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ABSTRACT

Many data sets contain an inherent multilevel structure, for
example, because of repeated measurements of the same ob-
servational units. Taking this structure into account is critical
for the accuracy and calibration of any statistical analysis per-
formed on such data. However, the large number of possible
model configurations hinders the use of multilevel models in
practice. In this work, we propose a flexible framework for
efficiently assessing differences between the levels of given
grouping variables in the data. The assessed group hetero-
geneity is valuable in choosing the relevant group coefficients
to consider in a multilevel model. Our empirical evaluations
demonstrate that the framework can reliably identify relevant
multilevel components in both simulated and real data sets.

Index Terms— multilevel modelling, interaction, Gaus-
sian process

1. INTRODUCTION

Generalized linear multilevel models (GLMMs), also known
as hierarchical or mixed models, are a powerful and more
flexible extension to the widely popular class of Generalized
linear models (GLMs) [1, 2]. The key distinction between the
two is that the former models, from a Bayesian perspective,
are characterized by a hierarchy of priors and hyperpriors im-
posed over its parameters that are effectively learned from the
data, making them adaptively regularised. This enables mod-
elling of group-structured data by allowing the model param-
eters to vary across levels of one or more grouping variables.
To be clear on the terminology used, we define the terms we
use for referring to group–structured data. With grouping we
refer to one way of categorizing the data into different levels,
and with level we mean the different instances present in a
grouping.

By learning level-specific parameters that deviate from
the global population parameters, a GLMM can learn the
differences between levels as well as partially pool their in-
dividual parameters at the same time. In particular, partial
pooling helps estimating the parameters of levels with little

? Equal contribution.

data. However, despite their important benefits for many sci-
entific fields and the commonality of group–structured data,
GLMMs are still underused in practice where GLMs still
dominate. This can be possibly explained by the GLMMs’
higher modelling complexity and required modelling choices:
in the absence of domain knowledge it is difficult to know
which predictors have heterogeneous coefficients and in
which groupings.

Ignoring multilevel structure typically results in biased
and badly calibrated estimates that fail to fully capture the
underlying relationship of the predictors on the outcome.
The three main approaches of naively dealing with group–
structured data are:

• pooling the data of each level to a single point, or

• modelling all observations as a single level, or

• building separate models for each of the levels.
The first approach ignores within–group correlations and de-
pendencies that in most cases are crucial, and often confound
the underlying relationships. The second approach ignores
the grouping altogether and fails to learn differences between
the levels. The third approach ignores the similarity of the
levels, often ending up overfitting the models in each level,
particularly when a level contains few observations. It is also
possible to represent the grouping as one–hot encoded vari-
ables, which is closely related to building separate models per
group but often computationally inefficient.

In the commonly used R’s formula syntax, an example of a
model without group heterogeneity is expressed as y ~ x1
+ x2, meaning that a response y is determined by two pre-
dictors x1 and x2. If we have two group indicators, g1 and
g2, a model where the regression coefficients are assumed to
vary over both group structures is y ~ x1 + x2 + (x1
+ x2 | g1) + (x1 + x2 | g2). As the number of
predictors and grouping variables increase, there is a com-
binatorial explosion in the number of possible models. We
propose an approach for quickly assessing which group het-
erogeneities are big enough so that they should be included
in the model. For example, the approach could recommend to
construct a GLMM with the syntax y ~ x1 + x2 + (x1
| g2) which is expected to have similar predictive perfor-
mance as the most complex model.
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In this paper, we aim to answer one of the most rele-
vant questions for building a GLMM: which coefficients vary
within groups, i.e. across different levels? To the best of our
knowledge, there are no existing methods that help in answer-
ing this question in a robust and automatic manner. In this
work, we address this issue by proposing a method to perform
assessment of group heterogeneity directly based on the data.
This approach avoids explicitly comparing different models,
which can be time–consuming and prone to selection-induced
bias [3, 4]. By looking specifically at group heterogeneity we
aim at telling which coefficients are different enough across
the levels of a grouping so that they should be taken into ac-
count as group coefficients on the target variable.

As the main contribution of this work, we propose a
method to assess group heterogeneity by interpreting the
strength of the interaction between numerical predictors and
categorical dummy variables as an indicator of group het-
erogeneity. We measure this interaction similarly as the
interaction of two numerical predictors, meaning that the
joint relationship of two variables with the outcome is differ-
ent than the sum of their separate relationships. To perform
this with dummy variables, we utilize the smooth predic-
tions given by a Gaussian process model, and the KL-diff2

interaction ranking method [5]. We perform extensive exper-
iments showing how the method works in both simulations
and real–world data.

The remainder of this article is structured as follows. In
Section 2 we discuss previous work addressing similar ques-
tions. In Section 3 we describe our proposed approach for
assessing group heterogeneity. In Section 4 we present both
simulations and real world data experiments showing how the
method performs in different cases. Finally, in Section 5 we
summarize the contributions and impact of our work.

2. PREVIOUS WORK

We are not aware of any literature references discussing group
heterogeneity assessment explicitly. Therefore, in this section
we discuss methods that are related and, even though they
were not designed for this, can be used for this purpose.

As discussed earlier, the interaction of a numerical pre-
dictor and a dummy variable can be interpreted as group het-
erogeneity if the used model can express these interactions.
In this work, we build on top of the interaction assessment
method KL-diff2 [5], which we discuss in Section 3. There
are similar methods that find pairwise interactions based on
the predictions of a model, like H-statistic, and partial depen-
dence values [6, 7]. These methods have been compared to
KL-diff2 and shown to perform worse [5].

Even though this is not a method to evaluate interactions
per se, analysis of variance (ANOVA) tables can be used for
the purpose of interaction assessment. However, the modeller
first needs to build a full linear model considering already all
pairwise interactions, which has a quadratic cost O(p2). Fur-

thermore, in the case of evaluating group heterogeneity, the
user needs to know beforehand which grouping factors and
predictors to study, which may not be obvious in all cases.
Because of this, the computational cost is often prohibitive
and therefore cannot be regarded as a general method for eval-
uating interactions.

A recently proposed method finds an equivalent Gaussian
process (GP) representation for a given (generalized) linear
model to take advantage of the nice properties of the GP’s ker-
nel regarding scalability with respect to the number of predic-
tors [8]. Then, after evaluating the interactions in GP space,
they are brought back into the original linear model’s space
by undoing the transformation. However, it does not seem to
be a general method for finding the equivalent kernel of any
linear model. Therefore, the usefulness of this method largely
depends on the problem and model at hand and thus renders
it difficult to use as a general purpose solution.

3. GROUP HETEROGENEITY ASSESSMENT

In this section, we briefly describe the KL-diff method, which
uses a Gaussian process surrogate model to assess the strength
of predictor variables and their interactions by differentiating
through the Kullback-Leibler (KL) divergence of the model’s
predictive distribution [5]. The first subsection presents the
methodology for assessing the relevance of individual pre-
dictors and pairwise interactions. The second subsection
presents our proposal for applying these methods to assess
group heterogeneity.

3.1. KL-diff for ranking predictors and interactions

After observing data D = {X, y}, where X ∈ RN×D rep-
resents the matrix of predictors and y ∈ RN the vector of
responses, let us denote the posterior predictive distribution
of a modelM at some predictor value x∗ as

p(y∗) := p(y∗|θ∗) := p(y∗|x∗,D,M),

where θ∗ = {θ∗1 , . . . , θ∗np
} is the vector of np parameters of

the distribution that depends on x∗, D, and M. We will re-
fer to the posterior predictive distribution corresponding to x∗

simply as p(y∗).
KL-diff is a local predictive relevance measure for the pre-

dictors that takes into account both the mean prediction and
its uncertainty through the posterior predictive distribution.
This concept is formalized as the derivative of a dissimilar-
ity measure, such as Kullback-Leibler divergence, between
two predictive distributions with respect to a predictor. The
method evaluates the derivatives of the KL divergence from
the predictive distribution at point x∗ to the predictive distri-
bution at point x∗∗ when both points coincide: x∗ = x∗∗. At
this point, the first derivative with respect to any predictor x∗d
is zero because the KL divergence has its global minimum of



0 when both distributions are identical. Therefore, the authors
suggest to use the square root of the second derivative [5].

Based on the predictive distribution that we defined ear-
lier, p(y∗), of a modelM, the KL-diff relevance measure with
respect to a single predictor variable xd is defined as

KL-diff(x∗, xd,M) =

√
∂2DKL[p(y

∗)‖p(y∗∗)]
(∂x∗∗d )2

∣∣∣∣
x∗∗=x∗

=

√√√√ np∑
k=1

np∑
l=1

∂2DKL[p(y
∗)‖p(y∗)]

∂θ∗k∂θ
∗
l

∂θ∗k
∂x∗d

∂θ∗l
∂x∗d

,

where DKL[p(y
∗)‖p(y∗∗)] refers to the KL divergence from

p(y∗) to p(y∗∗) and {θ∗1 , . . . , θ∗np
} are the parameters of

p(y∗). The KL-diff measures with respect to all predictors xd
averaged over the N training observations can be used as a
ranking of their predictive relevance.

If we can use the partial derivatives of the mean predic-
tion with respect to a predictor as a local measure of its rele-
vance, it is natural then that the cross–derivatives of two pre-
dictors measures the strength of the joint interaction between
both predictors [5]. By computing the cross–derivatives of
the Kullback-Leibler divergence between the predictive dis-
tributions, an analogous measure of interaction strength is ob-
tained. Following the same notation as in the previous section,
the KL-diff2 with respect to the predictors xd and xe is

KL-diff2(x∗, (xd, xe),M) =

√
∂4DKL[p(y

∗)‖p(y∗)]
(∂x∗d)

2(∂x∗e)
2

≈

[
2

np∑
k=1

np∑
l=1

∂2DKL[p(y
∗)‖p(y∗)]

∂θ∗k∂θ
∗
l

∂2θ∗k
∂x∗d∂x

∗
e

∂2θ∗l
∂x∗d∂x

∗
e

] 1
2

.

The KL-diff2 values represent local measures of pairwise in-
teraction strength of the predictors xd and xe.

3.2. Interpreting interactions as group heterogeneity

Remember that our goal in this work is to identify and assess
group heterogeneity in terms of how a given predictor coef-
ficient varies across the levels of a grouping. The main task
is then to identify the predictors whose coefficients have the
largest variation between the different levels of one or more
grouping factors. Let us now have some data D = {X, y}
with the coefficients of some of the predictors xd in X vary-
ing according to some group structure. In the simplest setting,
with a single grouping variable, we append a dummy vector
g = {g1, . . . , gN} to the data matrix X , where N is the num-
ber of observations, and where each of the entries gi is an
integer indicating the level to which the ith observation be-
longs. This formulation naturally generalizes to any number
of grouping variablesK and denoting individual dummy vec-
tors as gk = {gk1, . . . , gkN}.

With the added dummy vectors, a Gaussian process with
a squared exponential covariance function can model com-
plex interactions between the numerical and dummy variables
if they are present in the data. Then, by applying KL-diff2,
we can assess the interaction strength between all xd predic-
tor variables and all gk dummy variables to identify potential
group heterogeneity. We note that while it is not our main
goal, we can also assess group heterogeneity in terms of vary-
ing intercepts between levels. This can be done by assessing
the individual relevances of the dummy predictors using KL-
diff.

The computational cost of running KL-diff2 requires just
computing the analytical derivatives of the KL divergence be-
tween the predictive distributions. For Gaussian process mod-
els with commonly used likelihoods for numerical, binary or
count data, these derivatives can be computed in analytical
form [5]. The method is thus readily applicable to evaluate
group heterogeneity for most standard GLMMs.

The proposed methodology is not restricted to Gaussian
process models, but they were chosen because of their sev-
eral suitable properties. Firstly, they are able to represent a
wide range of linear and nonlinear functions and model high–
order interactions. Secondly, the smoothness properties of
the prediction function can be guaranteed and controlled by
the properties of the Gaussian process covariance function.
Thirdly, Gaussian processes can be used in both regression
and classification tasks, and provide well–calibrated predic-
tive uncertainty estimates.

In the Gaussian process covariance function, the predic-
tors are usually assumed to be real-valued. In Bayesian opti-
misation, it can be beneficial to modify the Gaussian process
covariance function such that the learned prediction function
is discontinuous for integer-valued variables [9]. However, in
this work we specifically want to keep the prediction func-
tion continuous even for the integer-valued dummy variables.
That way the model can learn a smooth prediction function
that includes interactions between the numerical predictors
and dummy variables arising from group heterogeneity.

4. EXPERIMENTS

In this section, we validate the group heterogeneity assess-
ment method discussed in Section 3.2 by performing both
simulated and real data experiments. The focus of the experi-
ments is on assessing the performance of the method in terms
of correctly identified group coefficients. However, it is also
important to study the false discovery rate, as it can impact
the user’s budget for model iterations. Given the lack of al-
ternative methods for directly assessing group heterogeneity,
and therefore of baselines as such, we will focus the discus-
sion on the robustness of the method itself (e.g., by studying
false versus true discovery rates). In Section 4.1.3 we show
that the method finds similar models as explicitly comparing
model candidates using cross-validation.



In all examples, we use squared exponential covariance
function in the Gaussian process surrogate model. For com-
putational reasons, we optimize the hyperparameters of the
surrogate model by maximizing the log marginal likelihood,
which enables representing the predictive distribution of the
Gaussian process in analytical form. Given the high sample
complexity of exact inference in Gaussian processes, this is
a commonly used approach that still gives sufficiently well
calibrated predictive uncertainty estimates in many cases.

4.1. Simulated experiments

We perform extensive simulations for regression and binary
classification data sets. For both cases we employ the same
data generation process apart from transforming the target y.
The predictors xd ∈ X are normally and independently dis-
tributed with mean 0 and standard deviation 1. We sample the
population coefficients bd and intercept a from an uncorre-
lated multivariate normal distribution. Additionally, we apply
a 0.4 sparsity factor, so we effectively set 40% of the coeffi-
cients to be exactly zero. Then, each data point is randomly
assigned to a level for each group with equal probabilities
for the levels. Like the population coefficients, we also sam-
ple the group coefficients from an uncorrelated multivariate
Gaussian with group-specific parameters. The linear predic-
tor is then generated as a sum of both population and group
terms. The data generation process is summarized below:

xid ∼ Normal(0, 1), d = 1, . . . , D, i = 1, . . . , N

bd ∼ Normal(µf , σ
2
f ), a ∼ Normal(µb,f , σ

2
b,f )

zd ∼ Bernoulli(p = 0.6)

gik ∼ DiscreteUniform(1, L), k = 1, . . . ,K

blkd ∼ Normal(µgk , σ
2
gk
), alk ∼ Normal(µb,gk , σ

2
b,gk

)

µi = a+

D∑
d=1

zdbdxid +

K∑
k=1

L∑
l=1

[
alk +

D∑
d=1

zdblkdxgk=l,d

]
yi ∼ π(f(µi), φi),

where π is the family’s distribution, f is an inverse-link func-
tion and φ the family’s specific dispersion parameter, N is the
number of observations, D the number of numerical predic-
tors in the data, K is the number of grouping variables, and L
is the number of levels in each group.

For each family, we sample different parameters µf , σ
2
f

for the population coefficients and µgk , σ
2
gk

for the group
coefficients, and µb,f , σ

2
b,f for the population intercept and

µb,gk , σ
2
b,gk

for the group intercepts. In Table 1, we show
the chosen family-specific values for these parameters. They
were chosen so that the non-zero coefficients are strong and
therefore we mitigate the issues of identifying present but
very small coefficients (with true values close to 0). For the
Bernoulli family, we use the probit link function, and generate
the data so that the classes are not clearly separable.

Table 1. Values for the family–specific parameters

Parameter Gaussian Bernoulli

µf , σ2
f 5, 10 0, 2

µb,f , σ2
b,f 0, 20 0, 4

µgk , σ2
gk

0, 5 0, 3
µb,gk , σ2

b,gk
0, 5 0, 3

Table 2. Varied simulation settings

Factor Values

N : Number of observations 300
D: Number of predictor variables {5, 10, 15, 20}
K: Number of grouping factors {1, 2, 3}
L: Number of levels in a group 5
s: Sparsity 0.4
L: Likelihood family Gaussian, Bernoulli

Within this simulation setting, we systematically varied
and fully crossed several factors as shown in Table 2. Within
each simulation condition, we repeat the experiments for 50
data realizations to account for randomness in the data gener-
ation process.

In order to select the relevant heterogeneous group coeffi-
cients using the proposed method, we have to apply a decision
rule defining which of the returned interactions to choose.
Given that KL-diff2 returns a continuous measure indicating
the strength of the interaction, we need to decide which of the
returned indicators are strong enough to be chosen. In this
work, we will select the top-T interactions per grouping vari-
able after sorting them, where T = btDc, with t ∈ [0, 1] ∈ R
and D is the number of possible group coefficients. In prac-
tice, the threshold could be chosen with some selection crite-
rion such as a cross-validation score. The selection criterion
is left for future research.

4.1.1. Gaussian simulations

Because the Gaussian observation model allows for exact in-
ference under a Gaussian process prior, the predictive distri-
bution has a closed form expression that we use to differenti-
ate following the method described in Section 3.

In Figure 1, we show the results for the Gaussian obser-
vation model for different number of grouping variables (as
specified in Table 2) and as we increase the interaction selec-
tion threshold. The dots represent the mean estimate and the
bars show the 95% intervals, both on the y- and on the x-axis.
The figure shows the receiver operating characteristic (ROC)
curve where we show the true positive rate as a function of
the false positive rate. For every point in the figure the perfor-
mance of the method is above chance selection (dashed black
line). For just a single grouping variable, selection is excel-
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Fig. 1. ROC curves for recovered group coefficients as we increase the selection threshold for a model with 40% sparsity for
different numbers of predictors D and grouping variables K in the data. The dashed black line indicates chance selection.

lent even with many predictors. As expected, as we increase
the number of grouping variables, the problem gets harder be-
cause each level in the groups explains a smaller part of the
total variance.

Given that we have fixed the sparsity in our model to 40%,
the true number of group coefficients is around 60%. The
sparsity affects the performance of the method to some ex-
tent, and more thorough analysis of the effect of sparsity is
left for further research. There are several additional factors
that may impact the performance of our method. First, be-
cause we are randomly sampling the group coefficients, some
of them may end up being too small to be detectable. Second,
our method is not performing feature selection in terms of a
true model. We are evaluating the strength of the interactions
through the predictive distribution, and therefore we can only
detect group coefficients that make a difference in the predic-
tions. Because the difficulty depends on the signal-to-noise
ratio and the number of observations in the data, by adding
more observations or reducing noise, all the ROC curves get
closer to optimal performance.

To keep the experiment concise, the number of levels in
each group was held constant. We also did additional ex-
periments assessing the effect of the number of levels on the
method’s ability to detect group heterogeneity. Based on these
experiments, having only 2 or 3 levels will make it difficult to
detect heterogeneity, but more than that is enough to detect
it. As for large numbers of levels, even tens of levels did not
make the problem more difficult as long as the number of ob-
servations per level is not very small.

4.1.2. Bernoulli simulations

In the case of a Bernoulli observational model we no longer
have an analytical expression for the predictive distribution as
the required integral cannot be solved in closed form. Like-

wise, we cannot perform exact inference to find the posterior,
and we must turn to approximate inference methods. In or-
der to use KL-diff2, we use the Laplace approximation to the
posterior of Gaussian process latent values. As before, we op-
timize the hyperparameters by maximizing the log marginal
likelihood, which allows for a closed form solution of the pre-
dictive distribution.

Even though we are computing the interaction strengths
through an approximate posterior, the results look quite sim-
ilar to the Gaussian ones. Due to lack of space and simi-
larity with the previous results, we have omitted the plots
of the Bernoulli results, but the reader can inspect these in
the supplementary material located in our github repository
at github.com/topipa/group-heterogeneity-paper.

4.1.3. Case study: Usage of rental bicycles

In this section we demonstrate the group heterogeneity assess-
ment framework in a real data set1. The data set includes the
number of daily rental bike uses over two years together with
weather information. The target variable is dailyuses, the
number of bike uses per day. The numerical predictors are
temperature, humidity, and wind speed. We have five group-
ing variables: day of the week, month, season, weather cat-
egory, and a public holiday indicator. The total data set thus
contains 3 numerical predictor variables and 5 grouping vari-
ables, and 731 observations. As such, there are already more
than 100 possible predictor-grouping combinations.

We fit a Gaussian process model on the data set and
compute the KL-diff2 interaction values between the nu-
merical and dummy predictors as described earlier. The
eventual goal is to assess the heterogeneity of the group
coefficients for building a GLMM. To this end, we build
a base model that includes population-level slopes for all

1http://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

https://github.com/topipa/group-heterogeneity-paper


Table 3. Group heterogeneity results for the rental bike data

Predictor KL-diff2 Slope std. elpd difference
between levels to base model

temperature 0.33 0.63 54± 10
humidity 0.27 0.23 36± 9
wind speed 0.12 0.07 3± 3

the numerical variables, and varying intercepts for all the
grouping variables: dailyuses ~ temperature +
humidity + windspeed + (1 | month) + (1
| day of week) + (1 | season) +
(1 | weather) + (1 | holiday). Based on the
KL-diff2 evaluation, we choose the grouping variable that
has the largest total interaction with the three numerical
predictors, which turns out to be the month indicator. We
construct three separate models, each having a single numer-
ical predictor varying over months. All of the models are
fitted using the rstanarm R package [10].

For the three extended models, we evaluate the group
heterogeneity by computing the standard deviation of the
posterior means of the slopes between different months, and
the predictive performance of the model compared to the base
model with leave-one-out cross-validation and the expected
log predictive density (elpd) utility [11]. The results are pre-
sented in Table 3 together with the KL-diff2 heterogeneity
values. The results show that the method identifies the rele-
vant predictors that have heterogeneous coefficients between
different months, which is present in the resulting models as
both heterogeneity of the slopes between levels, and predic-
tive performance improvement compared to the base model.
Adding varying coefficients from the other grouping vari-
ables does not improve the predictive performance of the
model according to the cross-validation assessment. Thus,
based on the KL-diff2 evaluation, a recommended model for-
mula is dailyuses ~ temperature + humidity
+ windspeed + (temperature + humidity +
windspeed | month) +
(1 | day of week) + (1 | season) +
(1 | weather) + (1 | holiday).

5. CONCLUSION

In this work, we propose a new approach to identify heteroge-
neous group coefficients from data by using a Gaussian pro-
cess surrogate model and interaction strength estimates given
by the KL-diff2 method [5]. We achieve this by interpreting
interactions between numerical predictors and dummy group-
ing variables as indications for group heterogeneity.

We demonstrate that the proposed method provides a
highly useful tool for practitioners who often shy away from
hierarchical and multilevel models due to their higher com-
plexity as compared to generalized linear models or other

related inference methods. Quite commonly, the main issue
before fitting multilevel models is to assess what the relevant
multilevel structure exists in the data (conditioned on the
chosen model class).

By tuning the selection threshold, users of the new method
gain extra flexibility to either ensure that all the relevant struc-
ture is captured or that the resulting model does not exceed
their computational resources. After identifying the most rel-
evant heterogeneous group coefficients, the user can go and fit
the model again explicitly including those coefficients, mak-
ing multilevel modelling a more accessible option that brings
many benefits over standard non–multilevel models.
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