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Abstract
Cross-validation can be used to measure a model’s predictive accuracy for the purpose
of model comparison, averaging, or selection. Standard leave-one-out cross-validation
(LOO-CV) requires that the observation model can be factorized into simple terms,
but a lot of important models in temporal and spatial statistics do not have this property
or are inefficient or unstable when forced into a factorized form.We derive how to effi-
ciently compute and validate both exact and approximate LOO-CV for any Bayesian
non-factorized model with a multivariate normal or Student-t distribution on the out-
come values. We demonstrate the method using lagged simultaneously autoregressive
(SAR) models as a case study.

Keywords Cross-validation · Pareto-smoothed importance-sampling ·
Non-factorized models · Bayesian inference · SAR models

1 Introduction

In the absence of new data, cross-validation is a general approach for evaluating a
statisticalmodel’s predictive accuracy for the purpose ofmodel comparison, averaging,
or selection (Geisser and Eddy 1979; Hoeting et al. 1999; Ando and Tsay 2010; Vehtari
and Ojanen 2012). One widely used variant of cross-validation is leave-one-out cross-
validation (LOO-CV), where observations are left out one at a time and then predicted
based on the model fit to the remaining data. Predictive accuracy is evaluated by first
computing a pointwise predictivemeasure and then taking the sum of these values over
all observations to obtain a single measure of predictive accuracy (e.g., Vehtari et al.
2017). In this paper, we focus on the expected log predictive density (ELPD) as the
measure of predictive accuracy. The ELPD takes the whole predictive distribution into
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account and is less focused on the bulk of the distribution compared to other common
measures such as the root mean squared error (RMSE) or mean absolute error (MAE;
see for details Vehtari and Ojanen 2012). Exact LOO-CV is costly, as it requires
fitting the model as many times as there are observations in the data. Depending
on the size of the data, complexity of the model, and estimation method, this can
be practically infeasible as it simply requires too much computation time. For this
reason, fast approximate versions of LOO-CV have been developed (Gelfand et al.
1992; Vehtari et al. 2017), most recently using Pareto-smoothed importance-sampling
(PSIS; Vehtari et al. 2017, 2019).

A standard assumption of any such fast LOO-CV approach using the ELPD is that
the model over all observations has to have a factorized form. That is, the overall
observation model should be represented as the product of the pointwise models for
each observation. However, many important models do not have this factorization
property. Particularly in temporal and spatial statistics it is common to fit multivariate
normal or Student-t models that have structured covariance matrices such that the
model does not factorize. This is typically due to the fact that observations depend
on other observations from different time periods or different spatial units in addition
to the dependence on the model parameters. Some of these models are actually non-
factorizable, that is, we do not know of any reformulation that converts the observation
model into a factorized form.Other non-factorizedmodels could be factorized in theory
but it is sometimes more robust or efficient to marginalize out certain parameters, for
instance observation-specific latent variables, and then work with a non-factorized
model instead.

Conceptually, a factorized model is not required for cross-validation in general
or LOO-CV in particular to make sense. This also implies that neither conditional
independence nor conditional exchangability are necessary assumptions. However,
when using non-factorized observation models in LOO-CV, computational challenges
arise. In this paper, we derive how to perform efficient approximate LOO-CV for any
Bayesianmultivariate normal or Student-t model with an invertible covariance or scale
matrix, regardless of whether or not the model factorizes. We also provide equations
for computing exact LOO-CV for these models, which can be used to validate the
approximation and to handle problematic observations. Throughout, a Bayesianmodel
specification and estimation via Markov chain Monte Carlo (MCMC) is assumed. We
have implemented the developed methods in the R package brms (Bürkner 2017,
2018). All materials including R source code are available in an online supplement.1

2 Pointwise log-likelihood for non-factorizedmodels

When computing ELPD-based exact LOO-CV for a Bayesian model we need to com-
pute the log leave-one-out predictive densities log p(yi |y−i ) for every response value
yi , i = 1, . . . , N , where y−i denotes all response values except observation i . To
obtain p(yi |y−i ), we need to have access to the pointwise likelihood p(yi | y−i , θ)

1 Supplemental materials available at https://github.com/paul-buerkner/psis-non-factorized-paper.
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and integrate over the model parameters θ :

p(yi | y−i ) =
∫

p(yi | y−i , θ) p(θ | y−i ) dθ (1)

Here, p(θ | y−i ) is the leave-one-out posterior distribution for θ , that is, the posterior
distribution for θ obtained by fitting the model while holding out the i th observation
(in Sect. 3, we will show how refitting the model to data y−i can be avoided).

If the observation model is formulated directly as the product of the pointwise
observation models, we call it a factorized model. In this case, the likelihood is also
the product of the pointwise likelihood contributions p(yi | y−i , θ). To better illustrate
possible structures of the observation models, we formally divide θ into two parts,
observation-specific latent variables f = ( f1, . . . , fN ) and hyperparameters ψ , so
that p(yi | y−i , θ) = p(yi | y−i , fi , ψ). Depending on the model, one of the two parts
of θ may also be empty. In very simple models, such as linear regression models,
latent variables are not explicitely presented and response values are conditionally
independent given ψ , so that p(yi | y−i , fi , ψ) = p(yi | ψ) (see Fig. 1a). The full
likelihood can then be written in the familiar form

p(y | ψ) =
N∏
i=1

p(yi | ψ), (2)

where y = (y1, . . . , yN ) denotes the vector of all responses. When the likelihood
factorizes this way, the conditional pointwise log-likelihood can be obtained easily by
computing p(yi | ψ) for each i with computational cost O(n).

If directional paths between consecutive responses are added, responses are no
longer conditionally independent, but the model factorizes to simple terms with
Markovian dependency. This is common in time-series models. For example, in an
autoregressive model of order 1 (see Fig. 1b), the pointwise likelihoods are given
by p(yi | yi−1, ψ). In other time series, models may have observation-specific latent
variables fi and conditionally independent responses so that the pointwise log-
likelihoods simplify to p(yi | y−i , fi , ψ) = p(yi | fi ). In models without directional
paths between the latent values f (see Fig. 1c), such as latent Gaussian processes
(GPs; e.g., Rasmussen 2003) or spatial conditional autoregressive (CAR)models (e.g.,
Gelfand andVounatsou 2003), an explicit joint prior over f is imposed. Inmodels with
directional paths between the latent values f (see Fig. 1d), such as hidden Markov
models (HMMs; e.g., Rabiner and Juang 1986), the joint prior over f is defined implic-
itly via the directional dependencies. What is more, estimation can make use of the
latent Markov property of such models, for example, using the Kalman filter (e.g.,
Welch et al. 1995). In all of these cases (i.e., Fig. 1a–d), the factorization property is
retained and computational cost for the pointwise log-likelihood contributions remains
in O(n).

Yet, there are several reasons why a non-factorized observation model (see Fig. 1e)
may be necessary or preferred. In non-factorized models, the joint likelihood of the
response values p(y | θ) is not factorized into observation-specific components, but
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Fig. 1 Directional graphs illustrating common observation model dependency structures schematically.
Black rectangles depict manifest variables, that is, observed response values. Black circles depict latent
variables andparameters.Blue rectangles indicate a joint prior over the surroundedvariables.aConditionally
independent responses given hyperparameters (e.g., a linear regression model). b Conditionally dependent
responses with aMarkovian property (e.g., an autoregressivemodel of order 1). cConditionally independent
responses givenobservation-specific latent variableswith a joint prior (e.g., a latentGaussianprocessmodel).
d Conditionally independent responses given observation-specific latent variables with a Markov property
(e.g., a hidden Markov model). e Non-factorized model with a joint observation model over all responses
(color figure online)

rather given directly as one joint expression. For some models, an analytical factor-
ized formulation is simply not available in which case we speak of a non-factorizable
model. Even in models whose observation model can be factorized in principle, it
may still be preferable to use a non-factorized form. This is true in particular for
models with observation-specific latent variables (see Fig. 1c, d), as a non-factorized
formulation where the latent variables have been integrated out is often more efficient
and numerically stable. For example, a latent GP combined with a Gaussian obser-
vation model can be fit more efficiently by marginalizing over f and formulating the
GP directly on the responses y (e.g., Rasmussen 2003). Such marginalization has the
additional advantage that both exact and approximate leave-one-out predictive esti-
mation become more stable. This is because, in the factorized formulation, leaving
out response yi also implies treating the corresponding latent variable fi as missing,
which is then only identified through the joint prior over f . If this prior is weak, the
posterior of fi is highly influenced by one observation and the leave-one-out predic-
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tions of yi may be unstable both numerically and because of estimation error due to
finite MCMC sampling or similar finite approximations.

Whether a non-factorized model is used by necessity or for efficiency and stability,
it comes at the cost of having no direct access to the leave-one-out predictive densities
(1) and thus to the overall leave-one-out predictive accuracy. In theory, we can express
the observation-specific likelihoods in terms of the joint likelihood via

p(yi | yi−1, θ) = p(y | θ)

p(y−i | θ)
= p(y | θ)∫

p(y | θ) dyi
, (3)

but the expression on the right-hand side of (3) may not always have an analytical
solution. Computing log p(yi | y−i , θ) for non-factorized models is therefore often
impossible, or at least inefficient and numerically unstable. However, there is a large
class of multivariate normal and Student-t models for which we will provide efficient
analytical solutions in this paper.

2.1 Non-factorized normal models

The density of the N dimensional multivariate normal distribution of vector y is given
by

p(y|μ,�) = 1√
(2π)N |�| exp

(
−1

2
(y − μ)T�−1(y − μ)

)
(4)

with mean vector μ and covariance matrix �. Often μ and � are functions of the
model parameters θ , that is, μ = μ(θ) and � = �(θ), but for notational convenience
we omit the potential dependence ofμ and� on θ unless it is relevant. Using standard
multivariate normal theory (e.g., Tong 2012), we know that for the i th observation the
conditional distribution p(yi |y−i , θ) is univariate normal with mean

μ̃i = μi + σi,−i�
−1
−i (y−i − μ−i ) (5)

and variance

σ̃i = σi i + σi,−i�
−1
−i σ−i,i . (6)

In the equations above, μ−i is the mean vector without the i th element, �−i is the
covariance matrix without the i th row and column (�−1

−i is its inverse), σi,−i and σ−i,i

are the i th row and column vectors of � without the i th element, and σi i is the i th
diagonal element of �. Equations (5) and (6) can be used to compute the pointwise
log-likelihood values as

log p(yi | y−i , θ) = −1

2
log(2πσ̃i ) − 1

2

(yi − μ̃i )
2

σ̃i
. (7)
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Evaluating Eq. (7) for each yi and each posterior draw θs then constitutes the input
for the LOO-CV computations. However, the resulting procedure is quite inefficient.
Computation is usually dominated by the O(Nk) cost of computing �−1

−i , where k
depends on the structure of �. If � is dense then k = 3. For sparse � or reduced rank
computations we have 2 < k < 3. And since �−1

−i must be computed for each i , the
overall complexity is actually O(Nk+1).

Additionally, if�−i also depends on themodel parameters θ in a non-trivialmanner,
which is the case for most models of practical relevance, then it needs to be inverted for
each of the S posterior draws. Therefore, in most applications the overall complexity
will actually be O(SNk+1), which will be impractical in most situations. Accordingly,
we seek to find more efficient expressions for μ̃i and σ̃i that make these computations
feasible in practice.

Proposition 1 If y ismultivariate normalwithmeanvectorμandcovariancematrix�,
then the conditional mean and standard deviation of yi given y−i for any observation
i can be computed as

μ̃i = yi − gi
σ̄i i

, (8)

σ̃i = 1

σ̄i i
, (9)

where gi = [
�−1(y − μ)

]
i and σ̄i i = [

�−1
]
i i .

The proof is based on results from Sundararajan and Keerthi (2001) and is provided
in the “Appendix”. Contrary to the brute force computations in (5) and (6), where�−i

has to be inverted separately for each i , Eqs. (8) and (9) require inverting the full
covariance matrix � only once and it can be reused for each i . This reduces the
computational cost to O(Nk) if � is independent of θ and O(SNk) otherwise. If
the model is parameterized in terms of the covariance matrix � = �(θ), it is not
possible to reduce the complexity further as inverting � is unavoidable. However, if
the model is parameterized directly through the inverse of �, that is �−1 = �−1(θ),
the complexity goes down to O(SN 2). Note that the latter is not possible in the brute
force approach as both � and �−1 are required.

2.2 Non-factorized Student-t models

Several generalizations of the multivariate normal distribution have been suggested,
perhaps most notably the multivariate Student-t distribution (Zellner 1976), which
has an additional positive degrees of freedom parameter ν that controls the tails of the
distribution. If ν is small, the tails are much fatter than those of the normal distribution.
If ν is large, the multivariate Student-t distribution becomes more similar to the corre-
sponding multivariate normal distribution and is equal to the latter for ν → ∞. As ν

can be estimated alongside the other model parameters in Student-t models, the thick-
ness of the tails is flexibly adjusted based on information from the observed response
values and the prior. The (multivariate) Student-t distribution has been studied in var-
ious places (e.g., Zellner 1976; O’Hagan 1979; Fernández and Steel 1999; Zhang and
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Yeung 2010; Piché et al. 2012; Shah et al. 2014). For example, Student-t processes
which are based on the multivariate Student-t distribution constitute a generalization
of Gaussian processes while retaining most of the latter’s favorable properties (Shah
et al. 2014).2

The density of the N dimensional multivariate Student-t distribution of vector y is
given by

p(y|ν, μ,�) = �((ν + N )/2)

�(ν/2)

1√
(νπ)N |�|

(
1 + 1

ν
(y − μ)T�−1(y − μ)

)−(ν+N )/2

(10)

with degrees of freedom ν, location vectorμ and scale matrix�. The mean of y isμ if
ν > 1 and ν

ν−2� is the covariance matrix if ν > 2. Similar to the multivariate normal
case, the conditional distribution of the i th observation given all other observations
and the model parameters, p(yi |y−i , θ), can be computed analytically.

Proposition 2 If y is multivariate Student-t with degrees of freedom ν, location vector
μ, and scale matrix �, then the conditional distribution of yi given y−i for any
observation i is univariate Student-t with parameters

ν̃i = ν + N − 1, (11)

μ̃i = μi + σi,−i�
−1
−i (y−i − μ−i ), (12)

σ̃i = ν + β−i

ν + N − 1

(
σi i + σi,−i�

−1
−i σ−i,i

)
, (13)

where

β−i = (y−i − μ−i )
T�−1

−i (y−i − μ−i ). (14)

A proof based on results of Shah et al. (2014) is given in the Appendix. Here μ̃i is
the same as in the normal case and σ̃i is the same up to the correction factor ν+β−i

ν+N−1 ,
which approaches 1 for ν → ∞ as one would expect. Based on the above equations,
we can compute the pointwise log-likelihood values in the Student-t case as

log p(yi | y−i , θ) = log(�((ν̃i + 1)/2)) − log(�(ν̃i/2)) − 1

2
log(ν̃iπσ̃i )

− ν̃i + 1

2
log

(
1 + 1

ν̃i

(yi − μ̃i )
2

σ̃i

)
. (15)

This approach has the same overall computational cost of O(SNk+1) as the non-
optimized normal case and is therefore quite inefficient. Fortunately, the efficiency
can again be improved.

2 A Student-t process is not to be confused with a factorized univariate Student-t likelihood in combination
with a Gaussian process on the corresponding latent variables as these models have different properties.
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Proposition 3 If y is multivariate Student-t with degrees of freedom ν, location vector
μ, and scale matrix �, then the conditional location and scale of yi given y−i for any
observation i can be computed as

μ̃i = yi − gi
σ̄i i

, (16)

σ̃i = ν + β−i

ν + N − 1

1

σ̄i i
, (17)

with

β−i = (y−i − μ−i )
T

(
�−1 − σ̄−i,i σ̄

T−i,i

σ̄i i

)
(y−i − μ−i ), (18)

where gi = [
�−1(y − μ)

]
i , σ̄i i = [

�−1
]
i i , and σ̄−i,i = [

�−1
]
−i,i is the i th column

vector of �−1 without the i th element.

The proof is provided in theAppendix.After inverting�, computingβ−i for a single
i is an O(N 2) operation,which needs to be repeated for each observation. So the cost of
computing β−i for all observations is O(N 3). The cost of inverting � continues to be
O(Nk) and so the overall cost is dominated by O(N 3), or O(SN 3) if� depends on the
model parameters θ in a non-trivial manner. Unlike the normal case, we cannot reduce
the computational costs below O(SN 3) even if the model is parameterized directly
in terms of �−1 = �−1(θ) and so avoids matrix inversion altogether. However,
this is still substantially more efficient than the brute force approach, which requires
O(SNk+1) > O(SN 3) operations.

2.3 Example: lagged SARmodels

It often requires additional work to take a givenmultivariate normal or Student-t model
and express it in the form required to apply the equations for the predictive mean and
standard deviation. Consider, for example, the lagged simultaneous autoregressive
(SAR) model (Cressie 1992; Haining and Haining 2003; LeSage and Pace 2009), a
spatial model with many applications in both the social sciences (e.g., economics) and
natural sciences (e.g., ecology). The model is given by

y = ρWy + η + ε, (19)

or equivalently

(I − ρW )y = η + ε, (20)

where ρ is a scalar spatial correlation parameter and W is a user-defined matrix of
weights. The matrix W has entries wi i = 0 along the diagonal and the off-diagonal
entrieswi j are larger when units i and j are closer to each other butmostly zero aswell.
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In a linear model, the predictor term is η = Xβ, with design matrix X and regression
coefficientsβ, but the definition of the lagged SARmodel holds for arbitrary η, so these
results are not restricted to the linear case. See LeSage and Pace (2009), Sect. 2.3, for
a more detailed introduction to SAR models. A general discussion about predictions
of SAR models from a frequentist perspective can be found in Goulard et al. (2017).

If we have ε ∼ N(0, σ 2 I ), with residual variance σ 2 and identity matrix I of
dimension N , it follows that

(I − ρW )y ∼ N(η, σ 2 I ), (21)

but this standard way of expressing the model is not compatible with the requirements
of Proposition 1. To make the lagged SAR model reconcilable with this proposition
we need to rewrite it as follows (conditional on ρ, η, and σ 2):

y ∼ N
(
(I − ρW )−1η, σ 2(I − ρW )−1(I − ρW )−T

)
, (22)

or more compactly, with W̃ = (I − ρW ),

y ∼ N
(
W̃−1η, σ 2(W̃TW̃ )−1

)
. (23)

Written in this way, the lagged SAR model has the required form (4). Accordingly,
we can compute the leave-one-out predictive densities with Eqs. (8) and (9), replacing
μ with W̃−1η and taking the covariance matrix � to be σ 2(W̃ T W̃ )−1. This implies
�−1 = σ−2W̃ W̃ T and so that the overall computational cost is dominated by W̃−1η.
In SAR models, W is usually sparse and so is W̃ . Thus, if sparse matrix operations
are used, then the computational cost for �−1 will be less than O(N 2) and for W̃−1 it
will be less than O(N 3) depending on number of non-zeros and the fill pattern. Since
W̃ depends on the parameter ρ in a non-trivial manner, W̃−1 needs to be computed for
each posterior draw, which implies an overall computational cost of less than O(SN 3).

If the residuals are Student-t distributed, we can apply analogous transformations
as above to arrive at the Student-t distribution for the responses

y ∼ t
(
ν, W̃−1η, σ 2(W̃TW̃ )−1

)
, (24)

with computational cost dominated by the computation of the βi from Eq. (18) which
is in O(SN 3).

Studying leave-one-out predictive densities in SARmodels is related to considering
impact measures, that is, measures to quantify how changes in the predicting variables
of a given observation i affect the responses in other observations j �= i as well as
the obtained parameter estimates (see LeSage and Pace 2009, Section 2.7). A detailed
discussion of this topic it out of scope of the present paper.
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3 Approximate LOO-CV for non-factorizedmodels

Exact LOO-CV, requires refitting the model N times, each time leaving out one obser-
vation. Alternatively, it is possible to obtain an approximate LOO-CV using only a
singlemodel fit by instead calculating the pointwise log-predictive density (1), without
leaving out any observations, and then applying an importance sampling correction
(Gelfand et al. 1992), for example, using Pareto smoothed importance sampling (PSIS;
Vehtari et al. 2017).

The conditional pointwise log-likelihood matrix of dimension S × N is the only
required input to the approximate LOO-CV algorithm from Vehtari et al. (2017) and
thus the equations provided in Sect. 2 allow for approximate LOO-CV for any model
that can be expressed conditionally in terms of a multivariate or Student-t model with
invertible covariance/scale matrix �; including those where the likelihood does not
factorize.

Suppose we have obtained S posterior draws θ(s) (s = 1, . . . , S), from the full
posterior p(θ | y) using MCMC or another sampling algorithm. Then, the pointwise
log-predictive density (1) can be approximated as:

p(yi | y−i ) ≈
∑S

s=1 p(yi | y−i , θ(s)) w
(s)
i∑S

s=1 w
(s)
i

, (25)

where w
(s)
i are importance weights to be computed in two steps. First, we obtain the

raw importance ratios

r (s)
i ∝ 1

p(yi | y−i , θ(s))
, (26)

and then stabilize them using Pareto-smoothed importance-sampling to obtain the
weights w

(s)
i (Vehtari et al. 2017, 2019). The resulting approximation is referred to as

PSIS-LOO-CV (Vehtari et al. 2017).
For Bayesian models fit using MCMC, the whole procedure of evaluating and

comparing model fit via PSIS-LOO-CV can be summarized as follows:

1. Fit the model using MCMC obtaining S samples from the posterior distribution of
the parameters θ .

2. For each of the S draws of θ , compute the pointwise log-likelihood value for each
of the N observations in y as described in Sect. 2. The results can be stored in an
S × N matrix.

3. Run the PSIS algorithm from Vehtari et al. (2017) on the S× N matrix obtained in
step 2 to obtain a PSIS-LOO-CV estimate. For convenience, the loo R package
(Vehtari et al. 2018) provides this functionality.

4. Repeat the steps 1–3 for each model under consideration and perform model com-
parison based on the obtained PSIS-LOO-CV estimates.

In the Sect. 4, we demonstrate this method by performing approximate LOO-CV
for lagged SAR models fit to spatially correlated crime data.
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3.1 Validation using exact LOO-CV

In order to validate the approximate LOO-CV procedure, and also in order to allow
exact computations to bemade for a small number of leave-one-out folds for which the
Pareto-k diagnostic (Vehtari et al. 2019) indicates an unstable approximation, we need
to consider howwemight do exact LOO-CV for a non-factorized model. Here we will
provide the necessary equations and in the supplementary materials we provide code
for comparing the exact and approximate versions.

In the case of those multivariate normal or Student-t models that have the marginal-
ization property, exact LOO-CV is relatively straightforward: when refitting themodel
we can simply drop the one row and column of the covariance matrix� corresponding
to the held out observation without altering the prior of the other observations. But this
does not hold in general for all multivariate normal or Student-t models (in particular
it does not hold for SAR models). Instead, in order to keep the original prior, we may
need to maintain the full covariance matrix � even when one of the observations is
left out.

The general solution is to model yi as a missing observation and estimate it along
with all of the model parameters. For a multivariate normal model log p(yi | y−i ) can
be computed as follows. First, we model yi as missing and denote the corresponding
parameter ymis

i . Then, we define

ymis(i) = (y1, . . . , yi−1, y
mis
i , yi+1, . . . , yN ). (27)

to be the same as the full set of observations y but replacing yi with the parameter ymis
i .

Second, we compute the log predictive densities as in Eqs. (7) and (15), but replacing
y with ymis(i) in all computations. Finally, the leave-one-out predictive distribution
can be estimated as

p(yi | y−i ) ≈ 1

S

S∑
s=1

p(yi | y−i , θ
(s)
−i ), (28)

where θ
(s)
−i are draws from the posterior distribution p(θ | ymis(i)).

4 Case study: neighborhood crime in Columbus, Ohio

In order to demonstrate how to carry out the computations implied by these equations,
we will fit and evaluate lagged SAR models to data on crime in 49 different neigh-
borhoods of Columbus, Ohio during the year 1980. The data was originally described
in (Anselin 1988) and ships with the spdep R package (Bivand and Piras 2015). The
three variables in the data set relevant to this example are: CRIME: the number of
residential burglaries and vehicle thefts per thousand households in the neighborhood,
HOVAL: housing value in units of $1000 USD, and INC: household income in units
of $1000 USD. In addition, we have information about the spatial relationship of
neighborhoods from which we can construct the weight matrix to help account for the
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spatial dependency among the observations. In addition to the loo R package (Vehtari
et al. 2018), for this analysis we use the brms interface (Bürkner 2017, 2018) to Stan
(Carpenter et al. 2017) to generate a Stan program and fit the model. The complete R
code for this case study can be found in the supplemental materials.

We fit a normal SAR model first using the weakly-informative default priors of
brms. In Fig. 2a, we see that both higher income and higher housing value predict
lower crime rates in the neighborhood. Moreover, there seems to be substantial spatial
correlation between adjacent neighborhoods, as indicated by the posterior distribution
of the lagsar parameter.

In order to evaluate model fit, the next step is to compute the pointwise log-
likelihood values needed for approximate LOO-CV and we apply the method laid
out in Sect. 3. Since this is already implemented in brms,3 we can simply use the
built-in loo method on the fitted model to obtain the desired results. The quality of
the approximation can be investigated graphically by plotting the Pareto-k diagnostic
for each observation. Ideally, they should not exceed 0.5, but in practice the algorithm
turns out to be robust up to values of 0.7 (Vehtari et al. 2017, 2019). In Fig. 2b, we
see that the fourth observation is problematic. This has two implications. First, it may
reduce the accuracy of the LOO-CV approximation. Second, it indicates that the fourth
observation is highly influential for the posterior and thus questions the robustness of
the inference obtained by means of this model. We will address the former issue first
and come back to the latter issue afterwards.

The PSIS-LOO-CV approximation of the expected log predictive density for new
data reveals elpdapprox = -186.9. To verify the correctness of our approximate esti-
mates, this result still needs to be validated against exact LOO-CV, which is somewhat
more involved, as we need to re-fit the model N times each time leaving out a single
observation. For the lagged SAR model, we cannot just ignore the held-out obser-
vation entirely as this will change the prior distribution. In other words, the lagged
SAR model does not have the marginalization property that holds, for instance, for
Gaussian process models. Instead, we have to model the held-out observation as a
missing value, which is to be estimated along with the other model parameters (see
the supplemental material for details on the R code).

A first step in the validation of the pointwise predictive density is to compare the
distribution of the implied response values for the left-out observation using the point-
wise mean and standard deviation from (see Proposition 1) to the distribution of the
ymis
i posterior-predictive values estimated as part of themodel. If the pointwise predic-
tive density is correct, the two distributions should match very closely (up to sampling
error). In Fig. 2c, we overlay these two distributions for the first four observations
and see that they match very closely (as is the case for all 49 observations in this
example).

In the final step, we compute the pointwise predictive density based on the exact
LOO-CV and compare it to the approximate PSIS-LOO-CV result computed ear-
lier. The results of the approximate (elpdapprox = −186.9) and exact LOO-CV
(elpdexact = −188.1) are similar but not as close as we would expect if there were
no problematic observations. We can investigate this issue more closely by plotting

3 Source code is available at https://github.com/paul-buerkner/brms/blob/master/R/log_lik.R.
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the approximate against the exact pointwise ELPD values. In Fig. 2d, the fourth data
point—the observation flagged as problematic by the PSIS-LOO approximation—is
colored in red and is the clear outlier. Otherwise, the correspondence between the exact
and approximate values is strong. In fact, summing over the pointwise ELPD values
and leaving out the fourth observation yields practically equivalent results for approx-
imate and exact LOO-CV (elpdapprox,−4 = −173.0 vs. elpdexact,−4 = −173.0). From
this we can conclude that the difference we found when including all observations
does not indicate an error in the implementation of the approximate LOO-CV but
rather a violation of its assumptions.

With the correctness of the approximating procedure established for non-
problematic observations, we can now go ahead and correct for the problematic
observation in the approximate LOO-CV estimate. Vehtari et al. (2017) recommend
to perform exact LOO-CV only for the problematic observations and replace their
approximate ELPD contributions with their exact counterparts (see also for an alter-
native method Paananen et al. 2019). So this time, we do not use exact LOO-CV
for validation of the approximation but rather to improve the latter’s accuracy when
needed. In the present normal SAR model, only the 4th observation was diagnosed
as problematic and so we only need to update the ELPD contribution of this obser-
vation. The results of the corrected approximate (elpdapprox = −188.0 ) and exact
LOO-CV (elpdexact = −188.1) are now almost equal for the complete data set as
well.

Although we were able to correct for the problematic observation in the approxi-
mate LOO-CV estimation, the mere existence of such problematic observations raises
doubts about the appropriateness of the normal SAR model for the present data.
Accordingly, it is sensible to fit a Student-t SAR model as a potentially better predict-
ing alternative due to its fatter tails. We choose an informative Gamma(4, 0.5) prior
(with mean 8 and standard deviation 4) on the degrees of freedom parameter ν to
ensure rather fat tails of the likelihood a-priori. For all other parameters, we continue
to use the weakly-informative default priors of brms. In Fig. 3a, the marginal posterior
distributions of the main model parameters are depicted. Comparing the results to
those shown in Fig. 2a, we see that the estimates of both the regression parameters and
the SAR autocorrelation are quite similar to the estimates obtained from the normal
model.

In contrast to the normal case, we see in Fig. 3b that the 4th observation is no
longer recognized as problematic by the Pareto-k diagnostics. It does exceed 0.5
slightly but does not exceed the more important threshold of 0.7 above which we
would stop trusting the PSIS-LOO-CV approximation. Indeed, comparison between
the approximate (elpdapprox = −187.7 ) and exact LOO-CV (elpdexact = −187.9 )
based on the complete data demonstrates that they are very similar (up to random
error due to the MCMC estimation). The results shown in Fig. 3c, d have the same
interpretation as the analogous plots for the normal case and provide further evidence
for both the correctness of our (exact and approximate) LOO-CV methods for non-
factorized Student-t models and for the quality of the PSIS-LOO-CV approximation
for the present Student-t SAR model.

Lastly, let us compare the PSIS-LOO-CV estimate of the normal SAR model (after
correcting for the problematic observation via refit) to the Student-t SAR model. The
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Fig. 2 Results of the normal SAR model. (1) Posterior distribution of selected parameters of the lagged
SAR model along with posterior median and 50% central interval. (2) PSIS diagnostic plot showing the
Pareto-k-estimate of each observation. (3) Implied response values of the first four observations computed a
after model fitting (type = ‘loo’) and b as part of the model in the form of posterior-predictive draws for the
missing observation (type = ‘pp’). As both distributions are almost identical, the ‘loo’ distribution is hidden
behind the ‘pp’ distribution. (4) Comparison of approximate and exact pointwise elpd values. Problematic
observations are marked as red dots (color figure online)

ELPD difference between the two models is −0.3 (SE = 0.5) in favor of the Student-t
model, and thus very small and not substantial for any practical purposes. As shown in
Fig. 4, the pointwise elpd contributions are also highly similar. The Student-t model
fits slightly but noticeably better only for the 4th observation. Other methods clearly
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Lagged SAR autocorrelation Residual degrees of freedom Residual standard deviation
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Fig. 3 Results of the Student-t SAR model. a Posterior distribution of selected parameters of the lagged
SAR model along with posterior median and 50% central interval. b PSIS diagnostic plot showing the
Pareto-k-estimate of each observation. c Implied response values of the first four observations computed
(1) after model fitting (type = ‘loo’) and (2) as part of the model in the form of posterior-predictive draws
for the missing observation (type = ‘pp’). As both distributions are almost identical, the ‘loo’ distribution is
hidden behind the ‘pp’ distribution. d Comparison of approximate and exact pointwise elpd values. There
were no problematic observations for this model

identify the 4th observation as problematic as well (e.g., Halleck Vega and Elhorst
2015). However, what exactly causes this outlier remains unclear so far as nobody has
been able to verify or spatially register the data set despite many attempts.
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Fig. 4 Comparison of approximate pointwise elpd values for the normal SAR model (after refit for the
4th observation) and the Student-t SAR model (without refit). Observations with relevant differences are
highlighted in red (color figure online)

5 Conclusion

In this paper we derived how to perform and validate exact and approximate leave-one-
out cross-validation (LOO-CV) for non-factorized multivariate normal and Student-
t models and we demonstrated the practical applicability of our method in a case
study using spatial autoregressive models. The proposed LOO-CV approximation
makes efficient and robust model fit evaluation and comparison feasible for many
models that are widely used in temporal and spatial statistics. Importantly, our method
does not only apply to non-factorizable models for which a factorized likelihood is
unavailable. It is also useful when factorization is possible in principle but could
result in a unstable LOO predictive density, either for numerical reasons or due to the
use of finite estimation procedures like Markov-Chain Monte Carlo. In such cases,
marginalizing over observation-specific latent variables and using a non-factorized
formulation can lead to more robust estimates.
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Appendix

Proof of Proposition 1 In their Lemma 1, Sundararajan and Keerthi (2001) prove for
any finite subset z of a zero-mean Gaussian process with covariance matrix � that the
LOO predictive mean and standard deviation can be computed as

μ̃i = zi − gi
σ̄i i

, (29)

σ̃i = 1

σ̄i i
, (30)

where gi = [
�−1z

]
i and σ̄i i = [

�−1
]
i i . Their proof does not make use of any specific

form of� and thus directly applies to all zero-mean multivariate normal distributions.
If y is multivariate normal with mean μ then (y − μ) is multivariate normal with
mean 0 and unchanged covariance matrix. Thus, we can replace z with (y − μ) in
the above equations. By the same argument we see that, if (yi − μi ) has LOO mean
(yi − μi ) − gi

σ̄i i
, then y has LOO mean yi − gi

σ̄i i
which completes the proof. �	

Proof of Proposition 2 Using the parameterization K := Cov(y) = ν
ν−2� and requir-

ing ν > 2, Shah et al. (2014) proof in their Lemma 3 that, if y = (y1, y2) ismultivariate
Student-t of dimension N = N1 + N2, then y2 given y1 is multivariate Student-t of
dimension N2. Moreover, they provide equations for the parameters of the conditional
Student-t distribution. When we parameterize for� instead of K and allow for ν > 0,
we can repeat their proof analogously which yields the following parameters of the
conditional Student-t distribution of y2 given y1:

ν̃2 = ν + N1, (31)

μ̃2 = μ2 + �2,1�
−1
1 (y1 − μ1), (32)

σ̃2 = ν + β1

ν + N1

(
�22 + �2,1�

−1
1 �1,2

)
, (33)

with

β1 = (y1 − μ1)
T�−1

1 (y1 − μ1). (34)

where we use the subscripts 1 and 2 to refer to the 1st and 2nd subset of y, respectively.
Setting y1 = y−i , y2 = yi for i = 1, . . . , N and noting that N1 = N−i = N − 1
completes the proof. �	

Proof of Proposition 3 The correctness of Eqs. (16) and (17) follows directly from
Eqs. (8), and (9). To show (18), we perform a rank-one update of�−1 as per Theorem
2.1 of Juárez-Ruiz et al. (2016) based on the Sherman-Morrison formula (Bartlett
1951; Sherman and Morrison 1950). In general, if we exclude row p and column q
from �, the inverse �−1−p,−q of �−p,−q exists if σpq �= 0 and σ̄pq �= 0. The elements
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m jk ( j, k = 1, . . . , N , j �= p, k �= q) of �−1−p,−q are then given by

m jk = σ̄ jk − σ̄ j pσ̄qk

σ̄pq
. (35)

where σ̄ jk is the ( j, k)th element of�−1. We now set p = q = i and note that σi i > 0
and σ̄i i > 0 since � is a covariance matrix, which leads to

m jk = σ̄ jk − σ̄ j i σ̄ik

σ̄i i
. (36)

for each i = 1, . . . , N . Switching to matrix notation completes the proof. �	
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