
JSS Journal of Statistical Software
November 2021, Volume 100, Issue 5. doi: 10.18637/jss.v100.i05

Bayesian Item Response Modeling in R with brms
and Stan

Paul-Christian Bürkner
University of Stuttgart

Abstract

Item response theory (IRT) is widely applied in the human sciences to model persons’
responses on a set of items measuring one or more latent constructs. While several
R packages have been developed that implement IRT models, they tend to be restricted to
respective pre-specified classes of models. Further, most implementations are frequentist
while the availability of Bayesian methods remains comparably limited. I demonstrate
how to use the R package brms together with the probabilistic programming language
Stan to specify and fit a wide range of Bayesian IRT models using flexible and intuitive
multilevel formula syntax. Further, item and person parameters can be related in both a
linear or non-linear manner. Various distributions for categorical, ordinal, and continuous
responses are supported. Users may even define their own custom response distribution
for use in the presented framework. Common IRT model classes that can be specified
natively in the presented framework include 1PL and 2PL logistic models optionally also
containing guessing parameters, graded response and partial credit ordinal models, as
well as drift diffusion models of response times coupled with binary decisions. Posterior
distributions of item and person parameters can be conveniently extracted and post-
processed. Model fit can be evaluated and compared using Bayes factors and efficient
cross-validation procedures.

Keywords: item response theory, Bayesian statistics, R, Stan, brms.

1. Introduction

Item response theory (IRT) is widely applied in the human sciences to model persons’ re-
sponses on a set of items measuring one or more latent constructs (for a comprehensive in-
troduction see Lord 1980; Embretson and Reise 2000; Van der Linden and Hambleton 1997).
Due to its flexibility compared to classical test theory, IRT provides the formal statistical
basis for most modern psychological measurement. The best known IRT models are likely

https://doi.org/10.18637/jss.v100.i05
https://orcid.org/0000-0001-5765-8995

2 Bayesian IRT Modeling with brms and Stan

those for binary responses, which predict the probability of a correct answer depending on
the item’s difficulty and potentially other item properties as well as the participant’s latent
ability. The scope of IRT models is however much wider than this, and I will discuss several
more interesting models in this paper.
Over the years, a multitude of software packages have been developed that implement IRT
models. To date, most free and open source software in the field of IRT is written in the pro-
gramming language R (R Core Team 2021), which has grown to become one of the primary
languages for statistical computing. Examples for widely applied and actively maintained IRT
specific R packages are eRm (Mair and Hatzinger 2007), ltm (Rizopoulos 2006), TAM (Ro-
bitzsch, Kiefer, and Wu 2021), mirt (Chalmers 2012), sirt (Robitzsch 2021), and psychotree
(Strobl, Kopf, and Zeileis 2015; Komboz, Zeileis, and Strobl 2018). Each of them supports
certain classes of IRT models and related post-processing methods. Further, IRT models may
also be specified in general purpose multilevel or structural equation modeling packages such
as lme4 (Bates, Mächler, Bolker, and Walker 2015b), lavaan (Rosseel 2012), blavaan (Merkle
and Rosseel 2018), or MCMCglmm (Hadfield 2010). I will provide a review and comparison
of these packages later on in Section 5.
In this paper, I present a Bayesian IRT framework based on the R package brms (Bürkner
2017, 2018) and the probabilistic programming language Stan (Carpenter et al. 2017). Pack-
age brms is available from the Comprehensive R Archive Network (CRAN) at https://CRAN.
R-project.org/package=brms. The proposed framework is quite extensive both in the mod-
els that can be specified and in the supported post-processing methods. Users can choose
from over 40 built-in response distributions, which not only include standard IRT models
such as binary, categorical, or ordinal models, but also models for count data, response times
or proportions, to name only a few available options. Users may also write their own cus-
tom response distributions not natively supported by brms for application in the proposed
framework. The non-linear multilevel formula syntax of brms allows for a flexible yet concise
specification of multidimensional IRT models, with an arbitrary number of person or item
covariates and multilevel structure if required. Prior knowledge can be included in the form
prior distributions, which constitute an essential part of every Bayesian model. Estimation is
performed in Stan using Markov chain Monte Carlo (MCMC) sampling via adaptive Hamilto-
nian Monte Carlo (Hoffman and Gelman 2014; Stan Development Team 2021), an efficient and
stable algorithm that works well in high dimensional, highly correlated parameter spaces. The
proposed framework is designed to help the applied researcher who wishes to analyze their
IRT data by means of one single package. However, it arguably requires more work from
the user at the start to familiarize themselves with the modeling syntax and post-processing
options and probably has a much steeper learning curve than more specialized IRT pack-
ages. In addition, brms also provides an opportunity for more methodologically interested
researchers who strive to develop new IRT models or model variants. It could be a powerful
and convenient tool to implement them in a Bayesian context; with readily available data
pre-processing and model post-processing options, including, but not limited to, summarizing
and plotting parameters, computing and checking posterior predictions, as well as perform-
ing model comparisons. These features enable rapid model prototyping and testing, even if
the final product is eventually written in Stan itself or in another probabilistic programming
language.
This paper has three central purposes. First, it provides a thorough conceptual introduction
to the proposed Bayesian IRT framework. Second, it demonstrates how this framework is

https://CRAN.R-project.org/package=brms
https://CRAN.R-project.org/package=brms

Journal of Statistical Software 3

implemented in statistical software. Third, based on several hands-on examples, it explains
how the software can be used in practice to solve real-world questions. On the conceptual
side, in Section 1, I substantially extend the work of De Boeck et al. (2011), who initially
opened up the road for the estimation of IRT models via multilevel models. However, they
only considered generalized linear multilevel models and specifically focused on binary data.
I extend their framework in various directions, most notably to (a) a much larger number
of response distributions, (b) non-linear IRT models, which do not make the assumption of
the predictor term being of a (generalized) linear form, and (c) distributional IRT models,
in which not only the main location parameter of the response distribution but also all other
parameters may depend on item and person properties. On the software side, in Section 2
and Section 3, I introduce several new features in brms that have been implemented after
the publication of its second paper (Bürkner 2018) to both support the presented framework
in its entirety and provide several more specific features designed to make important IRT
model classes possible within the framework. These features include the full integration of
non-linear and distributional parameter predictions via a nested non-linear formula syntax,
the implementation of several distributions designed for response times data, extensions of
distributions for ordinal data, for example for the purpose of modeling discrimination pa-
rameters, and the ability to fix parameters to arbitrary values. To help users applying the
proposed framework and related software in practice, several hands-on examples are discussed
in detail in Section 4. I provide a comparison of IRT supporting R packages in Section 5 and
end with a conclusion in Section 6. All materials related to this paper are hosted on GitHub
(https://github.com/paul-buerkner/Bayesian-IRT-paper). To run all code and exam-
ples shown in this paper, brms version 2.11.5 or higher is required.
sectionModel description
The core of models implemented in brms is the prediction of the response y through predicting
all K parameters ψk of the response distribution D. We write

yn ∼ D(ψ1n, ψ2n, . . . , ψKn)

to stress the dependency on the nth observation. In most R packages, the response distribution
is called the model family and I adopt this term in brms. Writing down the model per
observation n implies that we have to think of the data in long rather than in wide format.
That is, responses to different items go in the same column of the data set rather than
in different columns. The long format works well in combination with multilevel formula
syntax and is arguably also more favorable from a coding perspective (e.g., see Wickham and
Grolemund 2016; Wickham et al. 2019).

1.1. Response distributions

The response format of the items will critically determine which distribution is appropriate to
model individuals’ responses on the items. The possibility of using a wide range of response
distributions within the same framework and estimating all of them using the same general-
purpose algorithms is an important advantage of Bayesian statistics. brms heavily exploits
this advantage by offering a multitude of response distributions and even allowing the user
to add their own. In this section, I will briefly review some common response distributions
in IRT that are natively supported in the proposed framework.
If the response y is a binary success (1) vs. failure (0) indicator, the canonical family is the

https://github.com/paul-buerkner/Bayesian-IRT-paper

4 Bayesian IRT Modeling with brms and Stan

Bernoulli distribution with density

y ∼ Bernoulli(ψ) = ψy(1− ψ)1−y,

where ψ ∈ [0, 1] can be interpreted as the success probability. Common IRT models that can
be built on top of the Bernoulli distribution are the 1, 2, and 3 parameter logistic models
(1PL, 2PL, and 3PL models; Agresti 2010), which I will discuss in more detail in Section 1.2
and Section 4.1.
If y constitutes a categorical response with C > 1 unordered categories, the categorical dis-
tribution is appropriate (Agresti 2010). It has the density

y ∼ categorical(ψ1, . . . , ψC) =
C∏
c=1

ψIc(y)
c

with category probabilities P (y = c) = ψc > 0 and
∑C
c=1 ψc = 1 where Ic(y) is the indicator

function which evaluates to 1 if y = k and to 0 otherwise. For C = 2, the categorical
distribution is equivalent to the Bernoulli distribution.
If y is an ordinal categorical response with C ordered categories, multiple possible response
distributions are plausible (Agresti 2010; Bürkner and Vuorre 2019). They are all built on
top of the categorical distribution but differ in how they define the category probabilities
P (y = c). The two most commonly applied ordinal families in IRT are the cumulative model
and the adjacent category model. The cumulative model assumes

P (y = c) = F (τc − ψ)− F (τc−1 − ψ)

where F is the cumulative distribution function (CDF) of a continuous unbounded distribution
and τ is a vector of C − 1 ordered thresholds. If F is the standard logistic distribution, the
resulting IRT model is called graded response model (GRM; Samejima 1997). Alternatively,
one can use the adjacent category model, which, when combined with the logistic distribution,
becomes the partial credit model (PCM; Rasch 1961). It assumes

P (y = c) =
exp

(∑c−1
j=1(ψ − τj)

)
∑C
r=1 exp

(∑r−1
j=1(ψ − τj)

)
with threshold vector τ whose element do not necessarily need to be ordered (Adams, Wu,
and Wilson 2012). The PCM is a widely used ordinal model in IRT. One of its extensions, the
generalized PCM (GPCM), even finds application in various large scale assessment studies
such as PISA (OECD 2017). I will provide hands-on examples of ordinal IRT models in
Section 4.2.
If y constitutes a count variable without a natural upper bound (or an upper bound that is
practically not reachable, for instance in dedicated speed tests), the Poisson distribution with
density

y ∼ Poisson(ψ) = ψy exp(−ψ)
y! ,

or one of its various generalizations (e.g., see Shmueli, Minka, Kadane, Borle, and Boatwright
2005), may be an appropriate choice. In IRT, this leads to what is known as the Rasch-
Poisson-Counts model (RPCM; Rasch 1960).

Journal of Statistical Software 5

When items consist of a comparative judgment between C categorical alternatives on a contin-
uous bounded scale, obtained responses are in a “proportion-of-total” (compositional) format
(Hijazi and Jernigan 2009). That is, for each response category c, yc ∈ [0, 1] is the proportion
of the total points that was assigned to that category so that

∑C
c=1 yc = 1. If C = 2, the

response y = y1 on the first category can be modeled as beta distributed (as y2 = 1 − y1 is
redundant). The mean-precision parameterization of the beta distribution has density

y ∼ Beta(ψ1 = µ, ψ2 = φ) = yµφ−1(1− y)(1−µ)φ−1

B(µφ, (1− µ)φ) ,

where B is the beta function. A multivariate generalization of the Beta family is the Dirichlet
family, which can be used for compositional scores of more than two response categories (Hijazi
and Jernigan 2009). On the full response vector y = (y1, . . . , yC) it has density

y ∼ Dirichlet(ψ1, . . . ψC , ψC+1 = φ) = 1
B((ψ1, . . . , ψK)φ)

K∏
k=1

yψkφ−1
k .

Another important class of IRT models deals with response/reaction times, which tend to
vary over items and persons in at least three ways: mean, variation, and right skewness of
the responses. Accordingly, sufficiently flexible response distributions on reaction times are
likely to require three parameters in order to capture these aspects. Two commonly applied
3-parameter distributions are the exponentially-modified Gaussian (exgaussian) distribution
and the shifted log-normal distribution (Heathcote, Popiel, and Mewhort 1991; Wagenmakers
and Brown 2007). Their densities are a little bit more involved and so I do not display
them here, but they can be found for instance in Wagenmakers and Brown (2007) or when
typing vignette("brms_families") in R. With the exgaussian distribution, we can directly
parameterize the mean which simplifies interpretation of model parameters, at the expense of
having a theoretically less justified model (Heathcote et al. 1991). I will provide a practical
example of analyzing response times in an IRT context in Section 4.3.
Going one step further, it is often favorable to model persons’ responses together with the cor-
responding response times in a joint process model. This not only implies a more appropriate
generative model for the data but may also foster theoretical understanding of the underlying
processes (Ratcliff 1978; Van der Maas, Molenaar, Maris, Kievit, and Borsboom 2011). One
of these joint models, which can handle binary decisions together with their response times,
is the Wiener drift diffusion model (Ratcliff 1978; Van der Maas et al. 2011). Its parameters
have meaning in the context of a cognitive decision process described as a Wiener diffusion
process with a drift towards one or the other binary choice alternative. The parameters of
the four parameter drift diffusion model implemented in the presented framework are (1) the
drift rate that describes a person’s tendency towards one or the other two alternatives, (2)
the boundary separation that describes how much evidence needs to be accumulated until
a decision is made, (3) the non-decision times that describes the time spent at processing
the items and executing a motor response (i.e., everything non-decision related), and (4) the
initial bias that describes persons tendency towards one of the two alternatives independent
of the item properties. In IRT applications, it is common to fix the initial bias to 0.5, that is,
to assume no initial bias towards one of the two alternatives (Molenaar, Tuerlinckx, and Van
der Maas 2015), which results in the three-parameter drift diffusion model. A more detailed
discussion of the drift diffusion models is beyond the scope of the present paper, but can be

6 Bayesian IRT Modeling with brms and Stan

found elsewhere (Ratcliff 1978; Van der Maas et al. 2011; Molenaar et al. 2015). I will provide
a practical example of fitting drift diffusion models to IRT data in Section 4.3.

1.2. Predicting distributional parameters

In the context of IRT, every distributional parameter ψk can be written as a function ψkn =
fk(θkpn , ξkin) of person parameters θk and item parameters ξk, where pn and in indicate the
person and item, respectively, to which the nth observation belongs1. In a regression context,
such models are often referred to as distributional regression models or as regression models
of location, scale, and shape (Rigby and Stasinopoulos 2005; Stasinopoulos and Rigby 2007)
to stress the fact that all parameters of the distribution can be predicted, not just a single
parameter – usually the mean of the distribution or some other measure of central tendency.
In addition to the response distribution itself, the exact form of the equations ψ = f(θp, ξi)
(suppressing the indices k and n for simplicity) will critically define the meaning of the person
and item parameters as well as the complexity of the model in general. In a linear model,
f is the identity function and the relation between θp and ξi is linear and additive so that
ψ = θp+ξi. Unfortunately, such a model will not yield the desired results if ψ has natural range
restrictions. For instance, if the response y is a binary success (1) vs. failure (0) indicator, and
we use the Bernoulli response distribution, ψ can be interpreted as the success probability,
which, by definition, must lie within the interval [0, 1]. However, a linear model ψ = θp + ξi
may yield any real value and so is invalid when predicting probabilities. The solution for this
problem is to use a non-linear function f appropriate to the scale of the predicted parameter
ψ. This results in what is known as a generalized linear model (GLM). That is, the predictor
term η = θp + ξi is still linear but transformed, as a whole, by a non-linear function f , which
is commonly called “response function”. For Bernoulli distributions, we can canonically use
the logistic response function

f(η) = logistic(η) = exp(η)
1 + exp(η) ,

which yields values f(η) ∈ [0, 1] for any real value η. As a result, we could write down the
model of ψ as

ψ = exp(θp + ξi)
1 + exp(θp + ξi)

,

which is known as the Rasch or 1PL model (Bond and Fox 2007). Under the above model, we
can interpret θp as the ability of person p in the sense that higher values of θp imply higher
success probabilities regardless of the administered item. Further, we can interpret ξi as the
easiness of item i as higher values of ξi imply higher success probabilities regardless of the
person to which the item is administered. Note that most definitions of the Rasch model
instead use θp − ξi, in which case ξi becomes the item difficulty rather than the easiness.
Clearly, both formulations are equivalent. In the present paper I generally use the easiness
formulation as it naturally fits into the regression framework of brms.
In the context of IRT, GLMs already will carry us a long way, but at some point, their
flexibility reaches a halt. A typical example of such a situation is when we stop assuming
discrimination to be constant across items; an assumption that will often be violated in real

1A parameter may also be assumed constant across observations and thus be independent of person and
item parameters.

Journal of Statistical Software 7

world data (Andrich 2004). Instead, if we want to model varying item discrimination αi, the
predictor term becomes

ψ = f(αi(θp + ξi)) = f(αiθp + αiξi).

The argument to f no longer forms a linear predictor as we now consider products of pa-
rameters. In the context of logistic models for dichotomous responses, we would refer to
the varying discrimination model as 2PL model (e.g., Andrich 2004) or generalized nonlinear
mixed effects model (e.g., De Boeck and Wilson 2004). If persons have a non-zero probability
γi of guessing the right answer of item i, independently of their abilities, this would yield the
3PL model, in my notation written as

ψ = f(θp, ξi, αi, γi) = γi + (1− γi) g(αi(θp + ξi))

with g being some function to transform real values onto the unit interval (e.g., the logistic
function). The complexity of such a non-linear predictor may be arbitrarily increased in
theory, but of course needs to be carefully specified in order to yield an identifiable and
interpretable model (see also Bürkner 2020). Further, in the context of Bayesian IRT, prior
distributions may additionally help to identify the model (see Section 1.5 for more details on
priors).

1.3. Item and person covariates

A lot of research questions in the context of IRT do not simply require estimating person
and item parameters but rather estimating the effects of person or item covariates (De Boeck
et al. 2011), that is variables that vary across persons and/or items. De Boeck et al. (2011)
differentiate covariates by their mode (person, item, or both) and the origin of the covariate as
either internal (stems from item responses) or external (independent of the item responses).
For instance, persons’ age would be considered an external person covariate as it varies over
persons but not over items and does not change its value according to item responses. Item
type (e.g., figural, numeric, or verbal in case of typical intelligence test items) would be
considered an external item covariate, while the number of previous items solved by a specific
person at the time of administering a specific item would be an internal person-by-item
covariate.
Regardless of the specific nature of the covariates, we may add them to any linear predic-
tor term η in the model so that it no longer only depends on individual person and item
parameters, but also on a set of J covariates xj :

ηpi = θp + ξi +
J∑
j=1

bjxjpi

In the equation above, xjpi is the value of the jth predictor for person p and item i. Of course,
a person covariate is constant across items and an item covariate is constant across persons. I
still index all covariates by both persons and items, though, to shorten the notation without
loss of generality.
A further differentiation of covariates may be made by considering over what mode (person,
items, or both) the covariate effects are allowed to vary (i.e., interact with) in the model.
For example, a persons’ age varies between but not within persons, which implies that the
effect of age may only vary across items. Conversely, the effect of an item covariate may

8 Bayesian IRT Modeling with brms and Stan

only vary across persons as it is constant within each item. Extending the above notation for
covariates, the regression coefficients bj would then receive additional indices p or i (i.e., bjp
or bji) depending on whether the effect of the covariate is expected to vary over persons or
items.
Depending on the nature of the covariates and over which mode their effects are assumed to
vary, the full model may not be identified or at least hard to estimate and interpret. Thus,
careful specification of covariates is critical to obtain sensible results. De Boeck et al. (2011)
provide a thoughtful and thorough discussion of the use of covariates in IRT models and
I do not want to reiterate every detail, but simply note that all kinds of covariate models
discussed in their paper may be specified in the here presented framework using the same
formula syntax. Some examples for covariate analysis are provided in Section 4.1.

1.4. Differential item functioning

For psychometric tests, it is essential to investigate differential item functioning (DIF; Holland
and Wainer 1993; Osterlind and Everson 2009). Items showing DIF have different properties
for persons belonging to different groups even if the persons have the same ability. Such items
may reduce test validity as they hinder measurement equivalence and may lead to bias in the
latent trait estimates (e.g., Millsap and Everson 1993; Holland and Wainer 1993). However,
simply excluding all items showing DIF can be equally problematic, as, for example, the
resulting subtest may contain a too homogeneous set of items that fail to cover all relevant
aspects of the constructs the test claims to measure (e.g., Osterlind and Everson 2009). Thus,
removing DIF items can also be a threat to validity. As Osterlind and Everson (2009) put it:
“We emphasize that the DIF phenomenon is complex, and one should have a sophisticated
– even wise – understanding before one approaches questions of how to address it in a given
test situation.” It is beyond the scope of this paper to provide such wisdom, but what we can
do is apply IRT models to detect (certain kinds of) DIF in the first place.
In turns out that DIF analysis can be performed by including and analyzing specific person-
by-item covariates. That is, we need (a) a set of person covariates, such as age, gender, or
sociodemographic status, defining groups of people for which DIF should be tested, and (b) a
set of item properties over which to expect DIF; or simply an item indicator if we want to test
DIF over each individual item. The interactions between the selected person covariates/groups
and item covariates/indicators then form the DIF variables. If, after inclusion of the involved
person covariates’ main effects, these interactions show predictive value for the response, this
indicates DIF. I show a hands-on example of covariate-based DIF analysis in Section 4.1. A
more detailed and technical discussion about this approach is provided in De Boeck et al.
(2011).
A common difficulty in performing DIF analysis is the sheer amount of potential DIF variables
that can be investigated; much more than we can usually check in practice let alone include
in a single model. A powerful option is to use variable selection techniques to select the
relevant DIF variables from a larger set of potentially relevant variables, for instance, using
lasso methods (Schauberger and Mair 2019). In Bayesian statistics, variable selection can be
implemented in the form of two-stage procedures. First, an all encompassing model including
all covariates is fitted while imposing strongly regularizing/sparsifying priors such as the
(regularized) horseshoe prior (Carvalho, Polson, and Scott 2010; Piironen and Vehtari 2017b)
to keep the model estimable and prevent overfitting (see Section 1.5 for a formal introduction

Journal of Statistical Software 9

to prior distributions in an IRT context). In theory, selection can be done already after this
first step but the results tend to be sub-optimal in a lot of cases (Piironen and Vehtari 2017a).
For variable selection to work well, an explicit variable selection procedure, such as projective
predictions, has to be applied in a second step, in which the full model serves as a reference
(Piironen and Vehtari 2017a). While the first step is already possible for complex multilevel
models, the second step still needs more research, which we plan on doing in the upcoming
years.

1.5. Prior distributions of person and item parameters

In Bayesian statistics, we are interested in the posterior distribution p(θ, ξ | y) of the person
and item parameters given the data2. The posterior distribution is computed as

p(θ, ξ | y) = p(y | θ, ξ) p(θ, ξ)
p(y) .

In the above equation p(y | θ, ξ) is the likelihood, p(θ, ξ) is the prior distribution and p(y)
is the marginal likelihood. The likelihood p(y | θ, ξ) is the distribution of the data given
the parameters and thus relates to the data to the parameters. We may also describe the
likelihood as the combination of response distribution and predictor terms discussed above.
The prior distribution p(θ, ξ) describes the uncertainty in the person and item parameters
before having seen the data. It thus allows to explicitly incorporate prior knowledge into the
model. In practice, we will factorize the joint prior p(θ, ξ) into the product of p(θ) and p(ξ)
so that we can specify priors on person and items parameters independently. The marginal
likelihood p(y) serves as a normalizing constant so that the posterior is an actual probability
distribution. Except in the context of specific methods (i.e., Bayes factors), p(y) is rarely of
direct interest.
In frequentist statistics, parameter estimates are usually obtained by finding those parameter
values that maximize the likelihood. In contrast, Bayesian statistics aims to estimate the
full (joint) posterior distribution of the parameters. This is not only fully consistent with
probability theory, but also much more informative than a single point estimate (and an
approximate measure of uncertainty commonly known as “standard error”).
Obtaining the posterior distribution analytically is only possible in certain cases of carefully
chosen combinations of prior and likelihood, which may considerably limit modeling flexibility
but yield a computational advantage. However, with the increased power of today’s comput-
ers, MCMC sampling methods constitute a powerful and feasible alternative to obtaining
posterior distributions for complex models in which the majority of modeling decisions is
made based on theoretical and not computational grounds. Despite all the computing power,
these sampling algorithms are computationally very intensive and thus fitting models using
full Bayesian inference is usually much slower than in point estimation techniques. However,
advantages of Bayesian inference – such as greater modeling flexibility, prior distributions, and
more informative results – are often worth the increased computational cost (Gelman, Carlin,
Stern, Dunson, Vehtari, and Rubin 2013). For a comprehensive introduction to Bayesian IRT
modeling see, for example, Fox (2010), Levy and Mislevy (2017), as well as Rupp, Dey, and
Zumbo (2004).

2In IRT covariate models, the posterior distribution also includes the covariates’ coefficients and all hyper-
parameters, but I keep this implicit in the equations to simplify the notation.

10 Bayesian IRT Modeling with brms and Stan

I will start explaining important aspects concerning the choice of priors for item parameters.
A key decision when setting up an IRT model is whether we want item parameters to share a
common hierarchical prior or if we want to use non-hierarchical and thus independent priors
on each parameter. In IRT, non-hierarchical priors are currently applied more commonly
(e.g., Fox 2010; Levy and Mislevy 2017). In the non-hierarchical case, we would choose a
prior and then fix its hyperparameters according to our understanding of the scale and prior
knowledge about the parameter(s) to be estimated. To make a concrete example, we can
assume a normal distribution with mean 0 and standard deviation 3 for the item easiness
parameters of a Rasch model:

ξi ∼ Normal(0, 3)

By definition of the normal distribution, we thus assume a-priori, that with 68% probability
easiness parameters lie within [−3, 3] and that with 97.5% probability easiness parameters lie
within [−6, 6] on the logit scale. Given the scale of the logistic response function, this prior
can be considered weakly informative. That is, it restricts the parameters to a reasonable
range of values without strongly influencing the obtained posterior distribution. Of course,
we don’t need to restrict ourselves to normal distributions. Other prior distributions, such
as a student-t distribution are possible as well, although assuming a normal distribution is
arguably a good default choice (see also McElreath 2020).
A fundamentally different class of priors arises when assuming the item parameters to have
the same underlying hierarchical prior distribution with shared hyperparameters. Most com-
monly, a centered normal distribution is used so that

ξi ∼ Normal(0, σξ)

for all ξi, which share a common standard deviation σξ. The latter is estimated as part
of the model as well. Such a prior implies that parameters are shrunken somewhat towards
their joint mean, a phenomenon also known as partial pooling (Gelman and Hill 2006). Partial
pooling makes parameter estimates more robust as well as less influenced by extreme patterns
and noise in the data (Gelman and Hill 2006).
The above model formulation implies that multiple item parameters belonging to the same
item but estimated for different distributional parameters are assumed independent of each
other. This turns out to be an unnecessarily restrictive assumption in many applications.
For example, in a 2PL model, every item has both a difficulty/easiness and a discrimination
parameter, which may correlate with each other over the set of items. At the very least, we
cannot be sure of their independence a-priori. Thus, accounting for their possible dependence
appears to be the generally safer choice. Statistically, correlated item parameters are modeled
via a hierarchical multivariate normal distribution in the form of

(ξ1i, . . . , ξKi) ∼ Multinormal(0,Σξ)

where ξki is the item parameter of item i used in the prediction of the distributional parameter
ψk and Σξ is the covariance matrix determining both the scale and the dependence structure of
the item parameters. A covariance matrix tends to be relatively hard to interpret. Accordingly
it is usually advantageous to decompose the covariance matrix into a correlation matrix
capturing the dependence structure and a vector of standard deviations capturing the scales
of the person parameters:

Σξ = D(σξ1, . . . , σξK) Ωξ D(σξ1, . . . , σξK)

Journal of Statistical Software 11

In the above equation, Ωξ denotes the correlation matrix and D(σξ1, . . . , σξK) denotes the
diagonal matrix with standard deviations σξk on the diagonal. Currently, brms officially
supports only normal hierarchical priors but other options, such a (multivariate) student-t
priors may be supported in the future as well.
A decision between hierarchical and non-hierarchical priors is not always easy. If in doubt,
one can try out both kinds of priors and investigate whether they make a relevant difference
since both are supported in brms. Personally, I prefer hierarchical priors as they imply some
data-driven shrinkage due to their scale being learned by the model on the fly. Also, they
naturally allow item parameters to share information across parameter classes via the corre-
lation matrix Ωξ. Hierarchical item priors are currently a somewhat non-standard approach
in IRT. One reason might be that, historically, a commonly used logic for using hierarchical
distributions was the assumption of an underlying population – especially from a frequentist
viewpoint. In cases where we just have a fixed set of items (as opposed to some rule-based au-
tomatic generation of items; e.g., Gierl and Haladyna 2012), the assumption of an underlying
population indeed seems a bit off. However, I argue that for the application of hierarchical
priors, we actually do not need this population assumption, especially not from a Bayesian
perspective where uncertainty is represented via probability distributions anyway. Rather,
the decision on whether or not to apply hierarchical priors should be based on whether or not
partial pooling of parameters is desired in a given context.
In contrast to priors on item parameters, priors on person parameters are almost always
hierarchical in IRT (e.g., De Boeck et al. 2011; Fox 2010; Levy and Mislevy 2017). I will
follow this approach throughout this paper although a no pooling approach could be adopted
in brms as well. The procedure is similar to that of hierarchical item priors. If we just
have a single parameter θp per person p (or want to model multiple person parameters as
uncorrelated), we apply a hierarchical univariate prior of the form

θp ∼ Normal(0, σθ)

with a common standard deviation parameter σθ. For multiple (correlated) person parameters
we use an hierarchical multivariate normal prior

(θ1p, . . . , θKp) ∼ Multinormal(0,Σθ)

with a common covariance matrix Σθ, which may again be decomposed into a vector of
standard deviations and a correlation matrix.
If we decide to partially pool both person and item parameters, we have to amend the model
slightly by adding an overall intercept parameter b0 to the linear predictor, which then be-
comes b0 + θp + ξi. We do this in order to catch average deviations from zero, which would
otherwise no longer be appropriately modeled as both person and item parameters had been
(soft) centered around zero by the prior. Such a formulation of IRT models via partially
pooled person and/or item parameters moves them into the framework of generalized linear
multilevel models (GLMMs) and allows corresponding GLMM software to fit certain kinds of
IRT models (De Boeck et al. 2011).
What remains to be specified are priors on the hyperparameters, that is, on the standard de-
viations and correlation matrices, if present. In short, for standard deviations, I recommend
priors whose densities have a mode at zero and fall off strictly monotonically for increas-
ing parameter values. Examples for such priors are half-normal or half-Cauchy priors. For

12 Bayesian IRT Modeling with brms and Stan

correlation matrices, I recommend the LKJ prior (Lewandowski, Kurowicka, and Joe 2009),
with which we can assign equal density over the space of valid correlation matrices if desired.
More details on hyperparameters in brms and Stan are provided in Bürkner (2017), Bürkner
(2018), and the Stan User’s Manual (Stan Development Team 2021).
Lastly, I want to discuss priors on covariate effects. A special complexity in that context is that
the scale of the coefficients depends not only on the (link-transformed) scale of the response
variable but also on the scale of the covariates themselves (and possibly also on the dependency
between covariates). Additionally, the choice of priors depends on the goal we want to achieve
by their means, for instance, improving convergence, penalizing unrealistically large values, or
covariate selection (see also Gelman, Simpson, and Betancourt 2017). brms supports several
covariate priors, ranging from completely flat “uninformative” priors (the current default),
over weakly-informative priors for mild regularization and improving convergence to priors
intended for variable selection such as the horseshoe prior (Carvalho et al. 2010; Piironen and
Vehtari 2017b). In general, setting priors is an active area of research and I hope that we can
further improve our understanding of and recommendations for priors in the future.

1.6. Model identification

An important aspect of model building is model identification (e.g., Van der Linden and
Hambleton 1997). From a frequentist perspective, we call a model identified (or strongly
identified to distinguish it from other notions of identification) if equality of likelihood implies
equality of parameter values (e.g., San Martín 2015):

p(y | θ1, ξ1) = p(y | θ2, ξ2) ⇒ (θ1, ξ1) = (θ2, ξ2) (1)

If the above implication does not hold, certain parameters need to be fixed to ensure identifi-
cation or other constraints be made (e.g., San Martín 2015; San Martín and González 2010;
Bollen and Davis 2009). An important example for a non-identified models (in a frequentist
sense) are binary 2PL models when the standard deviation of the person parameters is allowed
to vary freely. This is because the scale of the person parameters’ distribution is completely
accounted for by the scale of the discrimination parameters due to their multiplicative rela-
tionship. It is thus common practice to fix σθ to 1 which then ensures identification of the
model (e.g., Van der Linden and Hambleton 1997).
By the rules of probability theory, the posterior distribution of a model always exists if all
prior distributions are proper (i.e., integrate to 1) independently of whether or not the model
is identified in the strong sense. As a result, identification of a Bayesian model is not as
straight forwardly defined as for a frequentist model (see San Martín and González 2010,
for a thorough discussion on notions of Bayesian identifiability; see also Fox 2010; and Levy
and Mislevy 2017, for discussions in the context of IRT models). In this context, I use the
informal term weakly identified to describe a model that has a sensible posterior distribution
for all quantities of interest. The term sensible can only be resolved in the context of a
given model and data (see also Gelman et al. 2017). We will usually not be able to check
weak identification directly, as the posterior distribution is not analytical for most Bayesian
IRT models. Hence, in practice, weak identification can only be verified empirically for a
given estimation algorithm based on whether the algorithm converges to a sensible posterior
distribution. In this sense, identification and convergence of the estimation algorithm cannot
easily be distinguished from one another. What we can do is to use (non-)convergence as a

Journal of Statistical Software 13

proxy for (non-)identification in addition to using our subject matter knowledge about the
expected scale of parameters values. However, care must be taken as non-convergence may
have several reasons only one of which is non-identification.
In the present paper, I will go the way of imposing constraints commonly made to ensure
strong identification, such as fixing certain parameters to constants. This also renders the
model results comparable to those obtainable by other frameworks which do not have full
access to priors on all parameters as a way to (weakly) identify models.

2. Model specification in brms
In brms, specifying an IRT model is done mainly via three arguments: family, formula, and
prior. I will explain each of them in detail in the following.

2.1. Specifying the family argument

The model family specifies the response distribution as well as the response functions of
the predicted distributional parameters. Following the convention of GLM theory, I do not
specify the response function directly but rather its inverse, which is called the link function3.
In brms, each response distribution has a dedicated primary parameter ψ1 = µ that usually
describes the mean of the distribution or some other measure of central tendency. This
primary parameter is accompanied by a corresponding link function, which, as explained
above, ensures that µ is on the scale expected by the distribution. In the brms framework, a
family can be specified via

family = brmsfamily(family = "<family>", link = "<link>")

where <family> and <link> have to be replaced by the names of the desired response distri-
bution and link function of µ, respectively. For binary responses, we could naturally assume
a Bernoulli distribution and a logit link function, which would then be passed to brms via

family = brmsfamily(family = "bernoulli", link = "logit")

The Bernoulli distribution has no additional parameters other than µ, but most other distri-
butions do. Take, for instance, the normal distribution, which has two parameters, the mean
µ and the residual standard deviation σ. The mean parameter µ can take on all real values
and thus, using the identity link (i.e., no transformation at all) is a viable solution. If we
assumed σ to be constant across observations, we would simply specify

family = brmsfamily(family = "gaussian", link = "identity")

If, however, we also modeled σ as depending on item and/or person parameters, we would
need to think of a link function for σ as well. This is because σ is a standard deviation, which,
by definition, can only take on positive values. A natural choice to restrict predictions to be
positive is the log link function with the corresponding exponential response function, which
is used as the default link for σ. To make this choice explicit, we write

3In my opinion, the convention of specifying link functions instead of response functions is unfortunate. I
think it is more natural to transform linear predictors to the scale of the parameter via the response function,
rather than transforming the parameter to the scale of the linear predictor.

14 Bayesian IRT Modeling with brms and Stan

family = brmsfamily(family = "gaussian", link = "identity",
link_sigma = "log")

An overview of available families in brms together with their distributional parameters and
supported link functions is provided in ?brmsfamily. Details about the parameterization of
each family are given in vignette("brms_families"). If the desired response distribution is
not available as a built-in family, users may specify their own custom families for use in brms.
Details on custom families can be found by typing vignette("brms_customfamilies") in
the console.

2.2. Specifying the formula argument

I will now discuss the formula argument of brms. Throughout this paper, I will assume the
response variable to be named y and the person and item indicators to be named person
and item, respectively. Of course, these names are arbitrary and can be freely chosen by
the user as long as the corresponding variables appear in the data set. If we just predict
the main parameter µ of the response distribution, we just need a single R formula for the
model specification. If we want to apply partial pooling (i.e., hierarchical priors) to the person
parameters but not to the item parameters, we would write

formula = y ~ 0 + item + (1 | person)

Instead, if we wanted to partially pool both person and item parameters, we would write

formula = y ~ 1 + (1 | item) + (1 | person)

Throughout this paper, I will model both person and item parameters via partial pooling as
I believe it to be the more robust approach, which also scales better to more complex models
(Gelman and Hill 2006). If partial pooling of items is not desired, the expression 1 + (1 |
item) has to be replaced by 0 + item.
In standard R formula syntax, from which brms formula syntax inherits, covariates may be
included in the model by adding their names to the formula. For instance, if we wanted to
model an overall effect of a covariate x, we would write

y ~ 1 + x + (1 | item) + (1 | person)

Additionally, if we wanted the effect of x to vary over items, we would write

y ~ 1 + x + (1 + x | item) + (1 | person)

Modeling covariate effects as varying over persons can be done analogously. Interactions are
specified via the : operator. That is, for covariates x1 and x2 we add x1:x2 to the formula in
order to model their interaction. We may also use x1 * x2 as a convenient short form for x1
+ x2 + x1:x2. As the data is expected to be in long format, the syntax for covariate effects
is independent of the covariate type, that is, whether it is person or item related.
In most basic IRT models, only the mean of the response distribution is predicted while other
distributional parameters, such as the residual standard deviation of a normal distribution,
are assumed constant across all observations. Depending on the psychometric test, this may

Journal of Statistical Software 15

be too restrictive an assumption as items and persons not only differ in the mean response
but also in other aspects, which are captured by additional parameters. To predict multiple
distributional parameters in brms, we need to specify one formula per parameter as follows:

formula = bf(
y ~ 1 + (1 | item) + (1 | person),
par2 ~ 1 + (1 | item) + (1 | person),
par3 ~ 1 + (1 | item) + (1 | person),
...

)

The function bf() is a short form for brmsformula, which helps to set up complex models in
brms. In the specification above, par2 and par3 are placeholders for the parameter names,
which are specific to each response distribution, for instance, sigma in the case of the normal
distribution. Covariates effects on such parameters may be included in the same way as
described before.
The model formulation shown above implies that person and item parameters, respectively,
imposed on different distributional parameters are modeled as independent of each other.
However, to allow the exchange of information between parameters of the same person or
item and improve partial pooling across the whole model, it is beneficial to specify them as
correlated (see Section 1.5 for details). Taking the 2PL model as an example, we have two
parameters per item, one difficulty and one discrimination parameter. If, say, more difficult
items also have higher discrimination, we would like to use this information in the model to
improve the estimation of both difficulties and discrimination even if we are not interested in
the correlation itself (e.g., see Gelman and Hill 2006, for a general discussion of correlations
between varying coefficients in multilevel models).
The syntactical solution to model these correlations implemented in brms (and currently
unique to it) is to expand the | operator into |<ID>|, where <ID> can be any value or
symbol. Person or item parameters with the same ID will then be modeled as correlated even
though they appear in different R formulas. That is, if we want to model both person and
item parameters as correlated, respectively, across all distributional parameters, we choose
some arbitrary IDs, for instance p for person and i for item. Importantly, p and i are no
variables in the data set, they are simply symbols used to connect multiple varying effects of
the same grouping factor (person or item in this case). For example, we can write

formula = bf(
y ~ 1 + (1 |i| item) + (1 |p| person),
par2 ~ 1 + (1 |i| item) + (1 |p| person),
par3 ~ 1 + (1 |i| item) + (1 |p| person),
...

)

Because we used |p| in all person-related terms, this implies that person parameters (of the
same person) are modeled as correlated across the three distributional parameters mu (the
main parameter implicit in the above formula), par2, and par3. The same logic applies to
item parameters.
As discussed above, standard R formula syntax is designed to create additive predictors by
splitting up the right-hand side of the formula in its unique terms separated from each other

16 Bayesian IRT Modeling with brms and Stan

by + signs. This formulation is convenient and flexible but it cannot be used to express non-
linear predictors of arbitrary complexity. To achieve the latter, brms also features a second,
more expressive way to parse R formulas. Suppose that the response y is related to some
covariate x via a non-linear function fun. Further, suppose that the form of fun is determined
by two parameters nlpar1 and nlpar2 which we need to estimate as part of the model fitting
process. I will call them non-linear parameters to refer to the fact that they are parameters of
a non-linear function. To complicate things, nlpar1 and nlpar2 are not necessarily constant
across observations, but instead may vary across persons and item. That is, we need to
specify a main non-linear formula as well as some additional linear formulas describing how
the non-linear parameters are predicted by person and item parameters. Basically, non-linear
parameters are handled in the same way as distributional parameters. Suppose that nlpar1
depends on both persons and items, while nlpar2 just depends on the items. In brms, we
can express this as

formula = bf(
y ~ fun(x, nlpar1, nlpar2),
nlpar1 ~ 1 + (1 | item) + (1 | person),
nlpar2 ~ 1 + (1 | item),
nl = TRUE

)

Using nl = TRUE is essential as it ensures that the right-hand side of the formula is taken
literally instead of being parsed via standard R formula syntax. Of course, we are not limited
to one covariate and two non-linear parameters, but instead are able to specify any number
of them in the formula. Further, the linear predictors of the non-linear parameters may
contain all kinds of additive terms that I introduced above for usage with distributional
parameters. This combination of linear and non-linear formulas results in a great amount of
model flexibility for the purpose of IRT modeling.

2.3. Specifying the prior argument
Prior specification is an essential part in the Bayesian workflow and brms offers an intuitive
and flexible interface for convenient prior specification that can be readily applied to IRT
models. In the following, I explain the syntax to specify priors in the proposed IRT framework.
The priors I choose as examples below are not meant to represent any specific practical
recommendations. Rather, the prior can only be understood in the context of the model it is
a part of (Gelman et al. 2017). Accordingly, user-defined priors should always be chosen by
keeping the model and relevant subject matter knowledge in mind. I will attempt to provide
more ideas in this direction in Section 4.
The main function for the purpose of prior specification in brms is set_prior(). It takes
the prior itself in the form of a character string as well as additional arguments to define the
parameters on which the prior should be imposed. If we use partial pooling for item and/or
person parameters, the normal prior on those parameters is automatically set and cannot be
changed via the prior argument. However, we may change priors on the hyperparameters
defining the covariance matrix of the person or item parameters that is on the standard
deviations and correlation matrices. Suppose we want to define a half-Cauchy(0, 5) prior on
the standard deviation σθ of the person parameters and an LKJ(2) prior on their correlation
matrix Ωθ across the whole model, then we write

Journal of Statistical Software 17

prior = set_prior("cauchy(0, 5)", class = "sd", group = "person") +
set_prior("lkj(2)", class = "cor", group = "person")

These priors will then apply to all distributional and non-linear parameters which vary across
persons. As shown above, multiple priors may be combined via the + sign. Alternatively, c()
or rbind() may be used to combine priors too. In Stan, and therefore also in brms, truncated
priors such as the half-Cauchy prior are implicitly specified by imposing a hard boundary on
the parameter, that is a lower boundary of zero for standard deviations, and then using the
non-truncated version of the prior. Setting the hard boundary is done internally and so
"cauchy(...)" will actually imply a half-Cauchy prior when used for a standard deviation
parameter.
We can make priors specific to certain distributional parameters by means of the dpar ar-
gument. For instance, if we want a Gamma(1, 1) prior on the person standard deviation of
dpar2 we write

prior = set_prior("gamma(1, 1)", class = "sd", group = "person",
dpar = "dpar2")

Analogously to distributional parameters, priors can be applied specifically to certain non-
linear parameters by means of the nlpar argument.
Parameters can be fixed to constants by using the constant() function inside set_prior().
For example, if we want to fix the standard deviation of person parameters to 1 in order to
ensure strong identification of a binary 2PL model, we can write:

prior = set_prior("constant(1)", class = "sd", group = "person")

If one chooses to not use partial pooling for the item parameters via formulas like y ~ 0 +
item + (1 | person), that is, apply non-hierarchical priors, item parameters will be treated
as ordinary regression coefficients and so their prior specification changes too. In this case, we
are not limited to setting priors on all item parameters, but may also specify them differently
for certain items if desired. In brms, the class referring to regression coefficients if called "b".
That is, we can impose a Normal(0, 3) prior on all item parameters via

prior = set_prior("normal(0, 3)", class = "b")

We may additionally set priors on the specific items. If, say, we know that item1 will be
relatively easy to answer correctly, we may encode this via a prior that has a mean greater
than zero4. This could then look as follows:

prior = set_prior("normal(0, 3)", class = "b") +
set_prior("normal(2, 3)", class = "b", coef = "item1")

Internally, brms will always search for the most specific prior provided by the user. If no
user-specified prior can be found, default priors will apply which are set to be very wide and
can thus be considered non or weakly informative. Priors on the covariates can be specified
in the same way as priors on non-hierarchical item parameters, that is via class "b".

4Remember that brms uses the easiness formulation so that larger values mean higher probability of solving
an item.

18 Bayesian IRT Modeling with brms and Stan

2.4. Stan code generation

With a few exceptions outside the scope of this paper, the trinity of formula, family, and
prior completely defines the model structure and generated Stan code. For example, the
Stan code of the 1PL model with non-hierarchical item priors generated from

make_stancode(
formula = y ~ 0 + item + (1 | person),
family = brmsfamily("bernoulli", "logit"),
prior = prior(normal(0, 5), class = "b") +

prior(normal(0, 3), class = "sd", group = "id"),
...

)

looks as follows:

// generated with brms 2.11.5
functions {
}
data {

int<lower=1> N; // number of observations
int Y[N]; // response variable
int<lower=1> K; // number of population-level effects
matrix[N, K] X; // population-level design matrix
// data for group-level effects of ID 1
int<lower=1> N_1; // number of grouping levels
int<lower=1> M_1; // number of coefficients per level
int<lower=1> J_1[N]; // grouping indicator per observation
// group-level predictor values
vector[N] Z_1_1;
int prior_only; // should the likelihood be ignored?

}
transformed data {
}
parameters {

vector[K] b; // population-level effects
vector<lower=0>[M_1] sd_1; // group-level standard deviations
vector[N_1] z_1[M_1]; // standardized group-level effects

}
transformed parameters {

vector[N_1] r_1_1; // actual group-level effects
r_1_1 = (sd_1[1] * (z_1[1]));

}
model {

// initialize linear predictor term
vector[N] mu = X * b;
for (n in 1:N) {

// add more terms to the linear predictor

Journal of Statistical Software 19

mu[n] += r_1_1[J_1[n]] * Z_1_1[n];
}
// priors including all constants
target += normal_lpdf(b | 0, 5);
target += normal_lpdf(sd_1 | 0, 3)

- 1 * normal_lccdf(0 | 0, 3);
target += normal_lpdf(z_1[1] | 0, 1);
// likelihood including all constants
if (!prior_only) {

target += bernoulli_logit_lpmf(Y | mu);
}

}
generated quantities {
}

As can be seen, the Stan code is heavily commented to facilitate human readability. There
are a lot of steps involved in order to fully generate the Stan code and I will explain the most
important steps below.
In a first step, the information in family and formula is combined so that all R formulas
can be validated against the model family and its supported distributional parameters. The
formula of each distributional parameter is then split into several predictor terms, for our pur-
poses most notably population-level (“overall”) and group-level (“varying”) terms. In the 1PL
example, this means splitting the right-hand side of y ~ 0 + item + (1 | person) into ~
0 + item (population-level terms) and ~ (1 | person) (group-level terms). Their primary
difference between the two is that non-hierarchical priors are applied to the former while hier-
archical priors are applied to the latter. The generated Stan code varies substantially between
these two types of terms in particular to exploit the sparsity of the group-level parameters
(each observation belongs only to a single level per grouping factor). In order to model group-
level parameters as correlated across different model parts, each being represented by its own
formula, the corresponding group-level terms are extracted from the formulas and combined
into a single object which can then be handled independently of the individual formulas. The
Stan code generation then proceeds as follows.
Data and parameters of group-level terms are added to the data, parameters, transformed
parameters, and model block (see Carpenter et al. 2017, for more details on Stan pro-
gramming blocks). The most important aspect of the generated Stan code is the use of the
non-centered parameterization for group-level coefficients. That is, instead of defining the
coefficients r_* as parameters and directly applying hierarchical priors, we define indepen-
dent standard normal coefficients z_* as parameters and then scale them according to the
hyperparameters (i.e., standard deviations sd_* and Cholesky factors of correlation matrices
L_* if required) in transformed parameters . For a single group-level term, that is, without
having to take correlations into account, this happens via

r_1_1 = (sd_1[1] * (z_1[1]));

In the Stan code, matrices are split into their column vectors whenever indexing the individual
columns over observations is required. This leads to more efficient sampling in most cases.
The two suffix numbers of the variable names indicate the grouping factor number and term

20 Bayesian IRT Modeling with brms and Stan

number within a grouping factor, respectively. These suffixes are replaced by more informative
names after model fitting. For example, r_1_1 refers to the coefficient vector of the first
group-level term within with first grouping factor.
For each individual model component/formula, the data, parameters and model blocks of
the Stan code are written independently. A vector named after the predicted distributional
parameter of length equal to the number of observations is created in the model block and
filled with predictions. Predictor terms are added to this vector in two steps. First, everything
that can be efficiently expressed via (non-sparse) matrix algebra, is added to the predictor
for all observations at once. For example, population-level terms, such as non-hierarchical
item parameters or covariate effects, are computed by matrix-multiplying their design matrix
X with the related coefficients b. For the main parameter mu, the following line of Stan code
is generated:

mu = X * b;

All remaining terms are added in a loop over observations. For a single group-level term
(e.g., hierarchical person parameters) the related Stan code is

for (n in 1:N) {
mu[n] += r_1_1[J_1[n]] * Z_1_1[n];

}

In the above code, Z_1_1 is the data vector of the variable whose effect is supposed to vary
(equal to 1 if only a group-level intercept is present), r_1_1 is the vector of group-level
coefficients, and J_1 is the index vector linking group-levels to observations.
The family argument is used to define the overall form of the likelihood. Together with
formula, the most efficient Stan expression for the likelihood is found. Specific combinations
of likelihood distribution and link function yield simplified and more efficient mathematical
forms. Stan has several of these built-in combinations, for example, the bernoulli_logit_lpmf()
function, where lpmf stands for “log probability density function”. If such an optimized func-
tion is available, it is used in the generated Stan code. Otherwise, the regular lpmf function
for the distribution is used (e.g., bernoulli_lpmf) and the link function is applied manually
beforehand. Next, it is determined whether the likelihood can be vectorized over observations.
This drastically speeds up estimation time if the likelihood contains terms which are constant
across observations and thus need to be computed only once instead of separately for each
observation. As Stan directly compiles to C++, loops themselves are fast and so the reason
for vectorizing in Stan is different from the reason to vectorize in R or another interpreted
programming language. For the 1PL model above, the likelihood is written in Stan a follows:

target += bernoulli_logit_lpmf(Y | mu);

The target += notation is used to indicate that a term is added to the log-posterior. If, for
some reason, we could not have vectorized over the likelihood, the code would have looked as
follows, instead:

for (n in 1:N) {
target += bernoulli_logit_lpmf(Y[n] | mu[n]);

}

Journal of Statistical Software 21

Lastly, the priors are added to the Stan code also using the target += syntax. The normal(0,
5) prior on the item parameters is translated to Stan as follows:

target += normal_lpdf(b | 0, 5);

The (half) normal(0, 3) prior on the person parameters’ standard deviation is specified as

target += normal_lpdf(sd_1 | 0, 3) - 1 * normal_lccdf(0 | 0, 3);

The term - 1 * normal_lccdf(0 | 0, 3) is constant across parameters and, hence, does
not affect parameter estimation. The only reason for its presence in Stan models written
by brms is that it enables correct marginal likelihood estimation after model fitting via the
bridgesampling package (Gronau, Singmann, and Wagenmakers 2020). It does so by correct-
ing the log-posterior for the truncation of the prior, which was automatically and implicitly
done by Stan since sd_1 was defined with a lower boundary of 0 in the parameters block. If
marginal likelihood estimation, is not of interest, adding such constants is not necessary and
can be safely ignored.

3. Parameter estimation and post-processing
The brms package uses Stan (Carpenter et al. 2017) on the back-end for the model estimation.
Accordingly, all samplers implemented in Stan can be used to fit brms models. The flagship
algorithm of Stan is an adaptive Hamiltonian Monte Carlo (HMC) sampler (Betancourt,
Byrne, Livingstone, and Girolami 2014; Betancourt 2017; Stan Development Team 2021),
which represents a progression from the No-U-Turn Sampler (NUTS) by Hoffman and Gelman
(2014). HMC-like algorithms produce posterior samples that are much less autocorrelated
than those of other samplers such as the random-walk Metropolis algorithm (Hoffman and
Gelman 2014; Creutz 1988). What is more, consecutive samples may even be anti-correlated
leading to higher efficiency than completely independent samples (Vehtari, Gelman, Simpson,
Carpenter, and Bürkner 2019). The main drawback of this increased efficiency is the need
to calculate the gradient of the log-posterior, which can be automated using algorithmic
differentiation (Griewank and Walther 2008), but is still a time-consuming process for more
complex models. Thus, using HMC leads to higher quality samples but takes more time per
sample than other typically applied algorithms. Another drawback of HMC is the need to
pre-specify at least two parameters, which are both critical for the performance of HMC. The
adaptive HMC Sampler of Stan allows setting these parameters automatically thus eliminating
the need for any hand-tuning, while still being at least as efficient as a well tuned HMC
(Hoffman and Gelman 2014). For more details on the sampling algorithms applied in Stan,
see the Stan user’s manual (Stan Development Team 2021) as well as Hoffman and Gelman
(2014).
After the estimation of the parameters’ joint posterior distribution, brms offers a wide range
of post-processing options of which several are helpful in an IRT context. Below, I introduce
the most important post-processing options. I will show their usage in hands-on examples
in the upcoming sections. For a quick numerical and graphical summary, respectively, of the
central model parameters, I recommend the summary() and plot() methods. The posterior
distribution of person parameters (and, if also modeled as varying effects, item parameters)
can be extracted with the coef() method. The hypothesis() method can be used to easily

22 Bayesian IRT Modeling with brms and Stan

compute and evaluate parameter contrasts, for instance, when the goal is to compare the
difficulty of two items or the ability of two persons. A visualization of the effects of item or
person covariates is readily available via the conditional_effects() method.
With the help of the posterior_predict method, brms allows drawing samples from the
posterior predictive distribution. This not only allows to make predictions for existing or new
data, but also enables the comparison between the actual response y and the response ŷ pre-
dicted by the model. Such comparisons can be visualized in the form of posterior-predictive
checks by means of the pp_check() method (Gabry, Simpson, Vehtari, Betancourt, and
Gelman 2019). Further, via the log_lik() method, the pointwise log-likelihood can be ob-
tained, which can be used, among others, for various cross-validation methods. One widely
applied cross-validation approach is leave-one-out cross-validation (LOO-CV; Vehtari, Gel-
man, and Gabry 2017b), for which an approximate version is available via the loo() method
of the loo package (Vehtari et al. 2017b; Vehtari, Gelman, and Gabry 2017a). If LOO-CV
is not an option or if the approximation fails, exact k-fold cross-validation is available via
the kfold() method. The cross-validation results can be further post-processed for the pur-
pose of comparison, selection, or averaging of models. In these contexts, the loo_compare(),
model_weights(), and pp_average() methods are particularly helpful.
In addition to cross-validation based fit measures, the marginal likelihood (i.e., the denomi-
nator in Bayes’ theorem) and marginal likelihood ratios, commonly known as Bayes factors,
can be used for model comparison, selection, or averaging as well (Kass and Raftery 1995).
In general, obtaining the marginal likelihood of a model is a computationally demanding task
(Kass and Raftery 1995). In brms, this is realized via bridge sampling (Meng and Wong 1996;
Meng and Schilling 2002) as implemented in the bridgesampling package (Gronau et al. 2020).
The corresponding methods are called bridge_sampler() to obtain (log) marginal likelihood
estimates, bayes_factor() to obtain Bayes factors and post_prob() to obtain posterior
model probabilities based on prior model probabilities and marginal likelihood estimates.

4. Examples
In this section, I am going to discuss several examples of advanced IRT models that can be
fitted with brms. I will focus on three common model classes: binary, ordinal, and reaction
time models, but the discussed principles also apply to other types of responses that can
be analyzed by means of IRT. When running these examples on your machine (using the
replication materials), it it likely that you will not get the exact same results that are shown
below even if you use the same random seed. This is because Stan results are only exactly
reproducible if you use the same operating system, same C++ compiler and version, as well
as the same version of Stan itself.

4.1. Binary models
To illustrate the application of brms to binary IRT models, I will use the VerbAgg data set
(De Boeck and Wilson 2004), which is included in the lme4 package (Bates et al. 2015b).

R> data("VerbAgg", package = "lme4")

This data set contains responses of 316 participants on 24 items of a questionnaire on verbal
aggression. Several item and person covariates are provided. A glimpse of the data is given in

Journal of Statistical Software 23

Anger Gender item resp id btype situ mode r2

20 M S1WantCurse no 1 curse other want N
11 M S1WantCurse no 2 curse other want N
17 F S1WantCurse perhaps 3 curse other want Y
21 F S1WantCurse perhaps 4 curse other want Y
17 F S1WantCurse perhaps 5 curse other want Y

21 F S1WantCurse yes 6 curse other want Y
39 F S1WantCurse yes 7 curse other want Y
21 F S1WantCurse no 8 curse other want N
24 F S1WantCurse no 9 curse other want N
16 F S1WantCurse yes 10 curse other want Y

Table 1: First ten rows of the VerbAgg data.

Table 1 and more details can be found by typing ?lme4::VerbAgg. Let us start by computing
a simple 1PL model. For reasons discussed in Section 1, I prefer to partially pool person and
item parameters by specifying the model as

R> formula_va_1pl <- bf(r2 ~ 1 + (1 | item) + (1 | id))

If we wanted to specify non-hierarchical item parameters, instead, we would have had to use
the formula

R> bf(r2 ~ 0 + item + (1 | id))

To impose a small amount of regularization on the model, I set half-normal(0, 3) priors on
the hierarchical standard deviations of person and items parameters. Given the scale of the
logistic response function, this can be regarded as a weakly informative prior.

R> prior_va_1pl <-
+ prior("normal(0, 3)", class = "sd", group = "id") +
+ prior("normal(0, 3)", class = "sd", group = "item")

The model is then fit as follows:

R> fit_va_1pl <- brm(
+ formula = formula_va_1pl,
+ data = VerbAgg,
+ family = brmsfamily("bernoulli", "logit"),
+ prior = prior_va_1pl
+)

To get a quick overview of the model results and convergence, we can summarize the main
parameters numerically using the summary() method:

R> summary(fit_va_1pl)

24 Bayesian IRT Modeling with brms and Stan

sd_item__Intercept

sd_id__Intercept

b_Intercept

1.0 1.5 2.0

1.2 1.3 1.4 1.5 1.6 1.7

−1.0 −0.5 0.0 0.5 1.0
0.0
0.4
0.8
1.2
1.6

0
1
2
3
4
5

0.0
0.5
1.0
1.5
2.0

sd_item__Intercept

sd_id__Intercept

b_Intercept

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000
−1.0
−0.5

0.0
0.5
1.0

1.2
1.3
1.4
1.5
1.6
1.7

1.0
1.5
2.0

Chain

1
2
3
4

Figure 1: Summary of the posterior distribution of selected parameters obtained by model
fit_va_1pl.

Family: bernoulli
Links: mu = logit

Formula: r2 ~ 1 + (1 | item) + (1 | id)
Data: VerbAgg (Number of observations: 7584)

Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000

Group-Level Effects:
~id (Number of levels: 316)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 1.39 0.07 1.25 1.54 1.00 906 1441

~item (Number of levels: 24)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sd(Intercept) 1.20 0.19 0.89 1.62 1.00 531 1326

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept -0.16 0.26 -0.71 0.34 1.03 196 532

Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

A graphical summary of the marginal posterior densities as well as the MCMC chains is
obtained via

R> plot(fit_va_1pl)

Journal of Statistical Software 25

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0

5

10

15

20

25

−2 0 2
Estimate

Ite
m

 N
um

be
r

Figure 2: Posterior means and 95% credible intervals of item parameters as estimated by
model fit_va_1pl.

and shown in Figure 1. Before interpreting the results, it is crucial to investigate whether the
model fitting algorithm converged to its target, that is, the parameters’ posterior distribution
for fully Bayesian models. There are multiple ways to investigate convergence. We could
do so graphically by looking at trace plots (see the right-hand side of Figure 1) or more
recently proposed rank plots (Vehtari et al. 2019). On that basis, we can interpret MCMC
chains as having converged to the same target distribution, if the chains are mixing well
individually (i.e., quickly jumping up and down) and are overlaying one another at the same
time (Gelman et al. 2013). We may also investigate convergence numerically by means of the
scale reduction factor R̂ (Gelman and Rubin 1992; Gelman et al. 2013; Vehtari et al. 2019),
which should be close to one (i.e., R̂ < 1.05), and the effective sample size, which should
be as large as possible but at least 400 to merely ensure reliable convergence diagnostics
(Vehtari et al. 2019). The corresponding columns in the summary output are called Rhat
and Eff.Sample. Convergence diagnostics for all model parameters can be obtained via the
rhat() and neff_ratio() methods, respectively. Additionally, there are some diagnostics
specific to (adaptive) HMC, which we can access using nuts_params() and plotted via various
options in mcmc_plot(). After investigating both the graphical and numerical indicators of
convergence, we are confident that the model fitting algorithm succeeded so that we can start
interpreting the results.
We see from the summary of the standard deviation parameters (named sd(intercept) in
the output) that both persons and items vary substantially. Not all model parameters are
shown in summary() and plot() to keep the output clean and readable and so we need to call
other methods depending on what we are interested in. In IRT, this most likely includes the
person and item parameters, which we can access via methods coef() and ranef() depending
on whether or not we want to include overall effects (i.e., the global intercept for the present
model) in the computation of the individual coefficients. This would typically be the case if
we were interested in obtaining estimates of item difficulty or person ability. Item and person
parameters are displayed in Figure 2 and Figure 3, respectively.
From Figure 2 it is clear that some items (e.g., the 4th item) are agreed on by a lot of
individuals and thus have strongly positive easiness parameters, while other items (e.g., the
21th item) are mostly rejected and thus have a strongly negative easiness parameter. From

26 Bayesian IRT Modeling with brms and Stan

0

100

200

300

−5.0 −2.5 0.0 2.5 5.0
Estimate

P
er

so
n

N
um

be
r

(S
or

te
d)

Figure 3: Posterior means and 95% credible intervals of person parameters (sorted) as esti-
mated by model fit_va_1pl.

Figure 3 we see that the person parameters vary a lot but otherwise show a regular pattern of
blocks of persons getting very similar estimates (given the same prior). The latter is because,
in the 1PL model, all items are assumed to have the same discrimination and are thus weighted
equally. As a result, two persons endorsing the same number of items in total will receive the
same estimate, regardless of which items they endorsed exactly. This assumption of equal
discrimination is very restrictive and I will now investigate it in more detail. In a 2PL model,
we would assume each item to have its own discrimination, which are to be estimated from
the model along with all other parameters. Recall that mathematically, the 2PL model looks
as follows:

P (y = 1) = µ = logistic(αi(θp + ξi))

Without any further restrictions, this model will likely not be identified (unless we were
specifying highly informative priors) because a switch in the sign of αi can be corrected for
by a switch in the sign of θp + ξi without a change in the overall likelihood. For this reason,
I assume αi to be positive for all items, a sensible assumption for the VerbAgg data set
where a y = 1 always implies endorsing a certain verbally aggressive behavior. There are
multiple ways to force αi to be positive, one of which is to model it on the log-scale, that is
to estimate logαi and then exponentiating the result to obtain the actual discrimination via
αi = exp(logαi).

R> formula_va_2pl <- bf(
+ r2 ~ exp(logalpha) * eta,
+ eta ~ 1 + (1 |i| item) + (1 | id),
+ logalpha ~ 1 + (1 |i| item),
+ nl = TRUE
+)

Above, I split up the non-linear model into two parts, eta and logalpha, each of which
is in turn predicted by a linear formula. The parameter eta represents the sum of person
parameter and item easiness, whereas logalpha represents the log discrimination. I modeled

Journal of Statistical Software 27

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Easiness Discrimination

−3 −2 −1 0 1 0.9 1.2 1.5 1.8 2.1
0

5

10

15

20

25

Estimate

Ite
m

 N
um

be
r

Figure 4: Posterior means and 95% credible intervals of item parameters as estimated by
model fit_va_2pl.

item easiness and discrimination as correlated by using |i| in both varying item terms (see
Section 2). I impose weakly informative priors both on the intercepts of eta and logalpha
(i.e., on the overall easiness and log discrimination) as well as on the standard deviations of
person and item parameters.

R> prior_va_2pl <-
+ prior("normal(0, 5)", class = "b", nlpar = "eta") +
+ prior("normal(0, 1)", class = "b", nlpar = "logalpha") +
+ prior("constant(1)", class = "sd", group = "id", nlpar = "eta") +
+ prior("normal(0, 3)", class = "sd", group = "item", nlpar = "eta") +
+ prior("normal(0, 1)", class = "sd", group = "item", nlpar = "logalpha")

Finally, I put everything together and fit the model via

R> fit_va_2pl <- brm(
+ formula = formula_va_2pl,
+ data = VerbAgg,
+ family = brmsfamily("bernoulli", "logit"),
+ prior = prior_va_2pl,
+)

The results of summary() and plot() indicate good convergence of the model and I don’t
show their outputs for brevity’s sake. Instead, I directly take a look at the item parameters in
Figure 4. The discrimination estimates displayed on the right-hand have some considerable
uncertainty, roughly between 1 and 2, but are overall quite similar across items with posterior
mean estimates of roughly between 1.2 and 1.5. The easiness parameters displayed on the
left-hand side still show a similar pattern as in the 1PL although their estimates a little less
spread out as a result of the discrimination estimates being greater 1.
The correlation between person parameters obtained by the two models turns out to be r =
1, so there is basically nothing gained from the 2PL model applied to this particular data set.

28 Bayesian IRT Modeling with brms and Stan

0

100

200

300

−2 0 2 4
Estimate

P
er

so
n

N
um

be
r

(S
or

te
d)

Figure 5: Posterior means and 95% credible intervals of person parameters (sorted) as esti-
mated by model fit_va_2pl.

In line with these results, model fit obtained via approximate leave-one-out cross-validation
(LOO-CV) results in a LOOIC difference of ∆LOOIC = 5.97 in favor of the 2PL model,
which is quite small both on an absolute scale and in comparison to its standard error SE =
4.78 depicting the uncertainty in the difference. Thus, I will continue using the 1PL model
in the following.

Modeling covariates
When analyzing the VerbAgg data set, I am not so much interested in the item and person
parameters themselves, rather than in the effects of item and person covariates. I start
by including only item covariates, in this case the behavior type (btype, with factor levels
"curse", "scold", and "shout"), the situation type (stype, with factor levels "other"
and "self"), as well as the behavior mode (mode, with factor levels "want" and "do").
Additionally, I assume the effect of mode to vary over persons, that is assume each person to
have their own effect of mode. We specify this model in formula syntax as

R> r2 ~ btype + situ + mode + (1 | item) + (1 + mode | id)

This model assumes a varying intercept (i.e., baseline) and a varying effect of mode (i.e., dif-
ference between "want" and "do") per person. However, in this example, I am actually more
interested in estimating varying effects of "want" and "do", separately, in order to compare
variation between these two modes. For this purpose, we slightly amend the formula, which
now becomes

R> r2 ~ btype + situ + mode + (1 | item) + (0 + mode | id)

The notation 0 + mode implies that each factor level of mode gets its own varying effect,
instead of modeling the intercept and differences between factor levels. We are now ready to
actually fit the model:

R> formula_va_1pl_cov1 <- bf(
+ r2 ~ btype + situ + mode + (1 | item) + (0 + mode | id))

Journal of Statistical Software 29

R> fit_va_1pl_cov1 <- brm(
+ formula = formula_va_1pl_cov1,
+ data = VerbAgg,
+ family = brmsfamily("bernoulli", "logit"),
+ prior = prior_va_1pl
+)

As usual, a quick overview of the results can be obtained via

R> summary(fit_va_1pl_cov1)

Family: bernoulli
Links: mu = logit

Formula: r2 ~ btype + situ + mode + (1 | item) + (0 + mode | id)
Data: VerbAgg (Number of observations: 7584)

Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000

Group-Level Effects:
~id (Number of levels: 316)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(modewant) 1.47 0.09 1.30 1.64 1.00 1827 2664
sd(modedo) 1.67 0.10 1.48 1.87 1.00 1766 3007
cor(modewant,modedo) 0.77 0.04 0.69 0.84 1.00 1678 2694

~item (Number of levels: 24)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sd(Intercept) 0.46 0.09 0.31 0.67 1.00 1641 1852

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 1.89 0.25 1.42 2.40 1.00 1844 2533
btypescold -1.13 0.24 -1.62 -0.64 1.00 1938 1973
btypeshout -2.24 0.25 -2.74 -1.74 1.00 2095 2452
situself -1.12 0.21 -1.53 -0.71 1.00 2106 2335
modedo -0.78 0.21 -1.20 -0.38 1.00 2197 2498

Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

From the summary output, we see that the behavior difference of the "do" and "want"
behavior modes has a negative logit regression coefficient (b = −0.78, 95% CI = [−1.2,−0.38]),
which implies that, holding other predictors constant, people are more likely to want to be
verbally aggressive than to actually be verbally aggressive. However, although the direction
of the effect is quite clear, its magnitude tends to be hard to interpret as it the regression
coefficients are on the logit scale. To ease interpretation, we can transform and plot them on
the original probability scale (see Figure 6) using a single line of code:

30 Bayesian IRT Modeling with brms and Stan

●

●

0.7

0.8

0.9

want do
mode

r2

Figure 6: Expected probabilities of agreeing to an item in the VerbAgg data set as a function
of the behavior mode conditioned on all other covariates being set to their reference categories.

R> conditional_effects(fit_va_1pl_cov1, "mode")

Further, in the summary output, we see that both modes vary substantially over persons, with
a little bit more variation in mode "do". We may ask the question how likely it is, that the
variation in "do" across persons is actually larger than the variation in "want". Answering
such a question in a frequentist framework would not be easy as the joint distribution of
the two SD parameters is unlikely to be (bivariate) normal. In contrast, having obtained
samples from the joint posterior distribution using MCMC sampling, as we did, computing
the posterior distribution of the difference becomes a matter of computing the difference for
each pair of posterior samples. This procedure of transforming posterior samples is automated
in the hypothesis() method of brms. For this particular question, we need to use it as follows:

R> hyp <- "modedo - modewant > 0"
R> hypothesis(fit_va_1pl_cov1, hyp, class = "sd", group = "id")

Hypothesis Estimate CI.Lower CI.Upper Post.Prob
1 (modedo-modewant) > 0 0.2 0.02 0.39 0.97

(output shortened for readability; CI denotes 90% the credibly interval). From the Post.Prob
column we see that, given the model and the data, with 0.97 probability the SD of the "do"
effects is higher than the SD of the "want" effects, although the expected SD difference of 0.2
(on the logit scale) is rather small.
Similarly to how we incorporate item covariates, we may also add person covariates to the
model. In the VerbAgg data, we have information about the subjects’ trait anger score Anger
as measured on the Stat Trait Anger Expression Inventory (STAXI; Spielberger 2010) as
well as about their Gender. Let us additionally assume Gender and mode to interact, that
is allowing the effect of the behavior mode ("do" vs. "want") to vary with the gender of
the subjects. Further, I expect the individual item parameters to also vary with gender by
replacing the term (1 | item) by (0 + Gender | item). The complete model formula then
looks as follows:

Journal of Statistical Software 31

0.7

0.8

0.9

10 20 30 40
Anger

r2

●
●

●

●

0.6

0.7

0.8

0.9

want do
mode

r2

Gender

●

●

F
M

Figure 7: Expected probabilities of agreeing to an item in the VerbAgg data set as a function
of the trait anger (left) and the interaction of behavior mode and subjects’ gender (right)
conditioned on all other categorical covariates being set to their reference categories and
numerical covariates being set to their mean.

R> r2 ~ Anger + Gender + btype + situ + mode + mode:Gender +
+ (0 + Gender | item) + (0 + mode | id)

We fit the model as usual with the brm() function. Afterwards, we obtain a graphical sum-
mary of the effects of the newly added person covariates via

R> conditional_effects(fit_va_1pl_cov2, c("Anger", "mode:Gender"))

As visible on the left-hand side of Figure 7, increased trait anger is clearly associated with
higher probabilities of agreeing to items in the VerbAgg data set. Also, as can be seen on
the right-hand side of Figure 7, there is an interaction between behavior mode and gender.
More specifically, women and men report wanting to be verbally aggressive by roughly the
same probability, while men report actually being verbally aggressive with a much higher
probability than women.
The modeled interaction between behavior mode and gender can be also understood as a
DIF analysis to investigate whether the item property “behavior mode” has differential im-
plications depending on the person’s gender. Indeed, the above results indicate the existence
of such DIF. Let us run some more fine-grained DIF analysis and investigate whether items
involving actual cursing or scolding (but not shouting) show DIF with respect to gender (in-
spired by De Boeck et al. 2011). For this purpose, we create a dummy dif variable that is 1
for females on items involving actual cursing or scolding and 0 otherwise:

R> VerbAgg$dif <- as.numeric(with(
+ VerbAgg, Gender == "F" & mode == "do" & btype %in% c("curse", "scold")
+))

This new person-by-item covariate is then used as a predictor in addition to Gender. Including
the latter is important so that the dif variable does not capture variation due to mean
differences in gender, which are not an indication of DIF. The formula then looks as follows:

32 Bayesian IRT Modeling with brms and Stan

R> r2 ~ Gender + dif + (1 | item) + (1 | id)

The regression coefficient of dif is estimated as b = −0.94 (95% CI = [−1.22,−0.66]), which
indicates that woman (say they) curse and scold more rarely than men. As noted by De Boeck
et al. (2011), this analysis tests DIF of the uniform type, that is DIF which is independent of
the specific value of the latent trait.
In all of the covariate models described above, there is no particular reasoning behind the
choice of which item or person covariates are assumed to vary over persons or items, respec-
tively, and which are assumed to be constant. We may also try to model multiple or even
all item covariates as varying over persons and all person covariates as varying over items.
In fact, this maximal multilevel approach may be more robust and conservative (Barr, Levy,
Scheepers, and Tily 2013). In frequentist implementations of multilevel models, we often
see convergence issues when using maximal multilevel structure (Bates, Kliegl, Vasishth, and
Baayen 2015a). This has been interpreted by some as an indication of overfitting (Bates et al.
2015a) while others disagree (Barr et al. 2013). In any case, convergence issues seem to be
a crude indicator of overfitting that I argue should not be blindly relied on. Fortunately,
convergence of complex multilevel models turns out to be much less of a problem when using
gradient-based MCMC samplers such as HMC (Hoffman and Gelman 2014). For instance,
when fitting a maximal multilevel structure of item and person covariates via the formula

R> r2 ~ 1 + Anger + Gender + btype + situ + mode +
+ (1 + Anger + Gender | item) + (1 + btype + situ + mode | id)

the lme4 package indicates serious convergence issues while the brms model converges just
fine (results not displayed here, see the supplementary R code for details). Of course, this is
not to say that such a multilevel structure is necessarily sensible. However, being able to fit
those models allows for more principled ways of testing afterwards if the assumed complexity
is actually supported by the data, for instance via cross-validation or Bayes factors.

Modeling guessing parameters

A common aspect of binary item response data in IRT is that persons may be able to simply
guess the correct answer with a certain non-zero probability. This may happen in a forced
choice format where the correct answer is presented along with some distractors. As a result,
the probability of correctly answering an item never falls below the guessing probability,
regardless of the person’s ability. For instance, when assuming all alternatives to be equally
attractive in the absence of any knowledge about the correct answer, the guessing probability
is 1 divided by the total number of alternatives. Such a property of the administered items
needs to be taken into account in the estimated IRT model. The most commonly applied
model in such a situation is the 3PL model5. Mathematically, the model can be expressed as

P (y = 1) = µ = γi + (1− γi)× logistic(αi(θp + ξi))

5In addition to guessing probabilities, which increase the lower bound of success probability beyond 0, it
is also possible that lapses decrease the upper bound of the success probability below 1. A binary model
taking into account both guesses and lapses is referred to 4PL model. Arguably 4PL models more relevant for
instance in psychophysics and less so in IRT. For that reason, I do not discuss it in more detail in this paper
but want to point out that brms could also be used to fit 4PL models.

Journal of Statistical Software 33

where γi represents the guessing probability of item i and all other parameters have the same
meaning as in the 2PL model.
The items of the VerbAgg data set do not have a forced choice response format – and no
right or wrong answers either – and so modeling guessing probabilities makes little sense for
that data. For brevity’s sake, I am not going to introduce another data set on which I apply
3PL models, but instead only focus on showing how to express such a model in brms without
actually fitting the model. For an application of 3PL models to real data using brms, see
Bürkner (2020).
Suppose we have administered forced choice items with 4 response alternatives of which only
one is correct, then – under the assumption of equal probabilities of choosing one of the
alternatives in case of guessing – we obtain a guessing probability of 25%. When modeling
this guessing probability as known and otherwise following the recommendation presented in
Section 1, we can write down the formula of the 3PL model as follows:

R> formula_va_3pl <- bf(
+ r2 ~ 0.25 + 0.75 * inv_logit(exp(logalpha) * eta),
+ eta ~ 1 + (1 |i| item) + (1 | id),
+ logalpha ~ 1 + (1 |i| item),
+ nl = TRUE
+)
R> family_va_3pl <- brmsfamily("bernoulli", link = "identity")

Above, I incorporated the logistic response function directly into the formula via inv_logit().
As a result, the predictions of the overall success probabilities are already on the right scale
and thus an additional usage of a link function is neither required nor reasonable. In other
words, we have to apply the identity() link function. Of course, we may also add covariates
to all linear predictor terms of the model (i.e., to eta and logalpha) in the same way as
demonstrated above for the 2PL model.
If we did not know the guessing probabilities, we can decide to estimate them along with all
other model parameters. In brms syntax, the model then looks as follows:

R> formula_va_3pl <- bf(
+ r2 ~ gamma + (1 - gamma) * inv_logit(exp(logalpha) * eta),
+ eta ~ 1 + (1 |i| item) + (1 | id),
+ logalpha ~ 1 + (1 |i| item),
+ logitgamma ~ 1 + (1 |i| item),
+ nlf(gamma ~ inv_logit(logitgamma)),
+ nl = TRUE
+)

There are some important aspects of this model specification that require further explanation.
Since γi is a probability parameter, we need to restrict it between 0 and 1. One solution is
to model γi on the logit scale via logitgamma ~ 1 + (1 |i| item) and then transform it
back to the original scale via the inv_logit() function, which exists both in brms and in
Stan. I could have done this directly in the main formula but this would have implied doing
the transformation twice, as gamma appears twice in the formula. For increased efficiency,
I have defined both gamma and logitgamma as non-linear parameters and related them via

34 Bayesian IRT Modeling with brms and Stan

y = no y = perhaps y = yes

τ1 τ2
y~

Figure 8: Assumptions of the graded response model when applied to the VerbAgg data. The
area under the curve in each bin represents the probability of the corresponding event given
the set of possible events for the latent variable ỹ, which depends linearly on the predictor
term η.

gamma ~ inv_logit(logitgamma). Passing the formula to nlf() makes sure that the for-
mula for gamma is treated as non-linear in the same way as setting nl = TRUE does for the
main formula.
There are some general statistical problems with the 3PL model with estimated guessing
probabilities, because the interpretability of the model parameters, in particular of the item
difficulty and discrimination, suffers as a result (Han 2012). Accordingly, it may be more
favorable to design items with known guessing probabilities in the first place.

4.2. Ordinal models

When analyzing the VerbAgg data using binary IRT models, I have assumed participants
responses on the items to be a dichotomous "yes" vs. "no" decision. However, this is actually
not entirely accurate as the actual responses were obtained on an ordinal three-point scale
with the options "yes", "perhaps", "no". In the former section, I have combined "yes"
and "perhaps" into one response category, following the analysis strategy of De Boeck et al.
(2011). In brms, we are not bounded to reducing the response to a binary decision but
are instead able to use the full information in the response values by applying ordinal IRT
models. There are multiple ordinal model classes (Agresti 2010; Bürkner and Vuorre 2019),
one of which is the graded response model (GRM; see Section 1.1). As a reminder, when
modeling the responses y via the GRM, we do not only have a predictor term η, but also
a vector τ of C − 1 ordered latent thresholds, where C is the number of categories (C = 3
for the VerbAgg data). The GRM assumes that the observed ordinal responses arise from
the categorization of a latent continuous variable, which is predicted by η. The thresholds
τ indicate those latent values where the observable ordinal responses change from one to
another category. An illustration of the model’s assumptions is provided in Figure 8.
The model specification of the GRM, or for that matter of any ordinal model class, is quite
similar to binary models. For now, the only changes are that we switch out the binary variable
r2 in favor of the three-point ordinal variable resp and use the cumulative instead of the
bernoulli family:

R> formula_va_ord_1pl <- bf(resp ~ 1 + (1 | item) + (1 | id))

Journal of Statistical Software 35

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−2.5

0.0

2.5

5.0

−2.5 0.0 2.5 5.0
Mean (binary)

M
ea

n
(o

rd
in

al
)

0.5

0.6

0.7

SD (binary)

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●

●

●
●

●
●

●

●

●●●

●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

● ●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●●

●●
●

●
●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

0.3

0.4

0.5

0.6

0.7

0.8

0.3 0.4 0.5 0.6 0.7 0.8
SD (binary)

S
D

 (
or

di
na

l)

−2

0

2

Mean (binary)

Figure 9: Relationship of person parameters estimated by the binary 1PL model and the
ordinal graded response model. Posterior means are shown on the left-hand side and Posterior
standard deviations are shown on the right-hand side.

R> fit_va_ord_1pl <- brm(
+ formula = formula_va_ord_1pl,
+ data = VerbAgg,
+ family = brmsfamily("cumulative", "logit"),
+ prior = prior_va_1pl
+)

With regard to the ordinal thresholds, this implies modeling an overall threshold vector
shared across items plus an item-specific constant (via (1 | item)) that is added to the
overall threshold vector. In other words, for this model, the thresholds of two items are
simply shifted to the left or right relative to each other but otherwise share the same shape.
This is a quite restrictive assumption and I will discuss a generalization of it later on.
The summary() and plot() output look very similar to the ones from the binary model except
for that we now see two intercepts, which represent the ordinal thresholds. I do not show
their outputs here for brevity’s sake. Instead, let us focus on what exactly has changed in the
estimation of the person parameters. As displayed on the left-hand side of Figure 9, person
parameters estimated by the binary and those estimated by the ordinal model are largely in
alignment with each other although we can observe bigger differences for larger values. The
latter is to be expected since, in the ordinal model, I kept the two higher categories "perhaps"
and "yes" separate thus increasing the information for larger but not so much for smaller
person parameters. In accordance with this observation, we see that the person parameters
whose precision has increased the most through the usage of an ordinal model are those with
large mean values (see right-hand side of Figure 9). Taken together, we clearly gain something
from correctly treating the response as ordinal, not only theoretically – "perhaps" is certainly
something else than "yes" in most people’s mind – but also statistically by increasing the
precision of the estimates.
As mentioned above, the assumption of shifted but equally shaped threshold vectors across
items is quite restrictive. To test this assumption, we fit a second ordinal model in which each
item receives its own threshold vector so that threshold locations and shapes are completely

36 Bayesian IRT Modeling with brms and Stan

free to vary across items. Doing so in the cumulative family currently requires to use non-
hierarchical priors on the thresholds as otherwise their order requirements may not be satisfied
(Bürkner and Vuorre 2019). Recently, an order preserving generalization to hierarchical priors
has been proposed and may eventually find its way into brms (Paulewicz and Blaut 2020).
The model with fully varying thresholds across items can be specified as follows:

R> formula_va_ord_thres_1pl <- bf(resp | thres(gr = item) ~ 1 + (1 | id))
R> prior_va_ord_thres_1pl <-
+ prior("normal(0, 3)", class = "Intercept") +
+ prior("normal(0, 3)", class = "sd", group = "id")
R> fit_va_ord_thres_1pl <- brm(
+ formula = formula_va_ord_thres_1pl,
+ data = VerbAgg,
+ family = brmsfamily("cumulative", "logit"),
+ prior = prior_va_ord_thres_1pl
+)

We can formally compare the two models using approximate LOO-CV which reveals a LOOIC
difference of ∆LOOIC = -4.7 (SE = 14.1) in favor of the simpler model with only shifted
thresholds. Accordingly, we will stick to the assumption of shifted thresholds for the remainder
of this case study.
Similar to the binary case, one important extension to the standard GRM is to assume varying
discrimination across items. The resulting generalized GRM is also a generalization of the
binary 2PL model for ordinal responses. We have seen in Section 4.1 that discrimination were
very similar across items in the binary case and I now want to take a look again when modeling
the ordinal responses. We have to use slightly different formula syntax, though, as the non-
linear syntax of brms cannot handle the ordinal thresholds in the way that is required when
adding discrimination parameters. However, as having discrimination parameters in ordinal
models is crucial for IRT, brms now provides a distributional parameter disc specifically
for that purpose. We can predict this discrimination parameter using the distributional
regression framework6. By default, disc is modeled on the log-scale to ensure that the actual
discrimination estimates are positive (see Section 4.1 for a discussion of that issue). The
model formula of the generalized GRM is given by

R> formula_va_ord_2pl <- bf(
+ resp ~ 1 + (1 |i| item) + (1 | id),
+ disc ~ 1 + (1 |i| item)
+)

We specify some weakly informative priors on the hierarchical standard deviations

R> prior_va_ord_2pl <-
+ prior("constant(1)", class = "sd", group = "id") +
+ prior("normal(0, 3)", class = "sd", group = "item") +
+ prior("normal(0, 1)", class = "sd", group = "item", dpar = "disc")

6If disc is not predicted, it is automatically fixed to 1.

Journal of Statistical Software 37

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Easiness Discrimination

−2 −1 0 1 0.9 1.0 1.1
0

5

10

15

20

25

Estimate

Ite
m

 N
um

be
r

Figure 10: Posterior means and 95% credible intervals of item parameters as estimated by
model fit_va_ord_2pl.

and finally fit the model:

R> fit_va_ord_2pl <- brm(
+ formula = formula_va_ord_2pl,
+ data = VerbAgg,
+ family = brmsfamily("cumulative", "logit"),
+ prior = prior_va_ord_2pl
+)

A visualization of the item parameters can be found in Figure 10, in which we clearly see that
discrimination does not vary across items in the GRM either.
Having made the decision to stick to the GRM with constant discrimination, I again turn to
the analysis of item and person covariates. These can be specified in the same way as for
binary models. For instance, the GRM with both item and person covariates, and interaction
between mode and Gender, as well as varying item parameters over Gender and varying person
person parameters over mode would look as follows:

R> resp ~ Anger + Gender + btype + situ + mode + mode:Gender +
+ (0 + Gender | item) + (0 + mode | id)

We can fit the model as usual with the brm() function and focus on the effect of the trait
Anger covariate in the following. First, let us compare the regression coefficients of Anger as
obtained by the binary model and the GRM. We obtain b1PL = 0.06 (95% CI = [0.02, 0.09])
for the 1PL model and bGRM = 0.07 (95% CI = [0.04, 0.11]) for the GRM, which are actually
quite similar. Of course, this it not necessarily true in general and we cannot know for sure
before having fitted both models. What will clearly be different are the predicted response
probabilities as we now have three instead of two categories:

R> conditional_effects(fit_va_ord_cov1, effects = "Anger",
+ categorical = TRUE)

38 Bayesian IRT Modeling with brms and Stan

0.00

0.25

0.50

0.75

10 20 30 40
Anger

P
ro

ba
bi

lit
y resp

1
2
3

Figure 11: Expected probabilities of the three response categories in the VerbAgg data as
a function of trait anger conditioned on all other categorical covariates being set to their
reference categories and numerical covariates being set to their mean.

As can be seen in Figure 11, increased trait anger is associated with higher probabilities of
agreeing to items ("yes") as compared to choosing "no" or "perhaps". Although the plot may
look like an interaction effect between Anger and the response variable resp, it really is just
based on the single regression coefficient effecting the predicted probabilities of all response
categories. Plotting predicted response probabilities instead of the response values themselves
is recommend in ordinal models as the latter assumes equidistant categories, which is likely
an invalid assumption for ordinal responses. That is, the perceived difference between "no"
and "perhaps" in the participants’ minds may be very different than the perceived difference
between "perhaps" and "yes".
This is also what leads us to another potential problem with the model assumptions, which
is that the predictors are assumed to have a constant effect across all response categories.
For instance, it may very well be that Anger has little effect on the choice between "no" and
"perhaps" but a much stronger one on the choice between "perhaps" and "yes". This can be
explicitly modeled and tested via what I call category-specific effects, which imply estimating
as many regression coefficients per category-specific predictor as there are thresholds (C−1 =
2 in our case). Unfortunately, we cannot reliably model category-specific effects in the GRM
as it may imply negative response category probabilities (Bürkner and Vuorre 2019). Instead,
we have to use another ordinal model and I choose the partial credit model (PCM; Rasch 1961)
for this purpose (see Section 1.1 for details). In the PCM, modeling category-specific effects
is possible because we assume not one but C − 1 latent variables which may have different
predictor terms (see Figure 12 for an illustration).
Having selected an ordinal model class in which category-specific effects are possible, all we
need to do is wrap the covariate in cs() to estimate category-specific effects. Suppose, we
only want to model Anger as category-specific, then we replace Anger with cs(Anger) in the
model formula and leave the rest of the formula unchanged:

R> resp ~ cs(Anger) + Gender + btype + situ + mode + mode:Gender +
+ (0 + Gender | item) + (0 + mode | id)

Journal of Statistical Software 39

y = no y = perhaps

τ1
y~1

y = perhaps y = yes

τ2
y~2

Figure 12: Assumptions of the partial credit model when applied to the VerbAgg data. The
area under the curve in each bin represents the probability of the corresponding event given
the set of possible events for the latent variables ỹ1 and ỹ2, respectively, which depend linearly
on the predictor term η.

0.00

0.25

0.50

0.75

10 20 30 40
Anger

P
ro

ba
bi

lit
y resp

1
2
3

Figure 13: Expected response probabilities as predicted by model fit_va_ord_cov2 as a
function of trait anger conditioned on all other categorical covariates being set to their refer-
ence categories and numerical covariates being set to their mean.

The model is then fitted with brms in the same way as the GRM except that we re-
place family = brmsfamily("cumulative", "logit") by family = brmsfamily("acat",
"logit"). As the category specific coefficients for Anger on the logit-scale we obtain bPCM1
= 0.03 (95% CI = [0, 0.05]) and bPCM2 = 0.1 (95% CI = [0.07, 0.13]). That is, Anger seems to
play a much stronger role in the decision between "perhaps" and "yes" than between "no"
and "perhaps". We may also visualize the effect via

R> conditional_effects(fit_va_ord_cov2, effects = "Anger", categorical = TRUE)

When we compare Figure 13 to Figure 11, we see that for higher Anger values a higher
probability of choosing "yes" and a lower probability of choosing "perhaps" is predicted by
the category-specific PCM as compared to the basic GRM. This is also in accordance with
the interpretation of the coefficients above.

40 Bayesian IRT Modeling with brms and Stan

person item time resp rotate

1 1 4.444 1 150
1 10 5.447 1 100
1 2 2.328 1 50
1 3 3.408 1 100
1 4 5.134 1 150

1 5 2.653 1 50
1 6 2.607 1 100
1 7 3.126 1 150
1 8 2.869 1 50
1 9 3.271 1 150

Table 2: First ten rows of the rotation data.

4.3. Response times models

In this example, I will analyze a small data set of 121 subjects on 10 items measuring mental
rotation that is shipped with the diffIRT package (Molenaar et al. 2015; see also Van der Maas
et al. 2011). The full data is described in Borst, Kievit, Thompson, and Kosslyn (2011). Each
item consists of a graphical display of two 3-dimensional objects. The second object is either
a rotated version of the first one or a rotated version of a different object. The degree of
rotation (variable rotate) takes on values of 50, 100, or 150 and is constant for each item.
Participants were asked whether the two objects are the same (yes/no) and the response is
stored as either correct (1) or incorrect (0) (variable resp). The response time in seconds
(variable time) was recorded as well. A glimpse of the data is provided in Table 2. I will start
by analyzing the response times, only, and use the exgaussian distribution for this purpose.
Specifically, I am interested in whether the degree of rotation affects the mean, variation and
right-skewness of the response times distribution. The effect of rotate can be expected to be
smooth and monotonic (up to 180 degrees after which the effect should be declining as the
objects become less rotated again) but otherwise of unknown functional form. In such a case,
it could be beneficial to model the effect via some semi-parametric methods such as splines or
Gaussian processes (both of which is possible in brms), but this requires considerable more
differentiated values of rotate. Thus, for this example, I will just treat rotate as a factor
and use dummy coding with 50 degree as the reference category, instead of treating it as a
continuous variable. Assuming all three parameters to vary over persons and items, we can
write down the formula as

R> bform_exg1 <- bf(
+ time ~ rotate + (1 |p| person) + (1 |i| item),
+ sigma ~ rotate + (1 |p| person) + (1 |i| item),
+ beta ~ rotate + (1 |p| person) + (1 |i| item)
+)

In theory, we could also model rotate as having a varying effect across persons (as rotate
is an item covariate). However, as we are using a subset of only 10 items, modeling 9 varying
effects per person, although possible, will likely result in overfitting. For larger data sets, this
option could represent a viable option and deserves further consideration. Since both sigma

Journal of Statistical Software 41

0.0 2.5 5.0 7.5 10.0 12.5

y
yrep

Figure 14: Posterior predictions of the exgaussian model fit_exg1.

(the standard deviation of the Gaussian component) and beta (the mean parameter of the
exponential component representing the right skewness) can only take on positive values, I
will use log links for both of them (this is actually the default but I want to make it explicit
here). Together this results in the following model specification:

R> fit_exg1 <- brm(
+ bform_exg1, data = rotation,
+ family = brmsfamily("exgaussian", link_sigma = "log",
+ link_beta = "log"),
+ control = list(adapt_delta = 0.99)
+)

Increasing the sampling parameter adapt_delta reduces or ideally eliminates the number
of “divergent transition” that indicate problems of the sampler exploring the full posterior
distribution and thus bias the posterior estimates (Carpenter et al. 2017; Hoffman and Gelman
2014). From the standard outputs (not shown here), we can see that the model has converged
well and produces reasonable posterior predictions (via pp_check(fit_exg1); see Figure 14),
so we can turn to investigating the effects of rotate on the model parameters:

R> conditional_effects(fit_exg1, "rotate", dpar = "mu")
R> conditional_effects(fit_exg1, "rotate", dpar = "sigma")
R> conditional_effects(fit_exg1, "rotate", dpar = "beta")

In Figure 15, we see that both the mean mu and the variation sigma increase with increasing
degree of rotation, while the skewness beta roughly stays constant. The observation that mean
and variation of response times increase simultaneously can be made in a lot of experiments
and is discussed in Wagenmakers and Brown (2007).
The analysis of the response times is interesting, but does not provide a lot of insights into
potentially underlying cognitive processes. For this reason, I will also use drift diffusion
models to jointly model response times and the binary decisions. How the drift diffusion
model looks exactly depends on several aspects. One is whether we deal with personality or

42 Bayesian IRT Modeling with brms and Stan

●

●
●

2.0

2.5

3.0

3.5

4.0

50 100 150
rotate

m
u

●

●
●

0.2

0.3

0.4

0.5

0.6

0.7

50 100 150
rotate

si
gm

a

●

●
●

0.6

0.9

1.2

1.5

50 100 150
rotate

be
ta

Figure 15: Parameters of the exgaussian model fit_exg1 as a function of the degree of
rotation.

ability tests. For personality tests, the binary response to be modeled is the actual choice
between the two alternatives, whereas for ability tests may want to rather use the correctness
instead (Tuerlinckx and De Boeck 2005; Van der Maas et al. 2011). Further, in the former
case, person and item parameters may take on any real value and we combine them additively.
In contrast, for ability tests, person and item parameters are assumed to be positive only and
combined multiplicatively (Van der Maas et al. 2011). The latter can also be expressed as an
additive relationship on the log-scale. In the present example, we deal with data of an ability
test and will use the described log-scale approach.
Again, my interest lies primarily with the effect of the degree of rotation. More specifically, I
am interested in which of the three model parameters (drift rate, boundary separation, and
non-decision time) are influenced by the rotation. The fourth parameter, the initial bias, is
fixed to 0.5 (i.e., no bias) to obtain the three-parameter drift diffusion model. Assuming all
three predicted parameters to vary over persons and items, we write down the formula as

R> bform_drift1 <- bf(
+ time | dec(resp) ~ rotate + (1 |p| person) + (1 |i| item),
+ bs ~ rotate + (1 |p| person) + (1 |i| item),
+ ndt ~ rotate + (1 |p| person) + (1 |i| item),
+ bias = 0.5
+)

In Stan, drift diffusion models with predicted non-decision time are not only computationally
much more demanding, but they also often require some manual specification of initial values.
The easiest way is to set the intercept on the log-scale of ndt to a small value:

R> chains <- 4
R> inits_drift <- list(temp_ndt_Intercept = -3)
R> inits_drift <- replicate(chains, inits_drift, simplify = FALSE)

I will now fit the model. This may take some more time than previous models due to the
complexity of the diffusion model’s likelihood.

Journal of Statistical Software 43

●

● ●

0.4

0.8

1.2

1.6

50 100 150
rotate

m
u ●

●

●3.5

4.0

50 100 150
rotate

bs

●

●
●

0.6

0.8

1.0

1.2

1.4

1.6

50 100 150
rotate

nd
t

Figure 16: Parameters of the drift diffusion models as a function of the degree of rotation.
The parameter mu, bs, and ndf represent the drift rate, boundary separation and non-decision
time, respectively.

R> fit_drift1 <- brm(
+ bform_drift, data = rotation,
+ family = brmsfamily("wiener", "log", link_bs = "log", link_ndt = "log"),
+ chains = chains, cores = chains,
+ inits = inits_drift, init_r = 0.05,
+ control = list(adapt_delta = 0.99)
+)

From the standard outputs (not shown here), we can see that the model has converged well
so we can turn to investigating the effects of rotate on the model parameters:

R> conditional_effects(fit_drift1, "rotate", dpar = "mu")
R> conditional_effects(fit_drift1, "rotate", dpar = "bs")
R> conditional_effects(fit_drift1, "rotate", dpar = "ndt")

As shown in Figure 16, both the drift rate and the non-decision time seem to be affected by
the degree of rotation. The drift rate decreases slightly when increasing the rotation from 50
to 100 and roughly stays constant afterwards. Similarly, the non-decision time increases with
increased rotation from 50 to 100 presumably as a result of the increased cognitive demand
of processing the rotated objects (Molenaar et al. 2015).
In contrast, the boundary separation appears to be unaffected by the degree of rotation.
Further, the standard deviation of the boundary separation across items (after controlling for
the rotation), seems to be very small (SD = 0.05, 95%-CI = [0, 0.16]). We may also test this
more formally by fitting a second model without item effects on the boundary separation,
that is using the formula bs ~ 1 + (1 |p| person), and then comparing the models for
instance via approximate LOO-CV (method loo) or Bayes factors (method bayes_factor).
The latter requires carefully specified prior distributions based on subject matter knowledge,
a topic which is out of the scope of the present paper.

44 Bayesian IRT Modeling with brms and Stan

5. Comparison of packages

A lot of R packages have been developed that implement IRT models, each being more or less
general in their supported models. In fact, for most IRT models developed in the statistical
literature, we may actually find an R package implementing it. An overview of most of these
packages is available on the Psychometrics CRAN task view (Mair 2021). Comparing all of
them to brms would be too extensive and barely helpful for the purpose of the present paper.
Accordingly, I focus on a set of nine widely applied and actively maintained packages that
can be used for IRT modeling. These are eRm (Mair and Hatzinger 2007), ltm (Rizopoulos
2006), TAM (Robitzsch et al. 2021), mirt (Chalmers 2012), sirt (Robitzsch 2021), lme4 (Bates
et al. 2015b), lavaan (Rosseel 2012), blavaan (Merkle and Rosseel 2018), and MCMCglmm
(Hadfield 2010). All of these packages are of high quality, user friendly, and well documented
so I primarily focus my comparison on the features they support. A high level overview of
the modeling options of each package can be found in Table 3 and more details are provided
below.

eRm focuses on models that can be estimated using conditional maximum likelihood, a
method only available for the 1PL model and PCM with unidimensional latent traits per
person. Accordingly, its application is the most specialized among all the packages presented
here. The ltm, TAM, and mirt packages all provide frameworks for fitting binary, categori-
cal, and ordinal models using mostly marginal maximum likelihood estimation. They allow
estimating discrimination parameters for all of these model classes as well as 3PL or even
4PL models for binary responses. Of these three packages, mirt currently provides the most
flexible framework with respect to both the models it can fit and the provided estimation
algorithms. The package also comes with its own modeling syntax for easy specification of
factor structure and parameter constraints and implements exploratory multilevel IRT mod-
els via the mixedmirt function. The sirt package, does not provide one single framework for
IRT models but rather a large set of separate functions to fit special IRT models that comple-
ment and support other packages, in particular mirt and TAM. As a result, input and output
structures are not consistent across model fitting functions within sirt, which makes it more
complicated to switch between model classes. All of these IRT-specific packages have built-in
methods for investigating and testing differential item functioning. In addition to these tools,
a powerful approach for assessing differential item functioning via recursive partitioning is
implemented in psychotree (Strobl et al. 2015; Komboz et al. 2018) based on methods of the
psychotools package (Zeileis et al. 2021). It currently supports methods for dichotomous,
categorical, and ordinal models.

In contrast to the above packages, lavaan and lme4 are not specifically dedicated to IRT
modeling, but rather provide general frameworks for structural equation and multilevel mod-
els, respectively. Due to their generality and user-friendly interfaces, they have established
themselves as the de facto standards in R when it comes to the frequentist estimation of these
model classes. lavaan allows to fit multidimensional 1PL and 2PL binary, categorical and
some ordinal IRT models using maximum likelihood or weighted least squares estimations. In
addition, the blavaan package allows to fit lavaan models using Bayesian estimation methods.
To date, not all lavaan models are available in blavaan, but I expect this to change in the
future. lme4 estimates multilevel models via marginal maximum likelihood estimation. While
it is very flexible in the specification of covariates and multilevel structure, for instance, for
the purpose of multidimensional IRT models, it neither supports 2PL (or more parameters)

Journal of Statistical Software 45

binary models, nor categorical, or ordinal models. MCMCglmm implements multivariate
multilevel models in a Bayesian context and provides a wider range of model families but,
similar to lme4, has limitations in the area of non-linear IRT models such as 2PL (or more
parameters) binary models.
brms is conceptually closest to lme4 and MCMCglmm when it comes to the model specifica-
tion and data structuring. These three packages expect the data to be in long format, that is
all responses to be provided in the same column, while all other packages expect response to
be in the form of a person × item matrix. Accordingly, the formula syntax also differs from
the other packages in that we have to explicitly specify item and person grouping variables as
they cannot be automatically identified from the data structure (see Section 2). The multi-
level syntax of lme4, MCMCglmm, and brms allows for an overall shorter model specification
than the structural equation syntax of lavaan as items do not have to be targeted one by one.
A drawback of the multilevel syntax is that constraining or fixing parameters is perhaps less
intuitive than in the dedicated IRT packages or lavaan syntax.
What makes brms stand out is the combination of three key features. First, it extends the
multilevel formula syntax of lme4 to non-linear formulas of arbitrary complexity, which turns
out to be very powerful for the purpose of IRT modeling (see Section 2). Second, it supports
the widest range of response distributions of all the packages under comparison. This includes
not only distributions for binary, categorical, and ordinal data, but also for response times,
count, or even proportions to name only a few available options. Further, users may specify
their own response distributions via the custom_family feature, fulfilling a similar purpose
as mirt::createItem or sirt::xxirt. Third, not only the main location parameter but also
all other parameters of the response distribution may be predicted by means of the non-linear
multilevel syntax. In addition, multiple different response variables can be combined into a
joint multivariate model in order to let person and/or item parameters inform each other,
respectively, across response variables.
Another difference between brms and several of the other packages is that the former is fully
Bayesian while the latter are mostly based on point estimation methods. TAM and mirt
support setting certain prior distributions on parameters but still perform estimation via
optimization. sirt offers MCMC sampling only for 2PL and 3PL models with restrictive prior
options and few built-in methods to post-process results. Similarly, blavaan can fit a subset of
the models supported by lavaan using MCMCmethods implemented in JAGS (Plummer 2003)
or Stan (Carpenter et al. 2017) although the set of supported IRT models is currently much
smaller than that of brms (see Table 3). MCMCglmm also provides MCMC estimation for a
quite wide range of families but also falls short of the flexibility of brms, for example, in the
context of non-linear models or response times distributions. While performing full Bayesian
inference via MCMC sampling is often orders of magnitude slower than point estimation via
maximum likelihood or least squares, the obtained information may be considered to be much
higher: Not only do we get the posterior distribution of all model parameters, but also the
posterior distribution of all quantities that can be computed on their basis (Gelman et al.
2013). For instance, the uncertainty in the parameters’ posterior naturally propagates to the
posterior predictive distributions, whose uncertainty can then be visualized along with the
mean predictions. brms automates a lot of common post-processing tasks, such as posterior
visualizations, predictions, and model comparison (see methods(class = "brmsfit") for a
full list of options and the replication material of this paper for examples).
To what extent the increased information obtained via full Bayesian inference is worth the

46 Bayesian IRT Modeling with brms and Stan

Package

Feature eRm ltm TAM mirt sirt (b)lavaan lme4 MCMCglmm brms
1-PLM yes yes yes yes yes yes yes yes yes
2-PLM no yes yes yes yes yes no no yes
3-PLM no yes yes yes yes no no no yes
4-PLM no no no yes yes no no no yes

PCM yes yes yes yes yes no no no yes
GRM no yes no yes yes yes no yes yes
CM no no yes yes no no no yes yes
LM no no no no yes yes yes yes yes
CoM no no no no no no yes yes yes

RTM no no no no no limited limited limited yes
PrM no no no no no no no no yes
Multidimensional no no yes yes yes yes yes yes yes
Covariates yes yes yes yes yes yes yes yes yes
Constraints no yes yes yes yes yes limited limited limited

Latent classes no no yes yes yes no no no no
Mixtures no no yes yes yes no no no yes
Copulas no no limited no limited no no no no
Splines no no no yes yes no no no yes
Multilevel no no no yes limited limited yes yes yes

Joint models no no no yes no yes no yes yes
Imputation no no yes yes yes no no no yes
Customizable no no no yes yes no no no yes
Estimator CML MML MML,JML MML various various MML MH-Gibbs AHMC

Table 3: Overview of modeling options in some IRT supporting packages. Abbreviations: x-
PLM = x-parameter logistic models; PCM = partial credits models; GRM = graded response
models; CM = categorical models; LM = linear models; CoM = count data models; RTM
= response times models; PrM = Proportion models (i.e., Beta and Dirichlet models); CML
= conditional maximum likelihood; MML = marginal maximum likelihood; JML = joint
maximum likelihood; MH-Gibbs = Metropolis-Hastings within Gibbs Sampler; AHMC =
adaptive Hamiltonian Monte Carlo.

additional computational costs and corresponding waiting time depends on various factors
related to the model, data, and goal of inference. For instance, if the model is relatively
simple and there is a lot of data available to inform the model parameters, Bayesian and
maximum likelihood estimates are unlikely to differ a lot unless strong prior information is
provided. Also, if the goal is to provide estimates in real time, for instance for the purpose
of adaptive testing, full Bayesian inference may be too slow to be viable unless specifically
tuned to such a task (e.g., see Van der Linden and Ren 2015). I do not argue that a Bayesian
approach to IRT is always superior, but instead want to point out its strengths (and also its
weaknesses) so that users can make an informed decision as to when working with a Bayesian
framework may improve the desired inference (see also Bürkner 2020, for an example in the
context of IRT).
Similarly, while using general purpose frameworks for IRT such as those provided by brms,
lme4, lavaan, or MCMCglmm may provide advantages in terms of modeling flexibility and
consistency of model specification and post-processing, they clearly come with some disad-
vantages. Among others, such general frameworks are likely to require more work from the

Journal of Statistical Software 47

user at the start to familiarize themselves with the interface in order to fit the desired models
as compared to packages with specific built-in function for common model classes. At the
same time, post-processing methods of specialized software may be easier and more directly
applicable to common use-cases, thus lowering the requirements in the actual coding expertise
of users. For instance, the specification and post-processing of standard 1PL or 2PL models
is more straightforward in dedicated IRT software and users only interested in such models
may get reliable solutions faster this way. In other words, when introducing more and more
general frameworks, the goal is not to render more specialized software irrelevant, but to
provide an alternative for consistent model building and evaluation with a larger scope than
specialized software is intended for.

6. Conclusion

In this paper, I have introduced a general framework for fitting Bayesian IRT models in R
via brms and Stan. Within this framework, a wide range of IRT models can be specified,
estimated, and post-processed in a consistent manner, without the need to switch between
packages to obtain results for different IRT model classes. I have demonstrated its usefulness
in examples of binary, ordinal, and response times data, although the framework entails a lot
of other IRT model classes.
The advanced formula syntax of brms further enables the modeling of complex non-linear
relationships between person and item parameters and the observed responses. However,
the flexibility of the framework does not free the user from specifying reasonable models for
their data. Just because a model can be estimated without problems does not mean it is
also sensible from a theoretical perspective or provides valid inference about the effects under
study. Tools for model comparison and selection as provided by brms may help in guiding
users’ decision, but should not be a substitute for clear theoretical reasoning and subject
matter knowledge to guide model development and evaluation.
Taking a Bayesian perspective on specification, estimation, and post-processing of statistical
models helps in building and fitting more complex and realistic models, but it is not the only
reason for adopting it. As Bayesian statistics is fully embedded into probability theory, we
can quantify uncertainty of any variable of interest using probability and make decisions by
averaging over that uncertainty. Thus, we no longer have to fall back on premature binary
decision making on the basis of, say, frequentist p-values or confidence intervals. As such,
Bayesian inference is not just another estimation method but a distinct statistical framework
to reason from data using probabilistic models.

Computational details

The results in this paper have been obtained with R 4.0.4, g++ compiler version 8.3.0 for C++
(shipped with Rtools 4), rstan 2.19.3 with StanHeaders 2.19.2 on a Windows 10 system. The
full replication code including random seeds is provided in the supplementary materials. Note,
however, that for replicating the results exactly, the same operating system, same compiler,
and compiler version would be required for Stan. In other setups the results will be very
similar, though, leading to the same conclusions qualitatively.

48 Bayesian IRT Modeling with brms and Stan

Acknowledgments
I would like to thank my colleagues of the Stan Development Team for creating, maintaining,
and continuously improving Stan, which forms the basis for the success of brms. Further,
I want to thank Marie Beisemann, Alexander Robitzsch, and two anonymous reviewers for
valuable comments on earlier versions of the paper. Finally, I would like to thank all the users
who reported bugs or had ideas for new features, thus helping to further improve brms.

References

Adams RJ, Wu ML, Wilson M (2012). “The Rasch Rating Model and the Disordered
Threshold Controversy.” Educational and Psychological Measurement, 72(4), 547–573. doi:
10.1177/0013164411432166.

Agresti A (2010). Analysis of Ordinal Categorical Data. 2nd edition. John Wiley & Sons.
doi:10.1002/9780470594001.

Andrich D (2004). “Controversy and the Rasch Model: A Characteristic of Incompatible
Paradigms?” Medical Care, 42(1), 17–116. doi:10.1097/01.mlr.0000103528.48582.7c.

Barr DJ, Levy R, Scheepers C, Tily HJ (2013). “Random Effects Structure for Confirmatory
Hypothesis Testing: Keep It Maximal.” Journal of Memory and Language, 68(3), 255–278.
doi:10.1016/j.jml.2012.11.001.

Bates D, Kliegl R, Vasishth S, Baayen H (2015a). “Parsimonious Mixed Models.”
arXiv:1506.04967 [stat.ME], URL https://arxiv.org/abs/1506.04967.

Bates D, Mächler M, Bolker B, Walker S (2015b). “Fitting Linear Mixed-Effects Models
Using lme4.” Journal of Statistical Software, 67(1), 1–48. doi:10.18637/jss.v067.i01.

Betancourt M (2017). “A Conceptual Introduction to Hamiltonian Monte Carlo.”
arXiv:1701.02434 [stat.ME], URL https://arxiv.org/abs/1701.02434.

Betancourt MJ, Byrne S, Livingstone S, Girolami M (2014). “The Geometric Foundations
of Hamiltonian Monte Carlo.” arXiv:1410.5110 [stat.ME], URL https://arxiv.org/abs/
1410.5110.

Bollen KA, Davis WR (2009). “Two Rules of Identification for Structural Equation Models.”
Structural Equation Modeling: A Multidisciplinary Journal, 16(3), 523–536. doi:10.1080/
10705510903008261.

Bond TG, Fox CM (2007). Applying the Rasch Model: Fundamental Measurement in the
Human Sciences. 2nd edition. Psychology Press.

Borst G, Kievit RA, Thompson WL, Kosslyn SM (2011). “Mental Rotation Is Not Easily
Cognitively Penetrable.” Journal of Cognitive Psychology, 23(1), 60–75. doi:10.1080/
20445911.2011.454498.

Bürkner PC (2017). “brms: An R Package for Bayesian Multilevel Models Using Stan.”
Journal of Statistical Software, 80(1), 1–28. doi:10.18637/jss.v080.i01.

https://doi.org/10.1177/0013164411432166
https://doi.org/10.1177/0013164411432166
https://doi.org/10.1002/9780470594001
https://doi.org/10.1097/01.mlr.0000103528.48582.7c
https://doi.org/10.1016/j.jml.2012.11.001
https://arxiv.org/abs/1506.04967
https://doi.org/10.18637/jss.v067.i01
https://arxiv.org/abs/1701.02434
https://arxiv.org/abs/1410.5110
https://arxiv.org/abs/1410.5110
https://doi.org/10.1080/10705510903008261
https://doi.org/10.1080/10705510903008261
https://doi.org/10.1080/20445911.2011.454498
https://doi.org/10.1080/20445911.2011.454498
https://doi.org/10.18637/jss.v080.i01

Journal of Statistical Software 49

Bürkner PC (2018). “Advanced Bayesian Multilevel Modeling with the R Package brms.” The
R Journal, 10(1), 395–411. doi:10.32614/rj-2018-017.

Bürkner PC (2020). “Analysing Standard Progressive Matrics (SPM-LS) with Bayesian Item
Response Models.” Journal of Intelligence, 8, 1–21. doi:10.3390/jintelligence8010005.

Bürkner PC, Vuorre M (2019). “Ordinal Regression Models in Psychology: A Tutorial.”
Advances in Methods and Practices in Psychological Science, 2(1), 77–101. doi:10.1177/
2515245918823199.

Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich B, Betancourt M, Brubaker MA,
Guo J, Li P, Ridell A (2017). “Stan: A Probabilistic Programming Language.” Journal of
Statistical Software, 76(1), 1–32. doi:10.18637/jss.v076.i01.

Carvalho CM, Polson NG, Scott JG (2010). “The Horseshoe Estimator for Sparse Signals.”
Biometrika, 97(2), 465–480. doi:10.1093/biomet/asq017.

Chalmers RP (2012). “mirt: A Multidimensional Item Response Theory Package for the R
Environment.” Journal of Statistical Software, 48(6), 1–29. doi:10.18637/jss.v048.i06.

Creutz M (1988). “Global Monte Carlo Algorithms for Many-Fermion Systems.” Physical
Review D, 38(4), 1228–1238. doi:10.1103/physrevd.38.1228.

De Boeck P, Bakker M, Zwitser R, Nivard M, Hofman A, Tuerlinckx F, Partchev I (2011).
“The Estimation of Item Response Models with the lmer Function from the lme4 Package
in R.” Journal of Statistical Software, 39(12), 1–28. doi:10.18637/jss.v039.i12.

De Boeck P, Wilson M (2004). Explanatory Item Response Models. John Wiley & Sons.
doi:10.1007/978-1-4757-3990-9.

Embretson SE, Reise SP (2000). Item Response Theory. Psychology Press.

Fox JP (2010). Bayesian Item Response Modeling: Theory and Applications. Springer-Verlag.
doi:10.1007/978-1-4419-0742-4.

Gabry J, Simpson D, Vehtari A, Betancourt M, Gelman A (2019). “Visualization in Bayesian
Workflow.” Journal of the Royal Statistical Society A, 182(2), 389–402. doi:10.1111/
rssa.12378.

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2013). Bayesian Data
Analysis. 3rd edition. Chapman & Hall/CRC. doi:10.1201/b16018.

Gelman A, Hill J (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models.
Cambridge University Press. doi:10.1017/cbo9780511790942.

Gelman A, Rubin DB (1992). “Inference from Iterative Simulation Using Multiple Sequences.”
Statistical Science, 7(4), 457–511. doi:10.1214/ss/1177011136.

Gelman A, Simpson D, Betancourt M (2017). “The Prior Can Often Only Be Understood in
the Context of the Likelihood.” Entropy, 19(10), 555–567. doi:10.3390/e19100555.

Gierl MJ, Haladyna TM (2012). Automatic Item Generation: Theory and Practice. Routledge.

https://doi.org/10.32614/rj-2018-017
https://doi.org/10.3390/jintelligence8010005
https://doi.org/10.1177/2515245918823199
https://doi.org/10.1177/2515245918823199
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1093/biomet/asq017
https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.1103/physrevd.38.1228
https://doi.org/10.18637/jss.v039.i12
https://doi.org/10.1007/978-1-4757-3990-9
https://doi.org/10.1007/978-1-4419-0742-4
https://doi.org/10.1111/rssa.12378
https://doi.org/10.1111/rssa.12378
https://doi.org/10.1201/b16018
https://doi.org/10.1017/cbo9780511790942
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.3390/e19100555

50 Bayesian IRT Modeling with brms and Stan

Griewank A, Walther A (2008). Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation. SIAM.

Gronau QF, Singmann H, Wagenmakers EJ (2020). “bridgesampling: An R Package for
Estimating Normalizing Constants.” Journal of Statistical Software, 92(10), 1–29. doi:
10.18637/jss.v092.i10.

Hadfield JD (2010). “MCMC Methods for Multi-Response Generalized Linear Mixed Models:
The MCMCglmm R Package.” Journal of Statistical Software, 33(2), 1–22. doi:10.18637/
jss.v033.i02.

Han KT (2012). “Fixing the c Parameter in the Three-Parameter Logistic Model.” Practical
Assessment, Research & Evaluation, 17(1), 1–24. doi:10.7275/f0gz-kc87.

Heathcote A, Popiel SJ, Mewhort DJ (1991). “Analysis of Response Time Distributions: An
Example Using the Stroop Task.” Psychological Bulletin, 109(2), 340–347. doi:10.1037/
0033-2909.109.2.340.

Hijazi RH, Jernigan RW (2009). “Modelling Compositional Data Using Dirichlet Regression
Models.” Journal of Applied Probability & Statistics, 4(1), 77–91.

Hoffman MD, Gelman A (2014). “The No-U-Turn Sampler: Adaptively Setting Path Lengths
in Hamiltonian Monte Carlo.” The Journal of Machine Learning Research, 15(1), 1593–
1623.

Holland PW, Wainer H (1993). Differential Item Functioning. Routledge.

Kass RE, Raftery AE (1995). “Bayes Factors.” Journal of the American Statistical Association,
90(430), 773–795. doi:10.1080/01621459.1995.10476572.

Komboz B, Zeileis A, Strobl C (2018). “Tree-Based Global Model Tests for Polytomous
Rasch Models.” Educational and Psychological Measurement, 78(1), 128–166. doi:10.
1177/0013164416664394.

Levy R, Mislevy RJ (2017). Bayesian Psychometric Modeling. Chapman & Hall/CRC.

Lewandowski D, Kurowicka D, Joe H (2009). “Generating Random Correlation Matrices
Based on Vines and Extended Onion Method.” Journal of Multivariate Analysis, 100(9),
1989–2001. doi:10.1016/j.jmva.2009.04.008.

Lord FM (1980). Applications of Item Response Theory to Practical Testing Problems. Rout-
ledge.

Mair P (2021). CRAN Task View: Psychometric Models and Methods. Version 2021-11-08,
URL https://CRAN.R-project.org/view=Psychometrics.

Mair P, Hatzinger R (2007). “Extended Rasch Modeling: The eRm Package for the
Application of IRT Models in R.” Journal of Statistical Software, 20(9), 1–20. doi:
10.18637/jss.v020.i09.

McElreath R (2020). rethinking: Statistical Rethinking Course and Book Package. R package
version 2.13, URL https://github.com/rmcelreath/rethinking.

https://doi.org/10.18637/jss.v092.i10
https://doi.org/10.18637/jss.v092.i10
https://doi.org/10.18637/jss.v033.i02
https://doi.org/10.18637/jss.v033.i02
https://doi.org/10.7275/f0gz-kc87
https://doi.org/10.1037/0033-2909.109.2.340
https://doi.org/10.1037/0033-2909.109.2.340
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1177/0013164416664394
https://doi.org/10.1177/0013164416664394
https://doi.org/10.1016/j.jmva.2009.04.008
https://CRAN.R-project.org/view=Psychometrics
https://doi.org/10.18637/jss.v020.i09
https://doi.org/10.18637/jss.v020.i09
https://github.com/rmcelreath/rethinking

Journal of Statistical Software 51

Meng XL, Schilling S (2002). “Warp Bridge Sampling.” Journal of Computational and Graph-
ical Statistics, 11(3), 552–586. doi:10.1198/106186002457.

Meng XL, Wong WH (1996). “Simulating Ratios of Normalizing Constants via a Simple
Identity: A Theoretical Exploration.” Statistica Sinica, 6(4), 831–860.

Merkle EC, Rosseel Y (2018). “blavaan: Bayesian Structural Equation Models via Parameter
Expansion.” Journal of Statistical Software, 85(4), 1–30. doi:10.18637/jss.v085.i04.

Millsap RE, Everson HT (1993). “Methodology Review: Statistical Approaches for Assessing
Measurement Bias.” Applied Psychological Measurement, 17(4), 297–334. doi:10.1177/
014662169301700401.

Molenaar D, Tuerlinckx F, Van der Maas HLJ (2015). “Fitting Diffusion Item Response
Theory Models for Responses and Response Times Using the R Package diffIRT.” Journal
of Statistical Software, 66(4), 1–34. doi:10.18637/jss.v066.i04.

OECD (2017). “PISA 2015: Technical Report.” URL http://www.oecd.org/pisa/data/
2015-technical-report/.

Osterlind SJ, Everson HT (2009). Differential Item Functioning, volume 161. Sage Publica-
tions.

Paulewicz B, Blaut A (2020). “The bhsdtr Package: A General-Purpose Method of Bayesian
Inference for Signal Detection Theory Models.” Behavior Research Methods, 52, 2122–2141.
doi:10.3758/s13428-020-01370-y.

Piironen J, Vehtari A (2017a). “Comparison of Bayesian Predictive Methods for Model Se-
lection.” Statistics and Computing, 27(3), 711–735. doi:10.1007/s11222-016-9649-y.

Piironen J, Vehtari A (2017b). “Sparsity Information and Regularization in the Horseshoe
and Other Shrinkage Priors.” Electronic Journal of Statistics, 11(2), 5018–5051. doi:
10.1214/17-ejs1337si.

Plummer M (2003). “JAGS: A Program for Analysis of Bayesian Graphical Models Us-
ing Gibbs Sampling.” In K Hornik, F Leisch, A Zeileis (eds.), Proceedings of the 3rd
International Workshop on Distributed Statistical Computing (DSC 2003). Technische
Universität Wien, Vienna, Austria. URL https://www.R-project.org/conferences/
DSC-2003/Proceedings/Plummer.pdf.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rasch G (1960). Studies in Mathematical Psychology: I. Probabilistic Models for Some Intel-
ligence and Attainment Tests. Nielsen & Lydiche.

Rasch G (1961). “On General Laws and the Meaning of Measurement in Psychology.” In
Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability,
volume 4, pp. 321–333. University of California Press Berkeley, CA.

Ratcliff R (1978). “A Theory of Memory Retrieval.” Psychological Review, 85(2), 59–108.
doi:10.1037/0033-295x.85.2.59.

https://doi.org/10.1198/106186002457
https://doi.org/10.18637/jss.v085.i04
https://doi.org/10.1177/014662169301700401
https://doi.org/10.1177/014662169301700401
https://doi.org/10.18637/jss.v066.i04
http://www.oecd.org/pisa/data/2015-technical-report/
http://www.oecd.org/pisa/data/2015-technical-report/
https://doi.org/10.3758/s13428-020-01370-y
https://doi.org/10.1007/s11222-016-9649-y
https://doi.org/10.1214/17-ejs1337si
https://doi.org/10.1214/17-ejs1337si
https://www.R-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf
https://www.R-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf
https://www.R-project.org/
https://doi.org/10.1037/0033-295x.85.2.59

52 Bayesian IRT Modeling with brms and Stan

Rigby RA, Stasinopoulos DM (2005). “Generalized Additive Models for Location, Scale
and Shape.” Journal of the Royal Statistical Society C, 54(3), 507–554. doi:10.1111/j.
1467-9876.2005.00510.x.

Rizopoulos D (2006). “ltm: An R Package for Latent Variable Modelling and Item Response
Theory Analyses.” Journal of Statistical Software, 17(5), 1–25. doi:10.18637/jss.v017.
i05.

Robitzsch A (2021). sirt: Supplementary Item Response Theory Models. R package version
3.10-118, URL https://CRAN.R-project.org/package=sirt.

Robitzsch A, Kiefer T, Wu M (2021). TAM: Test Analysis Modules. R package version 3.7-16,
URL https://CRAN.R-project.org/package=TAM.

Rosseel Y (2012). “lavaan: An R Package for Structural Equation Modeling.” Journal of
Statistical Software, 48(2), 1–36. doi:10.18637/jss.v048.i02.

Rupp AA, Dey DK, Zumbo BD (2004). “To Bayes or Not to Bayes, from Whether to When:
Applications of Bayesian Methodology to Modeling.” Structural Equation Modeling, 11(3),
424–451. doi:10.1207/s15328007sem1103_7.

Samejima F (1997). “Graded Response Model.” In Handbook of Modern Item Response
Theory, pp. 85–100. Springer-Verlag. doi:10.1007/978-1-4757-2691-6.

San Martín E (2015). “Identification of Item Response Theory Models.” In WJ Van der Linden
(ed.), Handbook of Item Response Theory: Models, Statistical Tools, and Applications,
volume 2, pp. 127–150. Chapman & Hall/CRC.

San Martín E, González J (2010). “Bayesian Identifiability: Contributions to an Inconclusive
Debate.” Chilean Journal of Statistics, 1(2), 69–91.

Schauberger G, Mair P (2019). “A Regularization Approach for the Detection of Differential
Item Functioning in Generalized Partial Credit Models.” Behavior Research Methods, pp.
1–16. doi:10.3758/s13428-019-01224-2.

Shmueli G, Minka TP, Kadane JB, Borle S, Boatwright P (2005). “A Useful Distribution for
Fitting Discrete Data: Revival of the Conway-Maxwell-Poisson Distribution.” Journal of the
Royal Statistical Society C, 54(1), 127–142. doi:10.1111/j.1467-9876.2005.00474.x.

Spielberger CD (2010). “State-Trait Anger Expression Inventory.” In IB Weiner (ed.), The
Corsini Encyclopedia of Psychology. John Wiley & Sons. doi:10.1002/9780470479216.
corpsy0942.

Stan Development Team (2021). Stan User’s Guide Version 2.28. URL https://mc-stan.
org/docs/2_28/stan-users-guide/.

Stasinopoulos DM, Rigby RA (2007). “Generalized Additive Models for Location Scale and
Shape (GAMLSS) in R.” Journal of Statistical Software, 23(7), 1–46. doi:10.18637/jss.
v023.i07.

Strobl C, Kopf J, Zeileis A (2015). “Rasch Trees: A New Method for Detecting Differential
Item Functioning in the Rasch Model.” Psychometrika, 80(2), 289–316. doi:10.1007/
s11336-013-9388-3.

https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://doi.org/10.18637/jss.v017.i05
https://doi.org/10.18637/jss.v017.i05
https://CRAN.R-project.org/package=sirt
https://CRAN.R-project.org/package=TAM
https://doi.org/10.18637/jss.v048.i02
https://doi.org/10.1207/s15328007sem1103_7
https://doi.org/10.1007/978-1-4757-2691-6
https://doi.org/10.3758/s13428-019-01224-2
https://doi.org/10.1111/j.1467-9876.2005.00474.x
https://doi.org/10.1002/9780470479216.corpsy0942
https://doi.org/10.1002/9780470479216.corpsy0942
https://mc-stan.org/docs/2_28/stan-users-guide/
https://mc-stan.org/docs/2_28/stan-users-guide/
https://doi.org/10.18637/jss.v023.i07
https://doi.org/10.18637/jss.v023.i07
https://doi.org/10.1007/s11336-013-9388-3
https://doi.org/10.1007/s11336-013-9388-3

Journal of Statistical Software 53

Tuerlinckx F, De Boeck P (2005). “Two Interpretations of the Discrimination Parameter.”
Psychometrika, 70(4), 629–650. doi:10.1007/s11336-000-0810-3.

Van der Linden WJ, Hambleton RK (1997). Handbook of Modern Item Response Theory.
Springer-Verlag.

Van der Linden WJ, Ren H (2015). “Optimal Bayesian Adaptive Design for Test-Item Cali-
bration.” Psychometrika, 80(2), 263–288. doi:10.1007/s11336-013-9391-8.

Van der Maas HLJ, Molenaar D, Maris G, Kievit RA, Borsboom D (2011). “Cognitive
Psychology Meets Psychometric Theory: On the Relation between Process Models for
Decision Making and Latent Variable Models for Individual Differences.” Psychological
Review, 118(2), 339–356. doi:10.1037/a0022749.

Vehtari A, Gelman A, Gabry J (2017a). “Pareto Smoothed Importance Sampling.”
arXiv:1507.02646 [stat.CO], URL https://arxiv.org/abs/1507.02646.

Vehtari A, Gelman A, Gabry J (2017b). “Practical Bayesian Model Evaluation Using Leave-
One-Out Cross-Validation and WAIC.” Statistics and Computing, 27(5), 1413–1432. doi:
10.1007/s11222-016-9696-4.

Vehtari A, Gelman A, Simpson D, Carpenter B, Bürkner PC (2019). “Rank-Normalization,
Folding, and Localization: An Improved R̂ for Assessing Convergence of MCMC.” arXiv:
1903.08008 [stat.CO], URL https://arxiv.org/abs/1903.08008.

Wagenmakers EJ, Brown S (2007). “On the Linear Relation between the Mean and the
Standard Deviation of a Response Time Distribution.” Psychological Review, 114(3), 830–
841. doi:10.1037/0033-295x.114.3.830.

Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes
A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J,
Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H
(2019). “Welcome to the tidyverse.” Journal of Open Source Software, 4(43), 1686. doi:
10.21105/joss.01686.

Wickham H, Grolemund G (2016). R for Data Science: Import, Tidy, Transform, Visualize,
and Model Data. O’Reilly.

Zeileis A, Strobl C, Wickelmaier F, Komboz B, Kopf J, Schneider L, Debelak R (2021).
psychotools: Infrastructure for Psychometric Modeling. R package version 0.7-0, URL
https://CRAN.R-project.org/package=psychotools.

https://doi.org/10.1007/s11336-000-0810-3
https://doi.org/10.1007/s11336-013-9391-8
https://doi.org/10.1037/a0022749
https://arxiv.org/abs/1507.02646
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1903.08008
https://doi.org/10.1037/0033-295x.114.3.830
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
https://CRAN.R-project.org/package=psychotools

54 Bayesian IRT Modeling with brms and Stan

Affiliation:
Paul-Christian Bürkner
University of Stuttgart
Cluster of Excellence SimTech
Universitätsstr. 32, 70569 Stuttgart, Germany
E-mail: paul.buerkner@gmail.com
URL: https://paul-buerkner.github.io/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

November 2021, Volume 100, Issue 5 Submitted: 2019-05-23
doi:10.18637/jss.v100.i05 Accepted: 2020-09-08

mailto:paul.buerkner@gmail.com
https://paul-buerkner.github.io/
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v100.i05

	Introduction
	Response distributions
	Predicting distributional parameters
	Item and person covariates
	Differential item functioning
	Prior distributions of person and item parameters
	Model identification

	Model specification in brms
	Specifying the family argument
	Specifying the formula argument
	Specifying the prior argument
	Stan code generation

	Parameter estimation and post-processing
	Examples
	Binary models
	Modeling covariates
	Modeling guessing parameters

	Ordinal models
	Response times models

	Comparison of packages
	Conclusion

