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ABSTRACT

One of the common goals of time series analysis is to use the
observed series to inform predictions for future observations. In the
absence of any actual new data to predict, cross-validation can be
used to estimate a model’s future predictive accuracy, for instance,
for the purpose of model comparison or selection. Exact cross-
validation for Bayesian models is often computationally expensive,
but approximate cross-validation methods have been developed,
most notably methods for leave-one-out cross-validation (LOO-CV).
If the actual prediction task is to predict the future given the past,
LOO-CV provides an overly optimistic estimate because the informa-
tion from future observations is available to influence predictions of
the past. To properly account for the time series structure, we can use
leave-future-out cross-validation (LFO-CV). Like exact LOO-CV, exact
LFO-CV requires refitting the model many times to different sub-
sets of the data. Using Pareto smoothed importance sampling, we
propose a method for approximating exact LFO-CV that drastically
reduces the computational costs while also providing informative
diagnostics about the quality of the approximation.
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1. Introduction

Awide range of statistical models for time series have been developed, finding applications

in industry andnearly all empirical sciences [e.g. see 1,2].One commongoal of a time series

analysis is to use the observed series to inform predictions for future time points. In this

paper, we will assume a Bayesian approach to time series modelling, in which case if it is

possible to sample from the posterior predictive distribution implied by a given time series

model, then it is straightforward to generate predictions as far into the future as we want.

When working in discrete time, we will refer to the task of predicting a sequence of M

future observations asM-step-ahead prediction (M-SAP).

It is easy to evaluate theM-SAP performance of a time series model by comparing the

predictions to the observed sequence ofM future data points once they become available.

However, we would often like to estimate the future predictive performance of a model

before we are able to collect additional observations. If there are many competing models
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wemay also need to first decide whichmodel (or which combination of themodels) to rely

on for prediction [3–7].

In the absence of new data, one general approach for evaluating a model’s predictive

accuracy is cross-validation. The data is first split into two subsets, then we fit the statistical

model to the first subset and evaluate predictive performance with the second subset. We

may do this once or many times, each time leaving out a different subset.

If the data points are not ordered in time, or if the goal is to assess the non-time-

dependent part of the model, then we can use leave-one-out cross-validation (LOO-CV).

For a data set with N observations, we refit the model N times, each time leaving out one

of the N observations and assessing how well the model predicts the left-out observation.

Due to the number of required refits, exact LOO-CV is computationally expensive, in par-

ticular when performing full Bayesian inference and refitting the model means estimating

a new posterior distribution rather than a point estimate. But it is possible to approximate

exact LOO-CV using Pareto smoothed importance sampling [PSIS; 8,9]. PSIS-LOO-CV

only requires a single fit of the full model and has sensitive diagnostics for assessing the

validity of the approximation.

However, using LOO-CV with times series models is problematic if the goal is to esti-

mate the predictive performance for future time points. Leaving out only one observation

at a time will allow information from the future to influence predictions of the past (i.e.

data from times t + 1, t + 2, . . . , would inform predictions for time t). Instead, to apply

the idea of cross-validation to the M-SAP case we can use what we will refer to as leave-

future-out cross-validation (LFO-CV). LFO-CV does not refer to one particular prediction

task but rather to various possible cross-validation approaches that all involve some form

of prediction of future time points.

Like exact LOO-CV, exact LFO-CV requires refitting the model many times to differ-

ent subsets of the data, which is computationally expensive, in particular for full Bayesian

inference. In this paper, we extend the ideas from PSIS-LOO-CV and present PSIS-

LFO-CV, an algorithm that typically only requires refitting a time series model a small

number times. This will make LFO-CV tractable for many more realistic applications than

previously possible, including time series model averaging using stacking of predictive

distributions [10].

The efficiency of PSIS-LFO-CV compared to exact LFO-CV relies on the ability to

compute samples from the posterior predictive distribution (required for the importance

sampling) in much less time than it takes to fully refit the model. This assumption is most

likely justified when estimating a model using full Bayesian inference via MCMC, varia-

tional inference, or related methods as they are very computationally intensive. We do not

make any assumptions about how samples from the posterior or the posterior predictive

density at a given point in time have been obtained.

Our proposed algorithm was motivated by the practical need for efficient cross-

validation tools for Bayesian time series models fit using generic probabilistic program-

ming frameworks, such as Stan [11], JAGS [12], PyMC3 [13] and Pyro [14]. These

frameworks have become very popular in recent years also for analysis of time series

models. For many models, inference could also be performed using sequential Monte

Carlo (SMC) [e.g. 15,16] using, for example, the SMC-specific framework Birch [17].

The implementation details of LFO-CV for SMC algorithms are beyond the scope of this

paper.1
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The structure of the paper is as follows. In Section 2, we introduce the idea and var-

ious forms of M-step-ahead prediction and how to approximate them using PSIS. In

Section 3, we evaluate the accuracy of the approximation using extensive simulations.

Then, in Section 4, we provide two case studies demonstrating the application of PSIS-

LFO-CVmethods to real data sets. In the first we model changes in the water level of Lake

Huron and in the second the date of the yearly cherry blossom inKyoto.We end in Section 5

with a discussion of the usefulness and limitations of our approach.

2. M-step-ahead predictions

Assumewehave a time series of observations y = (y1, y2, . . . , yN) and letL be theminimum

number of observations from the series that we will require before making predictions for

future data. Depending on the application and how informative the data are, it may not be

possible tomake reasonable predictions for yi+1 based on (y1, . . . , yi) until i is large enough

so that we can learn enough about the time series to predict future observations. Setting

L = 10, for example, means that we will only assess predictive performance starting with

observation y11, so that we always have at least 10 previous observations to condition on.

In order to assess M-SAP performance, we would like to compute the predictive

densities

p(yi+1:M | y1:i) = p(yi+1, . . . , yi+M | y1, . . . , yi) (1)

for each i ∈ {L, . . . ,N-M}, where we use y1:i = (y1, . . . , yi) and yi+1:M = y(i+1):(i+M) =

(yi+1, . . . , yi+M) to shorten the notation .2 As a global measure of predictive accuracy, we

can use the expected log predictive density [ELPD; 8], which, for M-SAP, can be defined

as

ELPD =

N−M∑
i=L

∫
pt(ỹi+1:M) log p(ỹi+1:M | y1:i) d ỹi+1:M . (2)

The distribution pt(ỹi+1:M) describes the true data generating process for new data ỹi+1:M .

As these true data generating processes are unknown, we approximate the ELPD using

LFO-CV of the observed responses yi+1:M , which constitute a particular realization of

ỹi+1:M . This approach of approximating the true data generating process with observed

data is fundamental to all cross-validation procedures. As we have no direct access to

the underlying truth, the error implied by this approximation is hard to quantify but also

unavoidable [c.f., 18].

Plugging in the realization yi+1:M for ỹi+1:M leads to [c.f., 7,18]:

ELPDLFO =

N−M∑
i=L

log p(yi+1:M | y1:i). (3)

The quantities p(yi+1:M | y1:i) can be computed with the help of the posterior distribution

p(θ | y1:i) of the parameters θ conditional on only the first i observations of the time series:

p(yi+1:M | y1:i) =

∫
p(yi+1:M | y1:i, θ) p(θ | y1:i) dθ . (4)

In order to evaluate predictive performance of future data, it is important to predict yi+1:M

only conditioning on the past data y1:i and not on the present data yi+1:M . Including the
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present data in the posterior estimation, that is, using the posterior p(θ | y1:(i+M)) in (4),

would result in evaluating in-sample fit. This corresponds to what Vehtari et al. [8] call

log-predictive density (LPD), which overestimates predictive performance for future data

[8].

Most time series models do not have conditionally independent observations, that is,

yi+1:M depend on y1:i even after conditioning on θ . As such, we cannot simplify the inte-

grand in (4) and always need to take y1:i into account when computing the predictive

density of yi+1:M . The concept of conditional independence of observations is closely

related to the concept of factorizability of likelihoods. For the purpose of LFO-CV, we can

safely use the time-ordering naturally present in time-series data to obtain a factorized like-

lihood even if observations are not conditionally independent. See Bürkner et al. [19] for

discussion on computing predictive densities of non-factorized models and factorizability

in general.

In practice, we will not be able to directly solve the integral in (4), but instead have to use

Monte-Carlo methods to approximate it. Having obtained S random draws (θ
(1)
1:i , . . . , θ

(S)
1:i )

from the posterior distribution p(θ | y1:i), we can estimate p(yi+1:M|y1:i) as

p(yi+1:M | y1:i) ≈
1

S

S∑
s=1

p(yi+1:M | y1:i, θ
(s)
1:i ). (5)

In this paper, we use ELPD as a measure of predictive accuracy, but M-SAP (and the

approximations we introduce below) may also be based on other global measures of accu-

racy such as the rootmean squared error (RMSE) or themedian absolute deviation (MAD).

The reason for our focus on ELPD is that it evaluates a distribution rather than a point

estimate (like the mean or median) to provide a measure of out-of-sample predictive per-

formance, whichwe see as favourable from aBayesian perspective [7]. The codewe provide

on GitHub (https://github.com/paul-buerkner/LFO-CV-paper) is modularized to support

arbitrary measures of accuracy as long as they can be represented in a pointwise man-

ner, that is, as increments per observation. In Appendix C, we also provide additional

simulation results using RMSE instead of ELPD.

2.1. ApproximateM-step-ahead predictions

The equations above make use of posterior distributions from many different fits of the

model to different subsets of the data. To obtain the predictive density p(yi+1:M | y1:i), a

model is fit to only the first i data points, and we need to do this for every value of i

under consideration (all i ∈ {L, . . . ,N-M}). Below, we present a new algorithm to reduce

the number of models that need to be fit for the purpose of obtaining each of the densities

p(yi+1:M | y1:i). This algorithm relies in a central manner on Pareto smoothed importance

sampling [8,9], which we will briefly review next.

2.1.1. Pareto smoothed importance sampling

Importance sampling is a technique for computing expectationswith respect to some target

distribution using an approximating proposal distribution that is easier to draw samples

from than the actual target. If f (θ) is the target and g(θ) is the proposal distribution, we
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can write any expectation of some function h(θ) with respect to f as

Ef [h(θ)] =

∫
h(θ)f (θ) d θ =

∫
[h(θ)f (θ)/g(θ)]g(θ) d θ∫
[f (θ)/g(θ)]g(θ) d θ

=

∫
h(θ)r(θ)g(θ) d θ∫
r(θ)g(θ) d θ

(6)

with importance ratios

r(θ) =
f (θ)

g(θ)
. (7)

Accordingly, if θ (s) are S random draws from g(θ), we can approximate

Ef [h(θ)] ≈

∑S
s=1 h(θ

(s))r(θ (s))∑S
s=1 r(θ

(s))
, (8)

provided that we can compute the raw importance ratios r(θ (s)) up to some multiplicative

constant. The raw importance ratios serve as weights on the corresponding random draws

in the approximation of the quantity of interest.

The main problem with this approach is that the raw importance ratios tend to have

large or infinite variance and results can be highly unstable. In order to stabilize the com-

putations, we can perform the additional step of regularizing the largest raw importance

ratios using the corresponding quantiles of the generalized Pareto distribution fitted to the

largest raw importance ratios. This procedure is called Pareto smoothed importance sam-

pling [PSIS; 8,9,20] andhas been demonstrated to have a lower error and faster convergence

rate than other commonly used regularization techniques [9].

In addition, PSIS comes with a useful diagnostic to evaluate the quality of the impor-

tance sampling approximation. The shape parameter k of the generalized Pareto distribu-

tion fit to the largest importance ratios provides information about the number of existing

moments of the distribution of the weights (smoothed ratios) and the actual importance

sampling estimate.When k<0.5, the weight distribution has finite variance and the central

limit theorem ensures fast convergence of the importance sampling estimate with increas-

ing number of draws. This implies that approximate LOO-CV via PSIS is highly accurate

for k<0.5 [9]. For 0.5 ≤ k < 1, a generalized central limit theorem holds, but the conver-

gence rate drops quickly as k increases [9].Using bothmathematical analysis andnumerical

experiments, PSIS has been shown to be relatively robust for k < 0.7 [8,9]. As such, the

default threshold is set to 0.7 when performing PSIS LOO-CV [8,20].

2.1.2. PSIS applied toM-step-ahead predictions

We now turn back to the task of estimating M-step-ahead performance for time series

models. First, we refit the model using the first L observations of the time series and then

perform a single exactM-step-ahead prediction step for p(yL+1:M | y1:L) as per (4). Recall

that L is the minimum number of observations we have deemed acceptable for making

predictions (setting L = 0 means the first data point will be predicted only based on the

prior). We define i⋆ = L as the current point of refit. Next, starting with i = i⋆ + 1, we
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approximate each p(yi+1:M | y1:i) via

p(yi+1:M | y1:i) ≈

∑S
s=1 w

(s)
i p(yi+1:M | y1:i, θ

(s))∑S
s=1 w

(s)
i

, (9)

where θ (s) = θ
(s)
1:i⋆ are drawn from the posterior distribution based on the first i⋆ obser-

vations and w
(s)
i are the PSIS weights obtained in two steps. First, we compute the raw

importance ratios

r
(s)
i = ri(θ

(s)) =
f1:i(θ

(s))

f1:i⋆(θ (s))
∝

p(θ (s))
∏

j∈1:i p(yj | y1:(j−1), θ
(s))

p(θ (s))
∏

j∈1:i⋆ p(yj | y1:(j−1), θ (s))

=
∏

j∈(i⋆+1):i

p(yj | y1:(j−1), θ
(s)), (10)

and then stabilize them using PSIS as described in Section 2.1.1. The function f1:i denotes

the posterior distribution based on the first i observations, that is, f1:i = p(θ | y1:i), with f1:i⋆

defined analogously. The index set (i⋆ + 1) : i indicates all observations which are part of

the data for the model f1:i whose predictive performance we are trying to approximate but

not for the actually fitted model f1:i⋆ . The proportional statement arises from the fact that

we ignore the normalizing constants p(y1:i) and p(y1:i⋆) of the compared posteriors, which

leads to a self-normalized variant of PSIS [c.f. 8].

Continuing with the next observation, we gradually increase i by 1 (we move forward

in time) and repeat the process. At some observation i, the variability of the importance

ratios r
(s)
i will become too large and importance sampling will fail. We will refer to this

particular value of i as i⋆1. To identify the value of i⋆1, we check for which value of i does

the estimated shape parameter k of the generalized Pareto distribution first cross a certain

threshold τ [9]. Only then do we refit the model using the observations up to i⋆1 and restart

the process from there by setting θ (s) = θ
(s)
1:i⋆1

and i⋆ = i⋆1 until the next refit. An illustration

of this procedure is shown in Figure 1.

Figure 1. Visualization of PSIS approximated one-step-ahead predictions. Predicted observations are
indicated by X. In the shown example, the model was last refit at the i⋆ = 4th observation.
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This bears some resemblance to Sequential Monte Carlo, also known as particle or

Monte Carlo filtering [e.g. 15,16,21,22], in that applying SMC to state space models also

entails moving forward in time and using importance sampling to approximate the next

state from the information in the previous states [16,22]. However, in our case we are

assuming we can sample from the posterior distribution and are instead concerned with

estimating the model’s predictive performance. Unlike SMC, PSIS-LFO-CV also entails a

full recomputation of themodel viaMarkov chainMonte Carlo (MCMC) once importance

sampling fails.

In some cases, we may only need to refit once and in other cases we will find a value i⋆2
that requires a second refitting,maybe an i⋆3 that requires a third refitting, and so on.We refit

as many times as is required (only when k > τ ) until we arrive at observation i = N-M. A

detailed description of the algorithm in the formof pseudo code is provided inAppendixA.

If the data are comprised of multiple independent time series, the algorithm can be applied

to each of the time series separately and the resulting ELPD values can be summed up after-

wards. If the data are comprised of multiple dependent time series, the algorithm should be

applied to the joint likelihood across all time-series for each observation i in order to take

the dependency into account.

Instead of moving forward in time, it is also possible to do PSIS-LFO-CVmoving back-

wards in time. However, in that case the target posterior is approximated by a distribution

based on more observations and, as such, the proposal distribution is narrower than the

target. This can result in highly influential importance weights more often than when the

proposal is wider than the target, which is the case for the forward PSIS-LFO-CVdescribed

above. In Appendix B, we show that moving backwards indeed requires more refits than

moving forward, andwithout any increase in accuracy.Whenwe refer to the PSIS-LFO-CV

algorithm in the main text, we are referring to the forward version.

The threshold τ is crucial to the accuracy and speed of the PSIS-LFO-CV algorithm.

If τ is too large, then we need fewer refits but accuracy will suffer. If τ is too small, then

accuracy will be higher but many refits will be required and the computation time may be

impractical. Limiting the number of refits without sacrificing too much accuracy is essen-

tial since almost all of the computation time for exact cross-validation of Bayesian models

is spent fitting the models (not calculating the predictions). Therefore, any reduction we

can achieve in the number of refits essentially implies a proportional reduction in the over-

all time required for cross-validation of Bayesian models. We will come back to the issue

of setting appropriate thresholds in Section 3.

3. Simulations

To evaluate the quality of the PSIS-LFO-CV approximation, we performed a simulation

study in which the following conditions were systematically varied:

• The number M of future observations to be predicted took on values of M = 1 and

M = 4.

• The threshold τ of the Pareto k estimates was varied between k = 0.5 to k = 0.7 in steps

of 0.1.

• Six different data generating models were evaluated, with linear and/or quadratic terms

and/or autoregressive terms of order 2 (see Figure 2 for an illustration).
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Figure 2. Illustration of the models used in the simulations. Black points are observed data. The blue
line represents posterior predictions of themodel resembling the truedata-generatingprocesswith 90%
prediction intervals shown in grey. More details are provided in the text.

In all cases, the time series consisted ofN = 200 observations and the minimal number

of observations required beforemake predictions was set to L = 25.We ran 100 simulation

trials per condition.

Autoregressive (AR) models are some of the most commonly used time series models.

An AR(p) model – an autoregressive model of order p – can be defined as

yi = ηi + εi with εi =

p∑
k=1

ϕkεi−k + ei, (11)

where ηi is the linear predictor for the ith observation, ϕk are the autoregressive parameters

on the residuals εi, and ei are pairwise independent errors, which are usually assumed to

be normally distributed with equal variance σ 2. The model implies a recursive formula

that allows for computing the right-hand side of the equation for observation i based on

the values of the equations computed for previous observations. Observations from an AR

process are therefore not conditionally independent by definition, but the likelihood still

factorizes because we can write down a separate contribution for each observation [see 19

for more discussion on factorizability of statistical models].

In the quadraticmodel with AR(2) effects (themost complexmodel in our simulations),

the true data generating process was defined as

yi = b0 + b1t + b2t
2 + εi with εi = ϕ1εi−1 + ϕ2εi−2 + ei, (12)

where t is the time variable scaled to the unit interval, that is, t = 0 for the smallest time

point (1 in our simulations) and t = 1 for the largest time point (200 in our simulations).

Specifically, we set the true regression coefficients to the values of b0 = 0, b1 = 17, b2 =
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25, and the true autocorrelation parameters to ϕ1 = 0.5, and ϕ2 = 0.3 (see Figure 2 for

an illustration). The choices of the regression coefficients were done so that neither the

linear nor quadratic term dominates the other within the specified time frame. The values

of the autocorrelation parameters were set to represent typical positively autocorrelated

Figure 3. Simulation results of 1-step-ahead predictions. Histograms are based on 100 simulation trials
of time series with N = 200 observations requiring at least L = 25 observations to make predictions.
The black dashed lines indicate the exact LFO-CV result.
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data. In the simulation conditions without linear and/or quadratic and/or AR(2) terms,

the corresponding true parameters were simply fixed to zero. We always fit the true data

generatingmodel to the data. This is neither required for the validity of LFO-CV in general

nor for the validity of the comparison between exact and approximate versions but simply

a choice of convenience. For example, a linear model without autocorrelation is used when

all but b0 and b1 were set to zero in the simulations.

In addition to exact and approximate LFO-CV,we also computed approximate LOO-CV

for comparison. This is not because we think LOO-CV is a generally appropriate approach

for time series models, but because, in the absence of any approximate LFO-CV method,

researchers may have used approximate LOO-CV for time series models in the past simply

because it was the only available option. Demonstrating that LOO-CV is a biased esti-

mate of LFO-CV underscores the importance of developing methods better suited for the

task.

All simulations were done in R [23] using the brms package [24,25] together

with the probabilistic programming language Stan [11,26] for model fitting, the

loo R package [20] for the PSIS computations, and several tidyverse R packages

[27] for data processing. The full code and all results are available on Github

(https://github.com/paul-buerkner/LFO-CV-paper).

3.1. Results

In this section we focus on the ELPD as a measure out-of-sample predictive performance

for reasons outlined in Section 2. In Appendix C, we provide additional simulation results

for the RMSE.

Results of the 1-SAP simulations are visualized in Figure 3. Comparing the columns

of Figure 3, it is clearly visible that the accuracy of the PSIS approximation is indepen-

dent of the threshold τ when τ is within the interval [0.5, 0.7] motivated in 2.1.1 [9, this

would not be the case if τ was allowed to be larger;]. For all conditions, the PSIS-LFO-

CV approximation is highly accurate, that is, both unbiased and low in variance around

the corresponding exact LFO-CV value (represented by the dashed line in Figure 3). The

proportion of observations at which refitting the model was required did not exceed 3%

under any of the conditions and only increasedminimally when decreasing τ (see Table 1).

At least for the models investigated in our simulations, using τ = 0.7 seems to be sufficient

for achieving high accuracy and as such there is no need to lower the threshold below

that value. As expected, LOO-CV (the lighter histograms in Figure 3) is a biased estimate

Table 1. Mean proportions of required refits for PSIS-LFO-CV.

M τ constant linear quadratic AR2-only AR2-linear AR2-quadratic

1 0.5 0.01 0.01 0.02 0.01 0.02 0.03
0.6 0.01 0.01 0.02 0.01 0.02 0.02
0.7 0.01 0.01 0.02 0.01 0.01 0.02

4 0.5 0.01 0.01 0.02 0.01 0.02 0.03
0.6 0.01 0.01 0.02 0.01 0.02 0.02
0.7 0.01 0.01 0.02 0.01 0.01 0.02

Note: Results are based on 100 simulation trials of time series with N = 200 observations requiring at least L = 25 obser-
vations to make predictions. Abbreviations: τ = threshold of the Pareto k estimates; M = number of predicted future
observations.
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Figure 4. Simulation results of 4-step-ahead predictions. Histograms are based on 100 simulation trials
of time series with N = 200 observations requiring at least L = 25 observations to make predictions.
The black dashed lines indicate the exact LFO-CV result.

of the 1-SAP performance for all non-constant models, in particular for models with a

trend in the time series. More precisely, LOO-CV is positively biased, which implies that it

systematically overestimatesM-SAP performance of time series models.
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Results of the 4-SAP simulations are visualized in Figure 4. Comparing the columns

of Figure 4, it is again clearly visible that the accuracy of the PSIS approximation is inde-

pendent of the threshold τ . The proportion of observations at which refitting the model

was required did not exceed 3% under any condition and only increased minimally when

decreasing τ (see Table 1). In light of the corresponding 1-SAP results presented above,

this is not surprising because the procedure for determining the necessity of a refit is

independent ofM (see Section 2.1). PSIS-LOO-CV is not displayed in Figure 4 as the num-

ber of observations predicted at each step (4 vs. 1) makes 4-SAP LFO-CV and LOO-CV

incomparable.

4. Case studies

4.1. Annualmeasurements of the level of lake Huron

To illustrate the application of PSIS-LFO-CV for estimating expected M-SAP perfor-

mance, we will fit a model for 98 annual measurements of the water level (in feet) of

https://en.wikipedia.org/wiki/Lake_HuronLake Huron from the years 1875–1972. This

data set is found in the datasets R package, which is installed automatically with R [23].

The time series shows rather strong autocorrelation and some downward trend towards

lower water levels for later points in time. Figure 5 shows the observed time series of water

levels as well as predictions from a fitted AR(4) model.

Based on this data and model, we will illustrate the use of PSIS-LFO-CV to provide

estimates of 1-SAP and 4-SAP when leaving out all future values. To allow for reasonable

predictions, we will require at least L = 20 historical observations (20 years) to make pre-

dictions. Further, we set a threshold of τ = 0.7 for the Pareto k estimates that indicate when

refitting becomes necessary. Our fully reproducible analysis of this case study can be found

on GitHub (https://github.com/paul-buerkner/LFO-CV-paper).

We start by computing exact and PSIS-approximated LFO-CV of 1-SAP. The com-

puted ELPD values are ELPDexact = −93.48 and ELPDapprox = −93.62, which are almost

Figure 5. Water Level in Lake Huron (1875–1972). Black points are observed data. The blue line repre-
sents mean predictions of an AR(4) model with 90% prediction intervals shown in grey.
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Figure 6. Pointwise exact vs. PSIS-approximated ELPD contributions for 1-SAP (left) and 4-SAP (right)
for the Lake Huron model. A threshold of τ = 0.7 was used for the Pareto k estimates.M is the number
of predicted future observations.

Figure 7. Pareto k estimates for PSIS-LFO-CV of the Lake Huronmodel. The dotted red line indicates the
threshold at which the refitting was necessary.

identical. Not only is the overall ELPD estimated accurately but so are all of the point-

wise ELPD contributions (see the left panel of Figure 6). In comparison, PSIS-LOO-CV

returns ELPDloo = −88.9, overestimating the predictive performance and as suggested by

our simulation results for stationary autoregressive models (see fourth row of Figure 3).

Plotting the Pareto k estimates reveals that the model had to be refit 3 times, out of a total

of N-L = 78 predicted observations (see Figure 7). On average, this means one refit every

26.0 observations, which implies a drastic speed increase compared to exact LFO-CV.

Performing LFO-CV for 4-SAP, we obtained ELPDexact = −411.41 and ELPDapprox =

−412.78, which are again very similar. In general, as M increases, the approximation will

tend to become more variable around the true value in absolute ELPD units because the

ELPD increment of each observation will be based on more and more observations (see

also Section 3). For this example, we see some considerable differences in the pointwise

ELPD contributions of specific observations which were hard to predict accurately by the

model (see the right panel of Figure 6). This is to be expected because predictingM steps
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ahead using an AR model will yield highly uncertain predictions if most of the autocor-

relation happens at lags smaller than M (see also the bottom rows in Figure 4). For such

a model, it may be ill-advised to evaluate predictions too far into the future, at least when

using the approximate methods presented in this paper. Since, for a constant threshold τ ,

the importance weights are the same independent ofM, the Pareto k estimates are the same

for 4-SAP and 1-SAP.

4.2. Annual date of the cherry blossoms in Japan

The cherry blossom in Japan is a famous natural phenomenon occurring once

every year during spring. As the climate changes so does the annual date of

the cherry blossom [28,29]. The most complete reconstruction available to date

contains data between 801 AD and 2015 AD [28,29] and is available online

(http://atmenv.envi.osakafu-u.ac.jp/aono/kyophenotemp4/).

In this case study, we will predict the annual date of the cherry blossomusing an approx-

imate Gaussian process model [30,31] to provide flexible non-linear smoothing of the time

series. A visualization of both the data and the fitted model is provided in Figure 8. While

the time series appears rather stable across earlier centuries, with substantial variation

across consecutive years, there are some clearly visible trends in the data. Particularly in

more recent years, the cherry blossom has tended to happen much earlier than before,

which may be a consequence of changes in the climate [28,29].

Based on this data andmodel, we will illustrate the use of PSIS-LFO-CV to provide esti-

mates of 1-SAP and 4-SAP leaving out all future values. To allow for reasonable predictions

of future values, wewill require at least L = 100 historical observations (100 years) tomake

predictions. Further, we set a threshold of τ = 0.7 for the Pareto k estimates to determine

when refitting becomes necessary. Our fully reproducible analysis of this case study can be

found on GitHub (https://github.com/paul-buerkner/LFO-CV-paper).

We start by computing exact and PSIS-approximated LFO-CV of 1-SAP. We compute

ELPDexact = −2345.7 and ELPDapprox = −2344.9, which are highly similar. As shown in

Figure 8. Day of the cherry blossom in Japan (812–2015). Black points are observed data. The blue line
represents mean predictions of a thin-plate spline model with 90% regression intervals shown in grey.
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Figure 9. Pointwise exact vs. PSIS-approximated ELPD contributions of 1-SAP (left) and 4-SAP (right) for
the cherry blossommodel. A threshold of τ = 0.7 was used for the Pareto k estimates.M is the number
of predicted future observations.

Figure 10. Pareto k estimates for PSIS-LFO-CV of the cherry blossom model. The dotted red line
indicates the threshold at which the refitting was necessary.

the left panel of Figure 9, the pointwise ELPD contributions are highly accurate, with no

outliers. The approximation has worked well for all observations. PSIS-LFO-CV performs

much better than PSIS-LOO-CV (ELPDapprox = −2340.3), which overestimates the pre-

dictive performance. Plotting the Pareto k estimates reveals that the model had to be refit

6 times, out of a total of N-L = 727 predicted observations (see Figure 10). On average,

this means one refit every 121.2 observations, which implies a drastic speed increase as

compared to exact LFO-CV.

Performing LFO-CV of 4-SAP, we compute ELPDexact = −9348.3 and ELPDapprox =

−9345.5, which are again similar but not as close as the corresponding 1-SAP results.

This is to be expected as the uncertainty of PSIS-LFO-CV increases for increasingM (see

Section 3). As displayed in the right panel of Figure 9, the pointwise ELPD contributions

are highly accurate in most cases, with a few small outliers in both directions. For con-

stant threshold τ , the importance weights are the same independent ofM, so the Pareto k

estimates are the same for 4-SAP and 1-SAP.
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5. Conclusion

We proposed, evaluated and demonstrated PSIS-LFO-CV, a method for approximating

cross-validation of Bayesian time seriesmodels. PSIS-LFO-CV is intended to be usedwhen

the prediction task is predicting future values based solely on past values, in which case

leave-one-out cross-validation is inappropriate. Within the set of such prediction tasks, we

can choose the numberM of future observations to be predicted. For a set of common time

series models, we established via simulations that PSIS-LFO-CV is an unbiased approxi-

mation of exact LFO-CV if we choose the threshold τ of the Pareto k estimates to not be

larger than τ = 0.7. That is, PSIS-LFO-CV does not require a smaller (stricter) threshold

than PSIS-LOO-CV to achieve satisfactory accuracy.

By nature of the approximated M-step-ahead predictions, the computation time of

PSIS-LFO-CV still increases linearly with the number of observations N. However, in our

numerical experiments, we were able to reduce to computation time by a factor of roughly

25–100 compared to exact LFO-CV, which is enough to make LFO-CV realistic for many

applications.

A limitation of our current approach is that the uncertainty in the approximate LFO-

CV estimates is hard to quantify. There are at least three types of uncertainty which could

be considered here. First, there is uncertainty induced by approximating exact LFO-CV

using (Pareto smoothed) importance sampling. Based on theoretical considerations of the

approximation and numerical experiments both presented in Vehtari et al. [9], any PSIS

approximation will be very close to the exact value as long as the Pareto k diagnostic does

not exceed the threshold of 0.7, which we used as the refit criterion in our approximate

LFO-CV approach. Second, there is uncertainty caused by finite amounts of data. For 1-

step-ahead predictions, we can use an analogous approach to what is done in approximate

LOO-CV by computing the standard error across the pointwise estimates for each obser-

vation [8]. More generally, for M-step-ahead predictions, we can compute the standard

error by using every Mth value which are then independent. Third, there is uncertainty

induced by the finite number of posterior draws but this uncertainty tends to be negligible

with just a few thousand draws compared to the second source of uncertainty [8]. Inves-

tigating uncertainty measures for (approximate) LFO-CV in more detail is left for future

research.

Lastly, we want to briefly note that LFO-CV can also be used to compute marginal

likelihoods. Using basic rules of conditional probability, we can factor the log marginal

likelihood as

log p(y) =

N∑
i=1

log p(yi | y1:(i−1)). (13)

This is exactly the ELPDof 1-SAP if we set L = 0, that is if we choose to predict all observa-

tions using their respective past (the very first observation is only predicted from the prior).

As such, marginal likelihoods may be approximated using PSIS-LFO-CV. Although this

approach is unlikely to bemore efficient thanmethods specialized for computingmarginal

likelihoods [32–34, e.g. bridge sampling;], it may be a noteworthy option if for some reason

other methods fail.
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Notes

1. Most SMC algorithms use importance sampling and LFO-CV could be obtained as a by-
product, with computation resembling the approach we present here. The proposal distribution
at each step and the applied ”refit” approach (when the importance sampling weights become
degenerate) are specific to each SMC algorithm.

2. Note that the here-used “:” operator has precedence over the ‘+’ operator following the R
programming language definition.
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Appendices

A. Appendix

Appendix 1: Pseudo code for PSIS LFO-CV

The R flavoured pseudo code below provides a description of the proposed PSIS-LFO-CV algorithm
when leaving out all future values. See https://github.com/paul-buerkner/LFO-CV-paper for the
actual R code.

# Approximate Leave-Future-Out Cross-Validation (LFO-CV)

# Arguments:

# model: the fitted time series model based on the complete

# data

# data: the complete data set

# M: number of steps to be predicted into the future

# L: minimal number of observations necessary to make

# predictions

# tau: threshold of the Pareto-k-values

# Returns:

# PSIS approximated ELPD value of LFO-CV

PSIS_LFO_CV = function(model, data, M, L, tau) {

N = number_of_rows(data)

S = number_of_draws(model)

out = vector(length = N)

# refit the model using the first L observations

i_star = L

model_star = update(model, data = data[1:L, ])

out[L] = exact_ELPD(model_star, data = data[(L + 1):(L + M), ])

# loop over all observations at which to perform predictions

for (i in (L + 1):(N - M)) {

PSIS_object = PSIS(model_star, data = data[(i_star + 1):i, ])

k = pareto_k_values(PSIS_object)

if (k > tau) {

# refitting the model is necessary

i_star = i

model_star = update(model_star, data = data[1:i, ])

out[i] = exact_ELPD(model_star, data = data[(i + 1):

(i + M), ])

} else {

# PSIS approximation is possible

log_PSIS_weights = log_weights(PSIS_object)

out[i] = approx_ELPD(model_star, data = data[(i + 1):

(i + M), ],

log_weights = log_PSIS_weights)

}

}

return(sum(out))

}

A.1 Appendix 2: backward PSIS-LFO-CV

Instead ofmoving forward in time, that is, starting our predictions from the Lth observation, wemay
alsomove backwards, a procedure to which wewill refer to as backward PSIS-LFO-CV. Starting with
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i = N-M, we approximate each p(yi+1:M | y1:i) via

p(yi+1:M | y1:i) ≈

∑S
s=1 w

(s)
i p(yi+1:M | y1:i, θ

(s))∑S
s=1 w

(s)
i

, (A1)

where w
(s)
i are the PSIS weights and θ (s) = θ

(s)
1:i⋆ are drawn from the posterior distribution based on

the first 1 : i⋆ observations. In backward LFO-CV,we start using themodel based on all observations,

that is, set i⋆ = N. To obtain w
(s)
i , we first compute the raw importance ratios

r
(s)
i = ri(θ

(s)) =
f1:i(θ

(s))

f1:i⋆(θ (s))
∝

p(θ (s))
∏

j∈1:i p(yj | y1:(j−1), θ
(s))

p(θ (s))
∏

j∈1:i⋆ p(yj | y1:(j−1), θ (s))
=

1∏
j∈(i+1):i⋆ p(yj | y1:(j−1), θ (s))

,

(A2)
and then stabilize them using PSIS as described in Section 2.1.1. The function f1:i denotes the
posterior distribution based on the first i observations, that is, f1:i = p(θ | y1:i), with f1:i⋆ defined
analogously. The index set (i + 1) : i⋆ indicates all observations which are part of the data for the
actually fitted model f1:i⋆ but not for the model f1:i whose predictive performance we are trying to
approximate. The proportional statement arises from the fact that we ignore the normalizing con-
stants p(y1:i) and p(y1:i⋆) of the compared posteriors, which leads to a self-normalized variant of
PSIS [c.f. 8]. This approach to computing importance ratios is a generalization of the approach used
in PSIS-LOO-CV, where only a single observation is left out at a time.

Starting from i = N-M, we gradually decrease i by 1 (i.e. we move backwards in time) and repeat

the process. At some observation i, the variability of the importance ratios r
(s)
i will become too large

and importance sampling fails. We will refer to this particular value of i as i⋆1. To identify the value
of i⋆1, we check for which value of i does the estimated shape parameter k of the generalized Pareto
distribution first cross a certain threshold τ [9]. Only then do we refit the model using only obser-

vations up to i⋆1 by setting θ (s) = θ
(s)
1:i⋆1

as well as i⋆ = i⋆1 and restarting the process. An illustration of

this procedure is shown in Figure A1. In some cases, we may only need to refit once and in other
cases we will find a value i⋆2 that requires a second refitting, maybe an i⋆3 that requires a third refit-
ting, and so on. We repeat the refitting as many times as is required (only if k > τ ) until we arrive at
i = L. Recall that L is the minimum number of observations we have deemed acceptable for making
predictions.

In forward PSIS-LFO-CV, we have seen a threshold of τ = 0.7 to be sufficient for achieving sat-
isfactory accuracy. For backward PSIS-LFO-CV, τ likely has to be smaller. More precisely, we can
expect an appropriate threshold for the backward mode to be somewhere between 0.5 ≤ τ ≤ 0.7.
It is unlikely to be as high as the τ = 0.7 default used for PSIS-LOO-CV because there will be more

Figure A1. Visualization of approximate one-step-ahead predictions using backward PSIS-LFO-CV. Pre-
dicted observations are indicated by X. In the shown example, the model was last refit at the i⋆ = 4th
observation.
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Figure A2. Simulation results of 1-step-ahead predictions for both forward and backward PSIS-LFO-CV.
Histograms are based on 100 simulation trials of time serieswithN = 200 observations requiring at least
L = 25 observations to make predictions. The black dashed lines indicate the exact LFO-CV result.

dependence in the errors in the case of backward PSIS-LFO-CV. If there is a large error when leav-
ing out the ith observation, then there is likely to also be a large error when leaving out observations
i, i − 1, i − 2, . . . until a refit is performed. This means that highly influential observations (ones
with a large k estimate) are likely to have stronger effects on the total estimate for backward LFO-CV
than for LOO-CV.
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Figure A3. Simulation results of 4-step-ahead predictions for both forward and backward PSIS-LFO-CV.
Histograms are based on 100 simulation trials of time serieswithN = 200 observations requiring at least
L = 25 observations to make predictions. The black dashed lines indicate the exact LFO-CV result.

The simulation results comparing backward to forward PSIS-LFO-CV can be found in Figure A2
for 1-SAP and in Figure A3 for 4-SAP. As visible in both figures, backward PSIS-LFO-CV requires a
lower τ threshold than forward PSIS-LFO-CV in order to be accurate (τ = 0.6 vs. τ = 0.7). Other-
wise, it may have a small positive bias. Further, as can be seen in Table A1, backward PSIS-LFO-CV
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Table A1. Mean proportions of required refits for both forward and backward PSIS-LFO-CV.

Mode M τ Constant Linear Quadratic AR2-only AR2-linear AR2-quadratic

Backward 1 0.5 0.03 0.08 0.17 0.04 0.09 0.18
0.6 0.02 0.06 0.12 0.03 0.06 0.12
0.7 0.01 0.04 0.09 0.02 0.04 0.08

4 0.5 0.03 0.08 0.17 0.04 0.09 0.18
0.6 0.02 0.06 0.12 0.03 0.06 0.12

0.7 0.01 0.04 0.09 0.02 0.04 0.09
Forward 1 0.5 0.01 0.01 0.02 0.01 0.02 0.03

0.6 0.01 0.01 0.02 0.01 0.02 0.02
0.7 0.01 0.01 0.02 0.01 0.01 0.02

4 0.5 0.01 0.01 0.02 0.01 0.02 0.03
0.6 0.01 0.01 0.02 0.01 0.02 0.02
0.7 0.01 0.01 0.02 0.01 0.01 0.02

Note: Results are based on 100 simulation trials of time series with N = 200 observations requiring at least L = 25 obser-
vations to make predictions. Abbreviations: τ = threshold of the Pareto k estimates; M = number of predicted future
observations.

requires considerably more refits than forward PSIS-LFO-CV. Together, this indicates that, in
expectation, backward PSIS-LFO-CV is inferior to forward PSIS-LFO-CV.

Wemay even combine forward and backwardmode PSIS-LFO-CV in the following way. First, we
start with forward mode until a refit becomes necessary, say at observation i⋆. Then, we apply back-
ward mode on the basis of the refitted model and perform multiple proposal importance sampling
[35,36] to obtain the ELPD values of the observations i⋆-1, i⋆-2, . . . from the mixture of the forward
and backward distributions. We do this until the backward mode requires a refit at which point we
stop the process and continue with forward mode at observation i⋆. This algorithm requires exactly
as many refits as the forward mode while potentially increasing accuracy for those observations for
which the pointwise ELPD contribution was computed via both forward and backward mode PSIS-
LFO-CV. In the present paper, we did not investigate the possibility ofmultiple importance sampling
in more detail, but it could be a promising extension to be studied in the future.

Appendix 3: PSIS-LFO-CV for the RMSE

We may also use other measures of predictive performance than the ELPD, for instance the RMSE.
For a scalar response y and corresponding vector ŷ of a total of S posterior predictions ŷ(s), the RSME
is defined as

RMSE(y, ŷ) =
1

S

S∑
s=1

(ŷ(s) − y)2. (A3)

If we predict multiple responses in the future (i.e. perform M-SAP with M > 1), we simply sum
the RMSE over all those responses. When approximating the RMSE via PSIS, we use the (Pareto
smoothed) importance weights w(s) (see Section 2.1.2) to estimate

RMSE(y, ŷ) ≈

∑S
s=1 w

(s)(ŷ(s) − y)2∑S
s=1 w

(s)
. (A4)

The remaining computations are analogous to using the ELPD as a measure of predictive perfor-
mance in LFO-CV and so we do not spell out the details here. The code we provide on GitHub
(https://github.com/paul-buerkner/LFO-CV-paper) ismodularized and also has an implementation
of the (approximate) RMSE for LFO-CV.

Results of the 1-SAP and 4-SAP RMSE simulations are visualized in Figures A4 and A5, respec-
tively. It is clearly visible that the accuracy of the PSIS RMSE approximation is nearly independent
of the threshold τ when τ is within the interval [0.5, 0.7] motivated in 2.1.1 [9, this would not be the
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Figure A4. Simulation results of 1-step-ahead predictions using the RMSE as measure of predictive
accuracy. Histograms are based on 100 simulation trials of time serieswithN = 200 observations requir-
ing at least L = 25 observations to make predictions. The black dashed lines indicates the exact LFO-CV
result.

case if τ was allowed to be larger;]. For all conditions, the PSIS-LFO-CV approximation is highly
accurate, that is, both approximately unbiased and low in variance around the corresponding exact
LFO-CVRMSE value (represented by the dashed line in Figure 3). Taken together, these simulations
indicate that PSIS-LFO-CV not only works well with the ELPD but also with the RMSE.
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Figure A5. Simulation results of 4-step-ahead predictions using the RMSE as measure of predictive
accuracy. Histograms are based on 100 simulation trials of time serieswithN = 200 observations requir-
ing at least L = 25 observations to make predictions. The black dashed lines indicate the exact LFO-CV
result.
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