of the Dirichlet prior, but

this will becomemore difficult for higher-dimensional f (i.e., for variables with more than
three categories) and so we do not illustrate this approach in the present paper.

3. Implementation in brms

The brms package (B€urkner, 2017, 2018) provides an interface to fit Bayesian generalized
(non)linear (multilevel) regression models using Stan (Carpenter et al., 2017; Stan

Development Team, 2019),which is a C++package for performing full Bayesian inference

(see also http://mc-stan.org/). It supports a wide range of distributions, allowing users to

fit (among others) linear, count data, survival, response times, ordinal, zero-inflated, and

even self-defined mixture models all in a distributional multilevel context.

In brms, monotonic effects are fully integrated into the formula syntax, which builds

on and extends standard R formula syntax as well as themultilevel formula syntax initially

created for the lme4 package (Bates, M€achler, Bolker, & Walker, 2015). Monotonic
predictors can be used like any other predictor variable and, with respect to the formula

syntax, behave like a numeric predictor. Suppose the response variabley is predicted by a

monotonic variable x and a non-monotonic variable z (i.e., a continuous or categorical

variable). Then the corresponding model formula is

Y~mo(x)+z

Modelling both main effects and interaction of x and z can be achieved by

Y~mo(x)*z
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Figure 2. Densities of marginal priors of f1 and f2 for a= (9, 3, 3, 3). Themarginal priors of f3 and f4
are in this case identical to that of f2.
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Depending on whether z is a continuous or categorical variable, this will imply a

different predictor term,which is fully determined by and thus consistentwith the basic R

formula syntax. Ifz is monotonic as well, thenz is simply replaced by mo(z). Note that
for models including interactions with monotonic variables, brms will use different

simplex parameters for different terms of the same monotonic variable (e.g., for the main

effect of x and the interaction of x and z). This results is much greater modelling

flexibility as explained in the former section. The variable which should be modelled as

monotonic may either be integer-valued or an ordered factor. In the latter case, the

ordered factorwill be transformed to an integer variablewith the lowest factor level being

identified with zero as described above.

An especially well-developed feature of brms is its multilevel formula syntax allowing

us to model, for instance, hierarchically nested data structures such as multiple
observations per person in a longitudinal study. Suppose we wanted to fit a monotonic

effect per person in a multilevel model. Then we could specify this as follows:

Y ~ mo(x) + (mo(x) | person)

The mo(x) term outside the brackets denotes the average monotonic effect across

persons, while the (mo(x)| person) term indicates that the difference between the

individualmonotonic effects per person and the average effect should bemodelled aswell

(for more details on the brms formula syntax see B€urkner, 2018). For this parameteri-

zation to make sense in combination with monotonic effects, we treat the shape (i.e., the

simplex parameter f) as constant across persons and only vary the size and direction of the

effect (i.e., b) as varying across persons. This restricts the flexibility of the model but

results inmuchmore stable estimates and fewer convergence problems in particular if the
number of observations per person (or more generally, per level of the grouping factor) is

small.

4. Simulations

To verify the correctness of our implementation of monotonic effects and to compare

them to other approaches for ordinal predictors, we performed a simulation study. All

simulations were done in R (R Core Team, 2018) via the RStudio interface (RStudio Team,

2018). For data preparation and plotting we used packages from the tidyverse (Wickham,

2017) in particular dipl (Wickham, Franc�ois, Henry, & M€uller, 2019) and ggplot2

(Wickham, 2016).

4.1. Parameter recovery

Before applying a statistical model in practice, we should first make sure that it is able

to recover its own parameters (e.g., Cook, Gelman, & Rubin, 2006). This means that if

data are simulated from the model under consideration (so that it is the true data

generating model) we should, on average, be able to recover the true parameters of the

model. What is more, our parameter estimates should have just the right amount of

uncertainty so that we are neither overly certain nor overly uncertain about the
location of the parameter. We may be tempted to just select a few parameter values to

work as the ground truth, and evaluate parameter recovery on the basis of these.

However, this is dangerous since we may (accidentally) select parameter values for

which the algorithm works particularly well or particularly poorly (Talts, Betancourt,

Simpson, Vehtari, & Gelman, 2018). A more robust approach is to sample the ground
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truth from a distribution of ground truths in each simulation trial and then evaluate the

set of estimates against the true distribution.

If an estimation algorithm for a given model succeeds in the procedure described

above, we call the algorithmwell calibrated. In Bayesian statistics, we could equivalently
say that, given the prior and the likelihood, we are able to estimate the true posterior

distribution of the parameters. This can be formally tested by means of simulation-based

calibration (SBC; Talts et al., 2018), a procedure which works as follows. First, sample

true parameter values ~h from the prior, ~h� pðhÞ. Second, sample data ~y from the

likelihood, ~y� pðyj~hÞ. Third, using the algorithm which we want to validate, obtain L

samples fh1; . . .; hLg from the estimated posterior distribution, fh1; . . .; hLg� pðhj~yÞ.
Fourth, for a quantity (or quantities) of interest f ðhÞ, which can be computed on the basis

of the posterior samples (e.g., the individual parameter estimates), count how many
values in ff ðh1Þ; . . .; f ðhLÞg fall below the true value f ð~hÞ. We call this count the rank

statistic and denote it by rðh1:Lj~h; f Þ.
If the algorithm iswell calibrated for a givenmodel, ~h and fh1; . . .; hLg should follow the

same distribution (Talts et al., 2018). We can verify this by repeating the above steps

multiple times (say, T = 1,000 times). For each repetition t, we compute the rank statistic

rtðhj~h; f Þ. Afterwards, we create a histogram over fr1ðh1:Lj~h; f . . .; rT ðh1:Lj~h; f Þg and

investigate its shape. If the histogram is approximately uniformover [0, L], the algorithm is

well calibrated to the model. If it is skewed, the algorithm is biased. If the histogram is U-
shaped or inverse-U-shaped, the estimated posterior distribution is narrower or wider,

respectively, than the true posterior distribution. Wemay add confidence intervals to the

histograms to indicate the range in which we would expect the bars to be for a well-

calibrated quantity. This helps in differentiating actual estimation problems from random

simulation noise. The SBC procedure needs to be adjusted slightly for use with

autocorrelated samples such as those obtained by Markov chain Monte Carlo sampling.

For more details see Talts et al. (2018).

To analyse the calibration of monotonic models using SBC in common settings, we
performed a simulation study. We focused on normally distributed response variables

y�Normalðl;rÞ;
where themean l is regressed on somemonotonic effects as detailed in the following, and

r is the residual standard deviation assumed constant across observations. This resembles

a linear regressionmodel except that the predictors were modelled as monotonic effects.

We varied l as containing either the main effect of a single monotonic predictor x,

l ¼ b0 þ b1moðx; fxÞ;
or the main effects of two monotonic predictors x and z plus their interaction,

l ¼ b0 þ b1moðx; f1Þ þ b2moðz; f2Þ þ b3moðx; f31Þmoðz; f32Þ:
Furthermore, the dimension of all simplex parameters wasD 2 f4; 10; 50g so that the

number of predictor categories of x and z took on values Dþ 1 2 f4; 11; 51g,
respectively. In each simulation trial, the values of x and z were sampled uniformly

from the set of possible categories f0; . . .;Dg. The number of observations took on values

N 2 f50; 200; 1; 000g. As priors for the model parameters, we used Normal(0, 1)

distributions for all regression coefficients, uniformDirichlet distributions of dimensionD

for all simplexes, and a truncated Normal+(0, 1) distribution for the residual standard

12 Paul-Christian B€urkner and Emmanuel Charpentier



deviationr. Further, regression coefficientswere scaled to be independent of the number

of predictor categories, that is, b1 and b2 were divided byD and b3was divided byD2. This

ensures comparability of model predictions across different values of D. The monotonic

models were fitted in Stan via the brms interface using 500 warm-up followed by 500
draws from the posterior obtained from a single Markov chain. For each of the 2 9 3

93 = 18 conditions, the simulations were repeated T = 1,000 times.

For the sake of brevity, we only show the results of selected simulation conditions that

are representative of the overall findings. A complete overview of all results is available on

GitHub (https://github.com/paul-buerkner/monotonic-effects-paper). The SBC results

for themonotonicmain effect and interactionmodels forN = 200 andD = 4 are displayed

in Figures 3 and 4, respectively. We clearly see that all model parameters are well

calibrated under these conditions. Even if the number of parameters P becomes
substantially larger than the number of observationsN, themodel ismay bewell calibrated

as shown for the interaction model when N = 50 and D = 50 (see Figure 5).

However, this may not always be the case. In the interaction model forN = 1,000 and

D = 50,we observe spikes in the histograms at very small and very large parameter values,

in particular for the simplex parameters (see Figure 6). This indicates strong autocorre-

lation in the chains and thus convergence problems in the model (Talts et al., 2018). A

closer investigation of the fitted models revealed that most iterations exceeded the

maximum tree depth (see Stan Development Team, 2019, for details). This indicates a
highly complex posterior distribution which is hard to properly explore with the

algorithm. For this model, the reason is the interaction term of two 50-dimensional

simplex parameters, which the algorithm fails to explore efficiently (although model

predictions are still accurate; see Section 4.2). Increasing the maximum tree depth can

resolve this problem but increases the computation time noticeably.

Of course, monotonic effects can be applied in a lot of other modelling settings and so

the present results provide no guarantee that they will be well calibrated in cases not

studied in the present paper. Generally, we recommend building models specifically
tuned to the study design, data, and subject-matter knowledge. Thesemodels should then

be validated as a natural part of the research process using SBC or other validation

procedures.

simo_mox1[2] simo_mox1[3] simo_mox1[4]

b_Intercept bsp_mox sigma simo_mox1[1]

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

0 2 4 6 8 10

Figure 3. SBC results of the monotonic main effects model for N = 200 and D = 4. Facets show

histograms of different model parameters whose names are taken from brms. Horizontal black lines

indicate 99% confidence intervals under the assumption of correct calibration.
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simo_moz1[2] simo_moz1[3] simo_moz1[4]

simo_mox:moz2[4] simo_mox1[1] simo_mox1[2] simo_mox1[3] simo_mox1[4] simo_moz1[1]

simo_mox:moz1[2] simo_mox:moz1[3] simo_mox:moz1[4] simo_mox:moz2[1] simo_mox:moz2[2] simo_mox:moz2[3]

b_Intercept bsp_mox bsp_mox:moz bsp_moz sigma simo_mox:moz1[1]

8 10 8 10 8 10

8 10 8 10 0

4 6 4 60 2 0 2 0 2 4 6

0 2 4 6 0 2 4 6 2 4 6 8 10

Figure 4. SBC results of the monotonic interaction model for N = 200 and D = 4. Facets show

histograms of different model parameters whose names are taken from brms. Horizontal black lines

indicate 99% confidence intervals under the assumption of correct calibration.

simo_moz1[2] simo_moz1[3] simo_moz1[4]

simo_mox:moz2[4] simo_mox1[1] simo_mox1[2] simo_mox1[3] simo_mox1[4] simo_moz1[1]

simo_mox:moz1[2] simo_mox:moz1[3] simo_mox:moz1[4] simo_mox:moz2[1] simo_mox:moz2[2] simo_mox:moz2[3]

b_Intercept bsp_mox bsp_mox:moz bsp_moz sigma simo_mox:moz1[1]

8 10 8 10 8 10

8 10 8 10 0

4 6 4 60 2 0 2 0 2 4 6

0 2 4 6 0 2 4 6 2 4 6 8 10

Figure 5. SBC results of the monotonic interaction model for N = 50 and D = 50. Facets show

histograms of different model parameters whose names are taken from brms. For simplex

parameters, only the first four elements are displayed. Horizontal black lines indicate 99%

confidence intervals under the assumption of correct calibration.
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4.2. Comparison to other approaches
To compare the predictive performance of monotonic effects to alternative approaches,

which can be used under the same circumstances, we performed another simulation

study. We used the same simulation conditions as in Section 4.1 with one exception,

described below. As underlying data-generating processes, we considered the main

effects and interaction models described in Section 4.1 in three different variations:

simplex values fixed to 1/D, implying a linear relationship; simplex values sampled from a

uniform Dirichlet distribution of dimension D, implying a nonlinear but monotonic

relationship; and simplex values sampled from a uniform Dirichlet distribution of
dimensionDwith approximately half of the values having a negative sign, implying a non-

monotonic relationship.

As alternatives to the monotonic model (abbreviated as MO), we considered simple

linear (LIN) and categorical (CAT) regression,3 isotonic regression (ISO; Barlow et al.,

1972; Robertson et al., 1988), penalized ordinal regression (OS; Gertheiss & Tutz, 2009;

Gu, 2013), penalized ordinal regression with monotonicity constraint (OSMO; Helwig,

2017), as well as linear and cubic spline models (LS and CS; e.g., Gu, 2013; Helwig, 2016).

The latter two are primarily designed for continuous responses but may still perform
reasonably well for linear relationships or a sufficiently large number of predictor

categories. In what follows, we will refer to the different approaches using the

abbreviations introduced above.

simo_moz1[2] simo_moz1[3] simo_moz1[4]

simo_mox:moz2[4] simo_mox1[1] simo_mox1[2] simo_mox1[3] simo_mox1[4] simo_moz1[1]

simo_mox:moz1[2] simo_mox:moz1[3] simo_mox:moz1[4] simo_mox:moz2[1] simo_mox:moz2[2] simo_mox:moz2[3]

b_Intercept bsp_mox bsp_mox:moz bsp_moz sigma simo_mox:moz1[1]

8 10 8 10 8 10

8 10 8 10 0

4 6 4 60 2 0 2 0 2 4 6

0 2 4 6 0 2 4 6 2 4 6 8 10

Figure 6. SBC results of the monotonic interaction model for N = 1,000 and D = 50. Facets show

histograms of different model parameters whose names are taken from brms. For simplex

parameters, only the first four elements are displayed. Horizontal black lines indicate 99%

confidence intervals under the assumption of correct calibration.

3Here, categorical refers to treating the predictor(s) as categorical, not the response variablewhichwas assumed
to be normally distributed under all simulation conditions.
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The MO models were fitted with brms using its default priors, that is, without

considering the true priors used in the data-generating process. This avoids giving these

models a possibly unfair advantage as in reality we are unlikely to be aware of the exact

data-generating process. LIN and CAT models were fitted via the lm function, while ISO
modelswere fitted via theisoreg function. All penalized regression/splines approaches

were fitted in the bigsplines package (Helwig, 2018) using the bigspline and

bigssp functions.

For the main effect models, simulation results are displayed in Figure 7 and 8 showing

the models’ root mean squared error (RMSE) under true linearity and monotonicity,

respectively. From Figure 7 we see that, under true linearity, LIN performed consistently

better than all other models, closely follows by CS and MO. Other penalized approaches

had slightly but noticeably higher RMSEs, while unpenalized approaches such as CAT or
ISO models had even higher RMSEs, in particular for larger D. From Figure 8 we see that,

under true monotonicity, MO models exhibited predictive performance the same as or

better than all other approaches, although the difference from CS, OS, and OSMOmodels

was generally quite small. As expected, under true non-monotonicity, MO models

performed worse than models without monotonicity assumption but similarly to other

monotonicity-assuming models (see Figure B1 in Appendix B).

For the interactionmodels, simulation results are displayed in Figure 9 and 10 showing

the models’ RMSE under true linearity and monotonicity, respectively. We did not find

D = 50 & N = 50 D = 50 & N = 200 D = 50 & N = 1000

D = 10 & N = 50 D = 10 & N = 200 D = 10 & N = 1000

D = 4 & N = 50 D = 4 & N = 200 D = 4 & N = 1000
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Figure 7. Simulation results for the main effects models under true linearity based on T = 1,000

simulation trials. Abbreviations: CAT = categorical model; CS = cubic spline model; D = number

of categories minus 1; ISO = isotonic regression model; LIN = linear model; LS = linear spline

model; MO = monotonic model; N = number of observations; OS = ordinal spline model;

OSMO = ordinal monotonic spline model.
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implementations for interactions in ISO or OSMOmodels, which are thus not displayed in

the figures. From Figure 9 we see that, under true linearity, LIN and CSmodels performed

better than all other models, closely followed by MO, CS, and LS. For small N and large D,

MOwas even on par with LIN. From Figure 10 we see that, under true monotonicity, MO

models had better predictive performance across all conditions than all other approaches.

As expected, under true non-monotonicity, MO models performed worse than models
without monotonicity assumption (see Figure B2 in Appendix B).

In summary, in our simulations, MO yielded predictions the same as or better than

other penalized or unpenalized ordinal approaches if the monotonicity assumption was

justified. Intuitively, one may expect that MO models tend to overfit the data in cases of

small N and comparably large D, in particular for interaction models, as they have

considerablymore parameters than observations. However, as evident in our simulations,

this is not actually what happens, although we found convergence issues under some of

these conditions. The reason for this lies in the joint Dirichlet prior on the simplex
parameters: if one particular element of f (i.e., one difference between two adjacent

categories) is large, larger values of other elements are automatically penalized (i.e., made

more unlikely) due to the sum-to-one constraint on f. The sameproperty can be expressed

in terms of the negative correlation between two distinct elements of f (see equation 9).

This holds even if theDirichlet prior is uniformover the set of possible simplexes,which is

used as the default prior in brms.
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Figure 8. Simulation results for the main effects models under true monotonicity based on

T = 1,000 simulation trials. LIN is not displayed as its RMSE is too large and thus obscures differences

between other models. For the same reason, CAT is not displayed for D = 50. Abbreviations:

CAT = categorical model; CS = cubic spline model; D = number of categories minus 1; ISO = iso-

tonic regression model; LS = linear spline model; MO = monotonic model;N = number of

observations; OS = ordinal spline model; OSMO = ordinal monotonic spline model.
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There is also another aspect of the monotonic parameterization that can guard against

overfitting. If the scale parameter b is close to 0, there is not much to learn about the
corresponding simplex parameter f, whichwill thus have a posterior distribution close to

its prior. Still, this uncertainty will not lead to overfitting as changes in f do not influence

predictions as long as b is small. This is because the latter controls the overall effect size of

themonotonic predictor, while f only controls the shape. In other words, the complexity

of a monotonic predictor with an effect close to zero naturally reduces to the complexity

of a simple linear predictor.

5. Case study: Measures of chronic widespread pain

To illustrate the application of monotonic effects in practice, we will reanalyse data used

to validate measures of chronic widespread pain (CWP) from patients’ point of view

(Cieza et al., 2004; Gertheiss et al., 2011). There is no universally accepted definition of

CWP, but ‘it may be characterized by pain involving several regions of the body, which

causes problems in functioning, psychological distress, poor quality of sleep or difficulties
in daily life’ (Gertheiss et al., 2011, p. 378). The applied CWP measures stem from the

international classification of functioning (ICF; World Health Organization, 2001) and are

rated by clinical staff, not by patients themselves. Thus, it is important to validate which
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Figure 9. Simulation results for the interaction models under true linearity based on T = 1,000

simulation trials. CAT is not displayed for D = 50 as its RMSE is too large and thus obscures

differences between other models. ISO and OSMO are not displayed as they have no corresponding

interactionmodel. Abbreviations: CAT = categoricalmodel; CS = cubic splinemodel; D = number

of categories minus 1;LIN = linear model; LS = linear spline model; MO = monotonic model;

N = number of observations; OS = ordinal spline model.

18 Paul-Christian B€urkner and Emmanuel Charpentier



and to what degree CWPmeasures actually relate to subjective physical health in order to
better understand their implications for patients’ lives.

For each of 420 patients, the present data contain information on 67 CWPmeasures as

well as a subjective measure of physical health based on the SF-36 questionnaire (Ware &

Sherbourne, 1992). The data are freely available in the R package ordPens (Gertheiss,

2015) and are explained in detail in Gertheiss et al. (2011) and Cieza et al. (2004). In the

data set, the variable of subjective physical health is called phcs, while the CWP

measures are named according to their official ICF coding (see Gertheiss et al., 2011, for

explanation). Our fully reproducible analysis is available on OSF (https://osf.io/kvrsg/).
In the data set, the subjective physical health (variable phcs) ranges from 10.08 to

53.17 with a mean of 32.41 and a standard deviation of 8.17. For the purpose of this case

study, we will predict phcs only by impairments in ‘walking’ (variable d450) and

‘moving around’ (variable d450), which were both measured on a five-point scale

between 0 (‘no problem’) and 4 (‘complete problem’). Both of these variableswere strong

predictors of phcs in the analysis of Gertheiss et al. (2011). The category labels of these

variables suggest that their relationship with phcswill be monotonic. More specifically,

we expect subjective physical health to decrease with an increase in impairments in
walking or moving around or basically any other everyday functioning. Including more or

even all of the 67 predictors would be possible as well in theory but barely sensible

without principled variable selection techniques. Such techniques have yet to be

developed for monotonic effects and are outside the scope of the present paper.
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Figure 10. Simulation results for the interaction models under true monotonicity based on

T = 1,000 simulation trials. LIN is not displayed as its RMSE is too large and thus obscures differences

between othermodels. For the same reason, CAT is not displayed forD = 50. ISO andOSMOare not

displayed as they have no corresponding interaction model. Abbreviations: CAT = categorical

model; CS = cubic spline model; D = number of categories minus 1; LS = Linear spline model;

MO = monotonic model; N = number of observations; OS = ordinal spline model.
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We will start by predicting subjective physical health only by impairments in moving

around. For the present example (and also more generally; see Section 4.2), the default

priors of brms on monotonic effects work well in terms of sampling efficiency and

convergence. However, for illustrative purposes, we still manually specify our own priors

for eachmodel even if priors are similar to the default ones. Based on knowledge about the

outcome scale, it is unlikely that a one-point change in any WCP measure will imply a

change in the subjective physical health by more than 5 points. We code this expectation

as aNormal(0, 2.5) prior on the scale parameters b. Thatway, |b|will only exceed 2.5 and 5
outcome pointswith probabilities of roughly 32% and 5%, respectively.With regard to the

shape of the effect of ‘moving around’, we have no particular prior expectations and thus

assume a uniform Dirichlet prior as explained in Section 2.2, which is also the default in

brms. In brms, we can specify the above priors by means of the following code:

library(brms)
prior_b <- prior(normal(0, 2.5), class = "b")
prior_s1 <- prior(dirichlet(1, 1, 1, 1), class = "simo",

coef = "mod4551")

We use class simo to refer to the simplex parameters of monotonic effects. The

required coefficient name "mod4551" is constructed as mo <variable><in-
dex>,where<index>=1unless a single regression termcontainsmultiple simplexes

–which is only the case for interactions of monotonic effects. Finally, we fit the model in
brms via

fit1 <- brm(phcs ~ mo(d455), data = cwp,
prior = prior_b + prior_s1)

As illustrated in the middle of Figure 11, impairments in moving around show a strong

negativerelationship tosubjectivephysicalhealth.Moreover, this relationship isclearly (at least

visually) nonlinear. Changes in theoutcome are strongest between thefirst twocategories and

the third to fourth category. This impression is confirmed by the summary estimates of the

regressionparameters(seeTable1)assimo[1]andsimo[3]havethelargestestimates.For

example, the estimate ofsimo[1]= 0.38 implies that 38% of the total change in subjective
physical health due to impairments in walking happens between the first two predictor

categories. Further, the estimate of slope = �2.70 implies that on average the subjective

physical health decreases by 2.70 per increase in impairments inwalking by one category.
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Figure 11. Effects of impairments in moving around on subjective physical health: (left) linear

model; (middle) monotonic model; (right) categorical model.
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Next, let us compare the monotonic model to a linear and an unordered categorical

model, fitted as follows:

fit2 <- brm(phcs ~ d455, data = cwp, prior = prior_b)
fit3 <- brm(phcs ~ d455c, data = cwp, prior = prior_b)

The variable d455c denotes the categorical version of d455 to which we applied

sequential difference coding. Results are visualized on the left- and right-hand side of
Figure 11. To compare models, we use approximate leave-one-out cross-validation

(Vehtari, Gelman, & Gabry, 2017) together with corresponding information criteria and

Akaike model weights (Vehtari et al., 2017; Wagenmakers & Farrell, 2004):4

loo_compare(loo(fit1), loo(fit2), loo(fit3))
model_weights(fit1, fit2, fit3, weights = "loo")

As shown in Table 2, the monotonic models fits better than the categorical model
followed by the linear model although the differences between the three models are not

substantial. Looking more closely at the results, we see that the effective number of

parameters is somewhat smaller for the monotonic model than for the categorical model:

about the same difference as we see in the corresponding expected log posterior

predictive density (ELPD) difference. Thus, the better predictive performance of the

monotonic model is primarily driven by it being more parsimonious than the categorical

model. Together, this provides evidence that the monotonicity assumption for the effect

of predictor d455 is justified by the data.
Next, wewill use both impairments inwalking (variabled450) and inmoving around

(variabled455) to predict subjective physical health.When specifying theDirichlet prior

for ‘walking’, we have to take into account that the highest category 4 (‘complete

problem’) is actually not present in the data set. Thus, the corresponding prior requires a

vector of reduced size.

prior_s2 <-
prior(dirichlet(1, 1, 1), class = "simo",

coef = "mod4501") +
prior(dirichlet(1, 1, 1, 1), class = "simo",

coef = "mod4551")

We fit the monotonic, linear, and categorical models as follows:

Table 1. Summary of parameter estimates for impairments in moving around

Estimate l-95% CI u-95% CI

Intercept 37.19 35.80 38.64

slope �2.70 �3.34 �2.08

simo[1] 0.38 0.23 0.55

simo[2] 0.11 0.01 0.27

simo[3] 0.36 0.15 0.55

simo[4] 0.15 0.01 0.35

Note. simo = simplex parameter of the monotonic effect; Estimate = posterior mean; CI = cred-

ible interval based on quantiles.

4 In a Bayesian framework, models may be compared by various means, for instance, Bayes factors (Kass &
Raftery, 1995), (approximate) cross-validationmethods (Vehtari et al., 2017), information criteria (Vehtari et al.,
2017; Watanabe, 2010) or stacking of posterior predictive distributions (Yao, Vehtari, Simpson, & Gelman,
2017). A discussion of the pros and cons of these various approaches is outside the scope of the present paper.
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fit4 <- brm(phcs ~ mo(d450) + mo(d455), data = cwp,
prior = prior_b + prior_s2)

fit5 <- brm(phcs ~ d450 + d455, data = cwp,
prior = prior_b)

fit6 <- brm(phcs ~ d450c + d455c, data = cwp,
prior = prior_b)

Conditional predictions of the three models are visualized in Figure 12. As visible on

the right-hand side of Figure 12, the effect of moving around seems to be no longer

monotonic when controlling for the effect of walking. Thus, we would expect the

Table 2. Comparison of models fit1 to fit3 based on approximate leave-one-out crossvalidation

ELPD-LOO ELPD-Diff SE-Diff P-LOO LOOIC Akaike-Weight

fit1 �1,439.54 0.00 0.00 4.79 2,879.09 0.44

fit3 �1,439.85 �0.30 0.23 4.96 2,879.70 0.32

fit2 �1,440.14 �0.59 1.90 2.90 2,880.27 0.24

Note. ELPD-LOO = expected log posterior predictive density (higher is better); ELPD-DIFF = dif-

ference in ELPD values compared to the best model;LOOIC: leave-one-out information criterion

(lower is better); P-LOO = effective number of model parameters (lower is better); Akaike-

Weight = model weight based on the LOOIC values (higher is better); SE-DIFF = standard error of

the ELPD difference.
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Figure 12. Effects of impairments in walking and in moving around on subjective physical health:

(left) linear model; (middle) monotonic model; (right) categorical model.
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categorical model to now show better predictions than the monotonic model. As can be
seen in Table 3, this is indeed what happens as the categorical model has a higher ELPD

value and corresponding model weight. That is, from a purely predictive perspective, we

will likely prefer the categorical model. However, from a theoretical perspective, the

situation may be different as it is more plausible that a change to worse in moving around

always leads (in expectation) to a reduction in subjective physical health no matter what

impairments in walking individuals may have. That is, even for impairments in walking

held constant, the effect of impairments in moving around should still be monotonically

decreasing. The fact that this is not strictly the case in the present data is clearly the result
of the dependence structure between the two predictors as well as a large number of

possible confounders that we have not accounted for in the present analysis. Just from the

present data, it remains unclear howwell the (non-) monotonicity will generalize to other

samples or populations of impaired individuals.

6. Discussion

In the present paper, we proposed a new approach to including monotonic effects of

ordinal predictors in regression models. The proposed parameterization not only

ensures monotonicity but also naturally regularizes the model and its predictions even

without the use of strong prior information. Thus, monotonic effects share important

aspects with existing methods for modelling ordinal predictors. Moreover, monotonic

effects nicely integrate into the framework of generalized linear regression and can

even be used within multilevel models. By making an informed decision about the
parameterization of interactions with monotonic effects, different kinds of monotonic-

ity can be modelled depending on the research question and a priori information

available. Monotonic effects are fully supported in the brms R package, which fits

Bayesian regression models using Stan and provides an intuitive user interface based on

widely known R formula syntax. Ordinal predictors are still mostly treated as either

nominal or metric, thus under- or overstating the information contained. Monotonic

effects avoid these problems but still allow for an intuitive interpretation of the

parameters estimated. In summary, we think that monotonic effects provide a useful
tool for handling of ordinal predictors in regression models in situations where the

monotonicity assumption is justified.

Onepotential problem in theBayesian estimationofmonotonic effects is that elements

of a simplex tend to be negatively correlated, sometimes rather strongly, thus making

Markov chain Monte Carlo sampling more difficult (Hoffman &Gelman, 2014). However,

Table 3. Comparison of models fit4 to fit6 based on approximate leave-one-out crossvalidation

ELPD-LOO ELPD-Diff SE-Diff P-LOO LOOIC Akaike-Weight

fit6 �1,411.48 0.00 0.00 7.08 2,822.97 0.71

fit4 �1,412.45 �0.96 1.47 6.22 2,824.89 0.27

fit5 �1,415.01 �3.53 3.36 3.62 2,830.03 0.02

Note. ELPD-LOO = expected log posterior predictive density (higher is better); ELPD-DIFF = dif-

ference in ELPD values compared to the best model;LOOIC: leave-one-out information criterion

(lower is better); P-LOO = effective number of model parameters (lower is better); Akaike-

Weight = model weight based on the LOOIC values (higher is better); SE-DIFF = standard error of

the ELPD difference.
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due to the advanced Hamiltonian Monte Carlo samplers implemented in Stan, which are

designed to work well even for highly intercorrelated posteriors (Betancourt, Byrne,

Livingstone, & Girolami, 2014; Hoffman & Gelman, 2014), these problems may be

alleviated when fitting monotonic effects in Stan – either directly or indirectly through
brms. Indeed, in the models estimated for the purpose of this paper, sampling efficiency

and convergence were good and rarely worse that when using a purely linear approach.

The only exceptions were monotonic interaction models with a very high number of

predictor categories (i.e., 51 in our simulation). For that many predictor categories, it may

be easier to fit (monotonic) splines or similar models which require fewer parameters.

With regard to predictions, monotonic effects performed very well under all

simulation conditions where the monotonicity assumption was justified, even those

where convergence was an issue. More precisely, monotonic effects made predictions
similar to or better than other penalized ordinal approaches such as ordinal splines

and much better predictions than unpenalized approaches such as standard isotonic

regression or approaches treating the predictors as categorical. This nicely illustrates

the advantages of a fully Bayesian approach, where joint priors, even weakly

informative ones, can regularize the model parameters and ultimately lead to

improved predictions. It has to be noted that all penalized/regularized approaches

generally performed well in our simulations and differences between them were

comparably small (which we believe is a good sign for the validity of these methods in
general). Where monotonic effects differ from previously proposed approaches is in

their conceptualization as generalizations of continuous predictor terms, rather then

as (penalized) categorial predictor means. This allows for the intuitive interpretation

of the scale parameter as an ordinary regression coefficient, except that we do not

assume the shape of the relationship as linear, but more generally as monotonic. It is

this clear separation between the strength of the relationship and its shape that, in

our opinion, makes monotonic effects very appealing for interpretation and

communication.
This separation is especially advantageous when dealing with interactions of ordinal

predictors. If we used any type of categorical coding (e.g., dummy coding) for the

interaction of two ordinal predictors, the number of regression coefficients would

increase quadratically with the number of predictor categories, which complicates

interpretation. When working with monotonic effects, by contrast, we would only have

three related regression coefficients (two for themain effects and one for the interaction),

which would essentially have the same interpretative complexity as a linear model with

the ordinal predictors treated as continuous.Of course, interpreting the shape parameters
of the main effects and interactions will again increase the complexity to a level similar to

what is implied by categorical coding. However, often we may not be interested in the

exact shape of the effect, in which case it would simply be sufficient to know that the

shape has been taken into account by the model. Of course, there is nothing wrong with

directly reporting and interpreting the estimated category means (or their contrasts),

which, depending on one’s preferences and the overall complexity of themodel,may also

be seen as more intuitive (see, for example, Barlow et al., 1972; Danaher et al., 2012;

Gertheiss & Tutz, 2009; Klugkist & Mulder, 2008; Mulder & Raftery, 2019, for related
approaches).

Regardless ofwhat formulation one chooses, the assumption ofmonotonicity is critical

and needs to be theoretically justified and/or statistically investigated. A general approach

to the latter is to fit one model with and one without monotonicity constraint and then

compare the two models using one’s preferred criteria of model fit. From a Bayesian
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perspective, we could use, for example, Bayes factors or cross-validation procedures/

information criteria, depending on whether we aim to penalize prior or posterior

complexity, respectively (Gelman et al., 2013; Hoijtink, Klugkist, & Boelen, 2008). In our

case study, we applied approximate leave-one-out cross-validation for this purpose, but
other criteria would have been possible as well (see, for example, Mulder & Raftery,

2019).

As pointed out earlier, one important distinction within the class of models dealing

with ordinal predictors is the assumption about the generative process of these variables.

In ourmonotonic effects approach, aswell as in a lot of other prominent approaches (e.g.,

Gertheiss&Tutz, 2009; Gu, 2013; Klugkist &Mulder, 2008),we treat ordinal predictors as

manifest variables. Specifically, we do not make the assumption that the observations

originate from the categorization of a latent continuous variable as is commonly the case in
latent variable models (e.g., Finney &DiStefano, 2006; J€oreskog, 1994; Lei, 2009;Winship

& Mare, 1984). Such a latent variable assumption may be sensible if the ordinal predictor

represents the chosen categories of a Likert item, for instance, with the intention of

measuring a latent psychological construct, but would certainly not be sensible in some

other cases, for instance, if the categories were known discrete points in time. Thus, both

approaches seem valid in our opinion and are called for in different settings and research

questions. We note again that our proposed approach is targeted at data settings where

modelling manifest observations is desired, and that if researchers desire to examine a
latent relationship, they are advised to use other methods.

Although our primary focus was the use of monotonic effects for modelling strictly

ordinal predictors,wewish to point out that theymay be applied to other kinds of discrete

variables as well. Such variables may represent, for instance, count data or discrete points

in time. As an example of the former, we can think of participants solving a sequence of

figural analogy tasks with the value of interest being the number of tasks solved correctly.

This count variable could then be used as a predictor for a general intelligence score. It is

plausible to assume the number of correctly solved items to be monotonically related to
general intelligence and so the application of amonotonic effect appears reasonable. As an

example of the latter, we could think of a longitudinal study with few measurement

points. If the outcomewere a skill gradually acquired over time, wewould expect time to

be monotonically related to it. Of course, time may also be modelled as continuous, but,

for very few time points, using amonotonic effectmay be amore reliable solutionwithout

strong assumptions outside of monotonicity.

For simple cases such as regression models with only a single monotonic effect and

normally distributed errors, maximum likelihood estimators can be developed as well
(Barlow et al., 1972; Robertson et al., 1988). As we prefer a fully Bayesian approach to

statistical modelling, we did not pursue this line of investigation more deeply.

However, we still believe that developing frequentist estimators and corresponding

uncertainty estimates for more complex monotonic models including, for instance,

interactions or multilevel structure, may be a worthwhile endeavour for future

research. Finally, we wish to note that the general idea of monotonic effects should

also generalize to continuous data. In this case, the sum in the definition of monotonic

effects becomes an integral and f a non-negative function to be integrated over. A
similar idea is used in I-splines (i.e., integral splines) whose basis functions represent

integrals over the non-negative basis functions of another spline (Ramsay, 1988). In

future research, it may thus be worthwhile to study continuous versions of monotonic

effects and to relate them to existing methods (e.g., Pya & Wood, 2015; Ramsay, 1988)

that ensure monotonicity in the continuous case.
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Appendix A: Mathematical proofs

A.1. Monotonicity

For all values x between 0 and D–1, we have

bmoðxþ 1; fÞ � bmoðx; fÞ ¼ bD
Xxþ1

i¼1

fi � bD
Xx
i¼1

fi ¼ bDfxþ1: ðA1Þ

SinceD > 0 and fxþ1 [ 0, the linear predictorgðxÞ ismonotonically increasing if b� 0

and monotonically decreasing if b� 0.

A.2. Equivalence to categorical isotonic regression

Consider a simple linear model of a continuous response y regressed on a categorical
predictor xwith categories j 2 f0; 1; . . .;Dg. Further, let lj be the groupmean of category

jwith respect to the response variable. Then themodel for observationn can bewritten as

yn ¼ lxn þ en; ðA2Þ
where the en are errors of the regression. In categorical isotonic regression, we estimate

l ¼ ðl0; 1; . . .; lCÞ under the order-constraint l0 � l1 � . . .� lC or l0 � l1 � . . .� lC .
Using a monotonic effect, we write

yn ¼ b0 þ b1D
Xxn
i¼1

fi þ en: ðA3Þ

Hence, we can identify l0 with b0 and lj with b0 + b1 D
Pj

i¼1 fi for j > 0. This

identification is bijective within the set of order-constraint l.

A.3. Proof of proposition 1

Under the stated assumptions, we can, without loss of generality, write the linear

predictor g ¼ gðxÞ as

gðxÞ ¼ b0 þ
XK
k¼1

bkDk

Xx
i¼1

fi ¼ b0 þ
XK
k¼1

bkDk

 ! Xx
i¼1

fi

 !
: ðA4Þ

Since all other predictors have been fixed to some constants, their contribution to g
can be absorbed by the interceptb0 and the regression coefficientsb1; . . .; bK which are all
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related to x. If we define b ¼PK
i¼1 biDi we see thatgðxÞ is monotonic in xwith the sign of

the effect determined by the sign of b.

A.4. Counter-example to conditional monotonicity for varying simplex parameters

Consider the situation shown in FigureA1,where quite clearly the effect ofx ismonotonic

for groupG, but non-monotonic for groupH. Suppose further thatwenamed the grouping

variable z and applied dummy coding such thatG = 0 andH = 1. Using different simplex

parameters for the main effect of x and the interaction effects between x and z, the linear
predictor reads as

gðx; zÞ ¼ b0 þ b1zþ b2moðx; f2Þ þ b3zmoðx; f3Þ: ðA5Þ

Clearly, b0 = 0. For groupG this impliesgðx; 0Þ ¼ b2moðx; f2Þ so that b2 = 50 as well

as f2 ¼ ð:8; :2Þ are completely defined by the curve of group G. For group H, we have

gðx; 1Þ ¼ b0 þ b1 þ b2moðx; f2Þ þ b3moðx; f3Þ: ðA6Þ

As the curve of group H starts at the origin, we have b1 = 0. Due to the chosen
parameterization of z, the termb3moðx; f3Þmodels thedifferencebetween in the effect of

x between the two groups, which is visualized as a dashed line in Figure A1 and is clearly

monotonic. Consequently, we have b3 = 30 and f3 ¼ ð1
6
; 5
6
Þ. Although the assumptions of

themonotonic effects are fullymet, the effect ofx in groupH is non-monotonic. Thus,x is

not conditionally monotonic given z.
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Figure A1. Counter-example to the conditional monotonicity for varying simplex parameters. The

dashed line shows the difference between the groupsG andH as a function of x.
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Appendix B: Additional simulation results

D = 50 & N = 50 D = 50 & N = 200 D = 50 & N = 1000

D = 10 & N = 50 D = 10 & N = 200 D = 10 & N = 1000

D = 4 & N = 50 D = 4 & N = 200 D = 4 & N = 1000
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Figure B1. Simulation results for the main effects models under true non-monotonicity based on

T = 1,000 simulation trials. LIN is not displayed as its RMSE is too large and thus obscures differences

between other models. Abbreviations: CAT = categorical model; CS = cubic spline model;

D = number of categories minus 1; ISO = isotonic regression model; LS = linear spline model;

MO = monotonic model; N = number of observations; OS = ordinal spline model; OSMO = ordi-

nal monotonic spline model.
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D = 50 & N = 50 D = 50 & N = 200 D = 50 & N = 1000

D = 10 & N = 50 D = 10 & N = 200 D = 10 & N = 1000
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Figure B2. Simulation results for the interaction models under true non-monotonicity based on

T = 1,000 simulation trials. LIN is not displayed as its RMSE is too large and thus obscures differences

between othermodels. For the same reason, CAT is not displayed forD = 50. ISO andOSMOare not

displayed as they have no corresponding interaction model. Abbreviations: CAT categorical model;

CS = cubic spline model; D = number of categories minus 1; LS = linear spline model;

MO = monotonic model; N = number of observations; OS = ordinal spline model.
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