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Abstract
Adaptive importance sampling is a class of techniques for finding good proposal distributions for importance sampling. Often
the proposal distributions are standard probability distributions whose parameters are adapted based on the mismatch between
the current proposal and a target distribution. In this work, we present an implicit adaptive importance sampling method that
applies to complicated distributions which are not available in closed form. The method iteratively matches the moments of a
set of Monte Carlo draws to weighted moments based on importance weights. We apply the method to Bayesian leave-one-out
cross-validation and show that it performs better than many existing parametric adaptive importance sampling methods while
being computationally inexpensive.

Keywords Monte Carlo · adaptive importance sampling · Bayesian computation · leave-one-out cross-validation

1 Introduction

Importance sampling is a class of procedures for computing
expectations using draws from a proposal distribution that is
different from the distribution overwhich the expectationwas
originally defined (Robert and Casella 2013). A primary field
of application for importance sampling is Bayesian statistics
where we commonly sample from the posterior distribution
of a probabilistic model as we are unable to obtain the dis-
tribution in closed form. After generating a sample from
the posterior distribution, it is commonplace to use it as a
proposal distribution for computing a large number of expec-
tations over closely related distributions for tasks such as
bootstrap and leave-one-out cross-validation (Gelfand et al.
1992; Gelfand 1996; Peruggia 1997; Epifani et al. 2008;
Vehtari et al. 2017; Giordano et al. 2019). However, in the
presence of influential observations in the data or target
distributions that are difficult to approximate, such impor-
tance sampling procedures may be inefficient or inaccurate.
In order to avoid explicitly generating Monte Carlo draws
from each closely related distribution, it is desirable to find
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adaptive importance sampling methods that can utilize the
information in the already generated posterior draws in a
computationally efficient manner.

The contributions of this paper can be summarized as fol-
lows:

– We present a novel implicitly adaptive importance sam-
pling method. The method adapts the importance sam-
pling proposal distribution implicitly by applying affine
transformations to a Monte Carlo sample from the pro-
posal distribution.

– We propose specific adaptations and estimators for sim-
ple Monte Carlo sampling as well as standard and
self-normalized importance sampling. We show that
our proposed double adaptation framework for self-
normalized importance sampling significantly improves
the accuracy of existing adaptive importance sampling
methods in many settings.

– We also propose to use an existing importance sampling
convergence diagnostic as an acceptance and stopping
criterion for the adaptive method, and discuss its appli-
cability also outside of importance sampling.

The proposed method does not require any tuning from
the user and is easily automatized and applied to a variety
of different problems. Because it can be used with arbitrary
proposal distributions, it is most beneficial for complex dis-
tributions that would be difficult to capture with a parametric
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form. We demonstrate its usefulness with Bayesian leave-
one-out cross-validation (LOO-CV) and the probabilistic
programming framework Stan (Carpenter et al. 2017).

As an illustrative example,we showaBayesianmodel pos-
terior that is used in the experiments in Sect. 3.4. Figure 1
represents bivariate density plots of the marginal distribu-
tions of three pairs of parameters in the full data posterior
distribution. In total, the model has 3075 parameters. We
can use the Monte Carlo sample from the full data pos-
terior as an importance sampling proposal distribution for
computing cross-validation scores over posterior distribu-
tions where single observations have been left out, and our
proposed adaptive method for improving accuracy with a
small additional computational cost. Because the posterior is
high-dimensional and multimodal, standard adaptive meth-
ods that use parametric proposal distributions may require
multiple proposal distributions to be efficient, which is more
computationally costly and further complicates the choice
of appropriate proposal distributions. The λ parameters in
Fig. 1 are local shrinkage parameters of a logistic regression
model with a regularized horseshoe prior on the regression
coefficients (Piironen andVehtari 2017b). The parameters are
constrained to be positive, so they are sampled in logarithmic
space with dynamic HamiltonianMonte Carlo (Hoffman and
Gelman 2014; Betancourt 2017). More details are given in
Sect. 3.4.

1.1 Overview of importance sampling

Let us consider an inference problem where a vector of
unknown parameters has a probability density function p(θ).
Our task is to estimate integrals of the form

μ = Ep[h(θ)] =
∫

h(θ)p(θ)dθ , (1)

where h(θ) is some function of the parameters θ that is inte-
grable with respect to p(θ). These kinds of integrals are
ubiquitous in Bayesian inference, where quantities of inter-
est are computed as expectations over the inferred posterior
distribution of the model. However, the same formulation
is used for many other problems, such as rare event esti-
mation (Rubino and Tuffin 2009), optimal control (Kappen

and Ruiz 2016), and signal processing (Bugallo et al. 2015).
Using a set of independent draws {θ (s)}Ss=1 from p(θ), the
simple Monte Carlo estimator of μ is

μ̂MC = 1

S

S∑
s=1

h(θ (s)) , when θ (s) ∼ p(θ).

In this work, we use the term draw to represent a single θ (s),
and the term sample to represent a set of draws {θ (s)}Ss=1. If
the expectation μ exists, the simple Monte Carlo estimator
is a consistent and unbiased estimator of μ, meaning that
asymptotically it will converge towards μ by the strong law
of large numbers. If also the expectation of h2 is finite, the
central limit theorem holds, and the asymptotic convergence
rate of the simple Monte Carlo estimator is proportional to
O(S−1/2). Given finite variance, a similar convergence rate
holds for uniformly ergodic Markov chains (e.g. Roberts and
Rosenthal 2004).

In some cases, it is not possible or it is expensive to gener-
ate draws from p(θ), but the expectation μ is still of interest.
In this case, we may generate a sample from a proposal dis-
tribution g(θ) and compute the expectation of Eq. (1) using
the standard importance sampling estimator

Ep[h(θ)] ≈ μ̂IS = 1

S

S∑
s=1

p(θ (s))

g(θ (s))
h(θ (s))

= 1

S

S∑
s=1

w(s)h(θ (s)), when θ (s) ∼ g(θ). (2)

Herew(s) are called importanceweights or importance ratios,
and they measure the mismatch between p(θ) and g(θ) for
a specific draw θ (s). In principle, the proposal distribution
can be any probability distribution which has the same sup-
port as the target distribution p(θ) and is positive whenever
p(θ)h(θ) �= 0. The standard importance sampling estimator
μ̂IS is also a consistent and unbiased estimator ofμ as long as
the expectation μ exists. Its variance depends largely on the
choice of the proposal distribution g(θ). For a good choice,
the variance can be smaller than the variance of the simple
Monte Carlo estimator, but it can also be much larger, or infi-
nite, if the choice is less ideal. In the context of this paper,

Fig. 1 Bivariate density plots
from the posterior distribution
of the logistic regression model
for the Ovarian data. The
posterior is 3075-dimensional
and is highly multimodal.
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we will consider the simple Monte Carlo estimator simply
as a special case of standard importance sampling, where the
proposal distribution is p(θ), the distribution over which the
expectation is defined.

A commonly used alternative estimator is the self-
normalized importance sampling (SNIS) estimator

μ̂SNIS =
∑S

s=1
p(θ (s))

g(θ (s))
h(θ (s))

∑S
s=1

p(θ (s))

g(θ (s))

=
∑S

s=1 w(s)h(θ (s))∑S
s=1 w(s)

, when θ (s) ∼ g(θ). (3)

This estimator is more generally applicable, because it can
be used even if the normalization constants of the densities
p(θ) or g(θ) are not known. The self-normalized estimator is
also consistent, but has a small bias of order O(1/S) (Owen
2013). All three introduced Monte Carlo estimators are con-
sistent, and thus converge to the true value μ asymptotically
as S → ∞, if μ itself exists. However, there are many
cases where these estimators can have poor pre-asymptotic
behaviour despite having asymptotically guaranteed conver-
gence (Vehtari et al. 2019c). That is, in cases with poor
pre-asymptotic behaviour, convergence for any achievable
finite set of S draws may be so bad, that we cannot get suf-
ficiently accurate results in reasonable time. We discuss this
issue in Sect. 2.3.

To unify the notation and nomenclature of the different
Monte Carlo estimators, we define the ratio of the target
density p(θ) and the proposal density g(θ) as the common
importance weights because they do not depend on the func-
tion h(θ) whose expectation is computed:

w = w(θ) = p(θ)

g(θ)
. (4)

Analogously, we define the product

v = v(θ) = p(θ)

g(θ)
h(θ) (5)

as the expectation-specific importance weights for the expec-
tation Ep[h(θ)]. With this notation, both the simple Monte
Carlo and standard importance sampling estimators are
defined as the sample mean of the expectation-specific
weights v. On the other hand, the self-normalized impor-
tance sampling estimator in Eq. (3) is defined as the ratio of
the sample means of v and w.

1.2 Multiple importance sampling

In this section, we briefly discuss multiple importance sam-
pling, which forms the basis for many existing adaptive

importance sampling techniques (Cornuet et al. 2012; Mar-
tino et al. 2015; Bugallo et al. 2017). Multiple importance
sampling refers to the case of sampling independently from
many proposal distributions (Hesterberg 1995; Veach and
Guibas 1995; Owen andZhou 2000). Let us denote the J pro-
posal distributions as {g1, . . . , gJ } and the number of draws
from each as {S1, . . . SJ } such that∑J

j=1 S j = S. The multi-
ple importance sampling estimator is aweighted combination
of the individual importance sampling estimators:

μ̂MIS =
J∑

j=1

1

S j

S j∑
s=1

β j (θ
( j,s))

h(θ ( j,s))p(θ ( j,s))

g j (θ
( j,s))

,

when θ ( j,s) ∼ g j (θ).

where {β j }Jj=1 is a partition of unity, i.e. for every θ , β j (θ) ≥
0 and

∑J
j=1 β j (θ) = 1. With different ways of choosing

the weighting functions β j , one can vary between locally
emphasizing one of the proposal distribution g j , or consid-
ering them in a balanced way for every value of θ .

The weighting functions are commonly chosen using a
balance heuristic

β j (θ) = S j g j (θ)∑J
k=1 Skgk(θ)

,

whose variance is proven to be smaller than the variance
of any weighting scheme plus a term that goes to zero as
the smallest S j → ∞ (Veach and Guibas 1995). The bal-
ance heuristic is also a quite natural way of combining the
draws from different proposal distributions, as the impor-
tance weights for all draws are computed as if they were
sampled from the same mixture distribution gα(θ)

w
( j,s)
DM-MIS = p(θ ( j,s))

gα(θ ( j,s))
= p(θ ( j,s))∑J

j=1 α j g j (θ
( j,s))

, α j = S j

S
.

(6)

With these weights, the multiple importance sampling esti-
mator is then computed using the usual equations of
standard [Eq. (2)] or self-normalized [Eq. (3)] importance
sampling.

Weights computed using Eq. (6) are sometimes called
deterministic mixture weights, whereas an alternative is to
only evaluate a single proposal distribution in the denomina-
tor:

w
( j,s)
s-MIS = p(θ ( j,s))

g j (θ
( j,s))

, when θ ( j,s) ∼ g j (θ).

Deterministic mixture weighting requires more evaluations
of the proposal densities, but the variance of the resulting
estimator is lower (Elvira et al. 2019) There are techniques
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for improving the efficiency of the balance heuristic (Havran
and Sbert 2014; Elvira et al. 2015, 2016; Sbert et al. 2016;
Sbert and Havran 2017; Sbert and Elvira 2019). In this work,
we use the balance heuristic because of its simplicity and
empirically shown good performance.

1.3 Adaptive importance sampling

Adaptive importance sampling is a general term that refers
to an iterative process for updating a single or multiple pro-
posal distributions to approximate a given target distribution.
The details of the adaptation can vary in multiple ways, but
most methods consist of three steps: (i) generating draws
from the proposal distribution(s), (ii) computing the impor-
tance weights of the draws, and (iii) adapting the proposal
distribution(s).

Adaptive importance sampling methods can be catego-
rized in multiple ways, for example based on the type and
number of proposal distributions, weighting scheme, and
adaptation strategy. Most methods use one or more para-
metric proposal distributions, such as Gaussian or Student-t
distributions. Typical adaptation strategies are resampling or
moment estimation based on the importanceweights. A good
review of many different methods and their classification is
presented in Bugallo et al. (2017). For discussion about the
convergence of adaptive importance sampling methods, see,
for example, Feng et al. (2018) and Akyildiz and Míguez
(2019).

Some notable recent algorithms are adaptive multiple
importance sampling (AMIS; Cornuet et al. 2012) and adap-
tive population importance sampling (APIS; Martino et al.
2015), which both use multiple proposal distributions, and
weighting based on deterministic mixture weights. For the
adaptation, they rely onweightedmoment estimation to adapt
the mean (and possibly covariance) of the proposal distribu-
tions. Population Monte Carlo algorithms are another class
of adaptive importance sampling methods, which typically
use weighted resampling as the means of adaptation (Cappé
et al. 2004, 2008; Elvira et al. 2017).

2 Importance weightedmoment matching

In this section, we present our proposed implicit adaptive
importance sampling method, importance weighted moment
matching (IWMM). We start from the assumption that we
have a Monte Carlo sample and we are computing an expec-
tation of some function as in Eq. (1). The sample can be
from an arbitrary importance sampling proposal distribu-
tion, or it can be from the actual distribution over which
the expectation is defined. As with any adaptive importance
sampling method, our motivation is that the accuracy of the
expectation using the current sample is not good enough. The

situation where the proposed framework is most beneficial
is when the sample is from a relatively good, complex pro-
posal distributionwith no closed form andwhich is expensive
to sample from. Situations like this arise often in Bayesian
inference, when aMonte Carlo sample from the full data pos-
terior distribution has been sampled, and model evaluations
using cross-validation or bootstrap are of interest (Gelfand
et al. 1992; Gelfand 1996; Peruggia 1997; Epifani et al. 2008;
Vehtari et al. 2017;Giordano et al. 2019). In this case, implicit
adaptation of the proposal distribution can benefit from the
existing sample and improve Monte Carlo accuracy with a
small computational cost.

There are similar approaches that adapt proposal distri-
butions nonparametrically using, e.g. kernel density esti-
mates (Zhang 1996). With the implicit adaptation, we avoid
both the resampling and density estimation steps. Unbiased
path sampling by Rischard et al. (2018) can also use arbitrary
proposal distributions, but their approach requires a consid-
erable amount of tuning from the user.

2.1 Target of adaptation

Let us recap the three general steps of adaptive importance
sampling, which are (i) generating draws from the proposal
distribution(s), (ii) computing the importance weights of the
draws, and (iii) adapting the proposal distribution(s) based
on the weights. In our proposed method, step (i) is omitted
because we do not resample during adaptation, and instead
use the same sample that is transformed directly. For this
reason, themethod can be usedwith anyMonte Carlo sample
whose probability density function is known.

For step (ii), unlike most adaptive importance sampling
methods, we are not primarily interested in perfectly adapt-
ing the proposal distribution to the distribution overwhich the
expectation is defined, which is often called the target distri-
bution in the importance sampling literature. While this is a
reasonable goal in many cases, in Sects. 3.1 and 3.2 we show
examples where sampling from the target distribution itself
leads to extremely biased estimates. Instead, we are mainly
interested in adapting to the theoretical optimal proposal dis-
tribution of a given expectation Ep[h(θ)], which depends on
three things: the distribution p(θ) over which the expectation
is defined, the function h(θ)whose expectation is computed,
and the Monte Carlo estimator that is used. For the standard
importance sampling estimator, the optimal proposal distri-
bution is proportional to (Kahn and Marshall 1953)

goptIS (θ) ∝ p(θ) |h(θ) |, (7)

and for the self-normalized importance sampling estimator,
it is (Hesterberg 1988)

goptSNIS (θ) ∝ p(θ) |h(θ) − Ep[h(θ)] |. (8)
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Themore complicated form for the self-normalized estimator
is due to the requirement of accurate estimation of both the
numerator and denominator of Eq. (3) simultaneously.

In order to approach the optimal proposal distribution,
we define the importance weights for adaptation as fol-
lows: When using the standard importance sampling (or
simple Monte Carlo) estimator, we use the absolute values
of the expectation-specific weights of Eq. (5) for adapta-
tion, because they quantify themismatch between the current
proposal and the optimal proposal density. For the self-
normalized importance sampling estimator, we recommend
separate adaptations for the numerator and the denominator,
using the absolute values of the expectation-specific weights
and the common importance weights, respectively.

The results of the two adaptations are combined with
multiple importance sampling to approximate the optimal
proposal density of Eq. (8). To combine the two adaptations
into an efficient proposal distribution, we use an approxima-
tion based on superimposing a simpler distribution on top of
the optimal proposal:

gsplitSNIS(θ) ∝ |h(θ)|p(θ) + Ep[h(θ)]p(θ). (9)

We call this the split proposal density, because it splits the
piecewise defined density of Eq. (8) into two clear compo-
nents. The first component is proportional to Eq. (7) and
is thus approximated with the adaptation using the absolute
expectation-specific weights. The second component is pro-
portional to p(θ) and is reached with the adaptation using
the common weights.

Equation (9) is a convenient approximation to the optimal
proposal of self-normalized importance sampling because it
has similar tailswhile being simpler to sample frombecause it
has two clear components, whereas the density in Eq. (8) can
easily be multimodal even when the expectation is defined
over a unimodal distribution. The drawback of this approxi-
mation is that it places unnecessary probability mass in areas
where h(θ) ≈ Ep[h(θ)], thus losing some efficiency. How-
ever, generally the more distinct p(θ) is from p(θ)|h(θ)|,
the smaller Ep[h(θ)] becomes and hence the approximation
becomes closer to the optimal form. Fortunately, these are
the cases when adaptive importance sampling techniques are
most needed. In Fig. 4 in “Appendix C.1”, we show an exam-
ple of this phenomenon.

Because Eq. (9) is a sum of two terms, it is essentially
a multiple importance sampling proposal distribution with
two components. The number of Monte Carlo draws that
should be allocated to each component depends on the prop-
erties of p(θ) and h(θ). A conservative choice is to allocate
the same number to both terms. When h(θ) is nonnegative,
this is actually the optimal allocation, because both terms in
Eq. (9) integrate to Ep[h(θ)]. With this allocation, multiple
sampling with the balance heuristic is safe in the sense that

the asymptotic variance of the estimator is never larger than
2 times the variance of standard importance sampling using
the better component (He and Owen 2014). We note that the
double adaptation and combining with Eq. (9) is possible and
beneficial also with existing parametric adaptive importance
sampling methods. We demonstrate this in the experiments
section.

2.2 Affine transformations

Step (iii) of adaptive importance sampling is the adaptation
of the current proposal distribution(s). Two commonly used
adaptation techniques are weighted resampling and moment
estimation (Bugallo et al. 2017). In parametric adaptive
importance sampling methods, weighted moment estima-
tion is used to update the location and scale parameters of
the parametric proposal distribution. We employ a similar
idea, but instead directly transform the Monte Carlo sam-
ple using an affine transformation. This enables adaptation
of proposal distributions which do not have a location-scale
parameterisation or even a closed form representation. The
only requirement is that the (possibly unnormalized) prob-
ability density is computable. This property makes it useful
in many practical situations where a Monte Carlo sample
has been generated with probabilistic programming tools,
or other Markov chain Monte Carlo methods. By using a
reversible transformation, we can compute the probability
density function of the transformed draws in the adapted pro-
posal with the Jacobian of the transformation.

In this work, we consider simple affine transformations,
because both the transformation and its Jacobian are com-
putationally cheap. Consider approximating the expectation
Ep[h(θ)]with a set of draws {θ (s)}Ss=1 from an arbitrary pro-
posal distribution g(θ) (which can also be p(θ) itself). For
a specific draw θ (s), a generic affine transformation includes
a square matrix A representing a linear map, and translation
vector b:

T : θ (s) 	→ Aθ (s) + b =: θ̆
(s)

. (10)

Because the transformation is affine and the same for all
draws, the new implicit density gT evaluated at every θ̆

(s)

changes by a constant, namely the inverse of the determinant

of the Jacobian, |JT |−1 =
∣∣∣ dT (θ)

dθ

∣∣∣−1
. Note that to compute

the inverse, the matrix A must be invertible. After the trans-
formation, the implicit probability density of the adapted

proposal gT for the transformed draw θ̆
(s)

is

gT (θ̆
(s)

) = g(θ (s))|JT |−1.

If the original proposal density g was known only up to an
unknown normalizing constant, the adapted proposal gT has
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that same unknown constant. This is crucial in order to be
able to use the split proposal distribution of Eq. (9) for self-
normalized importance sampling.

To reduce the mismatch between a Monte Carlo sam-
ple {θ (s)}Ss=1 and a given adaptation target, we consider
three affine moment matching transformations with varying
degrees of simplicity. The transformations have a similar idea
as warp transformations used for bridge sampling by Meng
and Schilling (2002). The importance weights used in the
transformations can be either the common weights or the
expectation-specific weights, depending on what the adap-
tation target is, as discussed in Sect. 2.1. We define the first
transformation, T1, to match the mean of the sample to its
importance weighted mean:

θ̆
(s) = T1(θ

(s)) = θ (s) − θ + θw,

θ = 1

S

S∑
s=1

θ (s),

θw =
∑S

s=1 w(s)θ (s)

∑S
s=1 w(s)

.

We define T2 to match the marginal variance in addition to
the mean:

θ̆
(s) = T2(θ

(s)) = v1/2w ◦ v−1/2 ◦ (θ (s) − θ) + θw,

v = 1

S

S∑
s=1

(θ (s) − θ) ◦ (θ (s) − θ),

vw =
∑S

s=1 w(s)(θ (s) − θ) ◦ (θ (s) − θ)∑S
s=1 w(s)

,

where ◦ refers to a pointwise product of the elements of two
vectors. The final transformation, T3, matches the covariance
and the mean:

θ̆
(s) = T3(θ

(s)) = LwL−1(θ (s) − θ) + θw,

LLT = � = 1

S

S∑
s=1

(θ (s) − θ)(θ (s) − θ)T,

LwLT
w = �w =

∑S
s=1 w(s)(θ (s) − θw)(θ (s) − θw)T∑S

s=1 w(s)
.

If the weights are available with the correct normal-
ization, the weighted moments can be computed using
standard importance sampling, but for a more general case,
we show the self-normalized estimators of the weighted
moments.When relying on self-normalized importance sam-
pling, we recommend two separate adaptations, as discussed
in Sect. 2.1. We perform both adaptations separately with
the full Monte Carlo sample, but for the multiple importance
sampling estimator of Eq. (9) we split the existing sample

into two equally sized parts to avoid causing bias from using
the same draws twice.

The three affine transformations are defined from simple
to complex in terms of the effective sample size required to
accurately compute the moments (Kong 1992; Martino et al.
2017; Chatterjee and Diaconis 2018; Elvira et al. 2018). Par-
ticularly in the third transformation, the weighted covariance
can be impossible to compute if the variance of the weight
distribution is large. For this reason, we first iterate only T1
repeatedly, and move on to T2 and T3 only when T1 is no
longer helping. To determine this, we use finite sample diag-
nostics which will be discussed next.

2.3 Stopping criteria and diagnostics

Even if an (adaptive) importance sampling procedure has
good asymptotic properties or the used proposal distribution
guarantees finite variance by construction, its pre-asymptotic
behaviour can be poor. Because of this, finite sample diag-
nostics are extremely important for assessing pre-asymptotic
behaviour. For example, Vehtari et al. (2019c) demonstrate
importance sampling cases with asymptotically finite vari-
ance, but pre-asymptotic behavior indistinguishable from
cases with unbounded importance weights or infinite vari-
ance. Vehtari et al. (2019c) propose a finite sample diagnostic
based on fitting a generalized Pareto distribution to the upper
tail of the distribution of the importance weights. Because
theoretically the shape parameter k of the generalized Pareto
distribution determines the number of its finite moments,
the fitted distribution and its shape parameter k̂ are use-
ful for estimating practical pre-asymptotic convergence rate.
The authors propose k̂ = 0.7 as an upper limit of prac-
tically useful pre-asymptotic convergence. The stability of
(self-normalised) importance sampling can be improved by
replacing the largestweightswith order statistics of the gener-
alized Pareto distribution estimated already for the diagnostic
purposes.

The Pareto k̂ diagnostic can also be used as a stopping
criterion for adaptive importance sampling methods in order
to not run the adaptation excessively long and waste com-
putational resources. In addition to that, in the importance
weighted moment matching method we use the diagnostic
for estimating whether a specific transformation improves
the proposal distribution or not.

We use the Pareto diagnostic as follows. First, we com-
pute the Pareto k̂ diagnostic value for the original (common
or expectation-specific) weights. After a transformation (T1,
T2 or T3) we recompute the diagnostic, and only accept the
transformation if the diagnostic value has decreased. If it has,
the transformation is accepted and the weights and diagnos-
tic value are updated. We begin the adaptation by repeating
transformation T1, and only when it is no longer accepted,
we move on to attempt transformation T2, and eventually T3.
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As a criterion for stopping the whole algorithm, we use the
diagnostic value k̂ = 0.7 as recommended by Vehtari et al.
(2019c) as a practical upper limit for useful accuracy.

The full importance weighted moment matching algo-
rithm for standard importance sampling or simple Monte
Carlo sampling is presented in Algorithm 1. When using
self-normalized importance sampling, the algorithm is very
similar,with the exception of having two separate adaptations
and combining them with multiple importance sampling in
the end. It is presented as Algorithm 2 in “Appendix A”.

2.4 Computational cost

The computational cost of several popular adaptive impor-
tance sampling methods are compared in Table 1. We show
here the methods which also use moment estimation and
are thus most similar to the proposed importance weighted
moment matching method. For a more exhaustive compari-
son, see the review paper by Bugallo et al. (2017). Because of
the implicit adaptation in IWMM, the proposal density needs
to be computed only once at the beginning of the algorithm.
Thus, the computational complexity of IWMM is smaller
than even the simplest single-proposal adaptive importance
sampling methods. It is thus well suited for problems where
proposal evaluations are expensive. We note that IWMM
could also replicate the proposal distribution of consecu-
tive transformations in a similar fashion as adaptive multiple
importance sampling to increase performance at the cost of
increased computational complexity (Cornuet et al. 2012).
However, this may cause bias because there is no resampling.
We leave this as possible direction for future research.

If the importanceweights have large variance, themoment
matching transformations can be noisy because of inaccurate
computation of the weighted moments. There are two prin-
cipal ways to remediate this. First, increasing the number
of draws generally increases the accuracy of the computed
moments. Second, the importance weights used for comput-
ing the weightedmoments can be regularized with truncation
or smoothing methods (Ionides 2008; Koblents and Míguez
2015; Miguez et al. 2018; Vehtari et al. 2019c; Bugallo et al.
2017). In the experiments section, we demonstrate that the

accuracy of the moment matching can be improved with
Pareto smoothing from Vehtari et al. (2019c).

Another shortcoming of the method is that the adaptation
target is not always well characterized by its first and second
moments, and the target and proposal distributions can differ
in several characteristics, such as tail thickness, correlation
structure, or number of modes. For complex targets, more
elaborate transformations may be needed to reach a good
enough proposal distribution. That being said, it is not nec-
essary tomatch all characteristics of the proposal distribution
to the target for importance sampling to be effective.

3 Experiments

In this section, the proposed implicit adaptation method is
illustrated with a variety of numerical experiments using
leave-one-out cross-validation (LOO-CV) as an example
application.With both simulated and real data sets, we evalu-
ate the predictive performance of different Bayesian models
using leave-one-out cross-validation, and demonstrate the
improvements that the implicit adaptation methods can pro-
vide. We also compare it to existing adaptive importance
samplingmethods that use parametric proposal distributions.

All of the simulationswere done inR (RCore Team2020),
and the models were fitted using rstan, the R interface to
the Bayesian inference package Stan (Carpenter et al. 2017;
StanDevelopment Team 2018). To sample from the posterior
of each model, we ran four Markov chains using a dynamic
Hamiltonian Monte Carlo (HMC) algorithm (Hoffman and
Gelman 2014; Betancourt 2017) which is the default in Stan.
Wemonitor convergence of the chainswith the split-R̂ poten-
tial scale reduction factor from Vehtari et al. (2019b) and by
checking for divergence transitions, which is a diagnostic
specific to adaptive HMC. We note that the finite sample
behaviour of Monte Carlo integrals depends on the algo-
rithm used to generate the sample. For example, if one uses
an MCMC algorithm less efficient than HMC, the resulting
Monte Carlo approximations will generally be worse than
those illustrated in the next sections. R and Stan codes of the
experiments and the used data sets are available on Github
(https://github.com/topipa/iter-mm-paper).

Table 1 Total computational costs of different adaptive importance
sampling algorithms after T iterations. S represents the number of
draws sampled per iteration from each proposal distribution, except for

IWMMwhich does not resample. N represents the number of proposal
distributions.

Algorithm Target evaluations Proposal evaluations

Importance weighted moment matching (IWMM) O(ST ) O(S)

Single-proposal adaptive importance sampling (AIS) O(ST ) O(ST )

Adaptive multiple importance sampling (AMIS) O(ST ) O(ST 2)

Adaptive population importance sampling (APIS) O(NST ) O(N 2ST )
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Algorithm 1 Moment matching for standard importance sampling

1: Input: kthreshold, proposal density g, draws {θ (s)
i }Ss=1 from g

2: Compute expectation-specific weights {v(s)}Ss=1 and compute diagnostic k̂;

3: while k̂ > kthreshold do
4: for j in 1 : 3 do

5: Transform the draws with Tj : θ (s) 	→ θ̆
(s)

using absolute expectation-specific weights;

6: Recompute expectation-specific weights {v̆(s)}Ss=1 and
ˆ̆k;

7: if ˆ̆k < k̂ then
8: Accept the transformation and update {θ (s)}Ss=1 = {θ̆ (s)}Ss=1, {v(s)}Ss=1 = {v̆(s)}Ss=1, and k̂ = ˆ̆k;
9: Exit for loop;
10: else
11: Discard the transformation;
12: end if
13: if j == 3 then
14: Moment matching failed because k̂ > kthreshold, end algorithm with a warning about sampling inaccuracy;
15: end if
16: end for
17: end while
18: Moment matching succeeded, compute expectation Ep[h(θ)] using equation (2);

Because probabilistic programming tools generally give
only unnormalized posterior densities, we mostly focus on
self-normalized importance sampling. As the default case,
we take the situation that Monte Carlo draws are avail-
able from the full data posterior distribution, and these are
adapted using our proposed method. We note that leave-one-
out cross-validation in this setting is a special case such that
the double adaptation which is discussed in Sect. 2.1 is not
needed even when using self-normalized importance sam-
pling. The split proposal of Eq. (9) is still used, but the other
term uses the full data posterior draws. To help the reader in
understanding or implementing the methods, we have pre-
sented the basics of Bayesian leave-one-out cross-validation
as well as instructions for implementing the proposed meth-
ods in “Appendix B”. In addition to importance sampling,
we also discuss simple Monte Carlo sampling results when
sampling from each leave-one-out posterior explicitly.

By default, we use Pareto smoothing to stabilize impor-
tance weights, but we also present results without smooth-
ing (Vehtari et al. 2017, 2019c). This enables us to also
monitor the reliability of the Monte Carlo estimates using
the Pareto k̂ diagnostics. We show that the diagnostics accu-
rately identify convergence problems in not only importance
sampling, but also when using the simple Monte Carlo esti-
mator or adaptive importance sampling algorithms. Based
on Vehtari et al. (2019c), we use k̂ = 0.7 as an upper thresh-
old to indicate practically useful finite sample convergence
rate.

We compare our proposed method to several existing
adaptive importance sampling methods. For comparison, we
chose algorithms that are conceptually similar to our pro-
posed implicit adaptation method. As the first comparison,
we have generic adaptive importance sampling methods,
which use a single proposal distribution and adapt the loca-

tion and scale parameters of this distribution using weighted
moment estimation. As the proposal distribution we have
either a multivariate Gaussian distribution, or a Student-
t3 distribution. Moreover, we test these algorithms in the
traditional way of adapting using the common importance
weights, and also using our proposed double adaptation,
resulting in 4 different algorithms. To compare to a more
powerful and computationally expensive algorithm,wechose
adaptive multiple importance sampling (AMIS; Cornuet
et al. 2012), which uses multiple proposal distributions and
deterministic mixture weighting, increasing the number of
proposal distributions over time. Also for this algorithm, we
test 4 versions by having either Gaussian or Student-t3 dis-
tributions as well as with and without double adaptation.
We start all the parametric adaptive methods with mean and
covariance estimated from a sample from the full data pos-
terior. Also for the parametric adaptive importance sampling
methods, we use the Pareto k̂ diagnostic to determine when
to stop the algorithm. For all eight algorithms, we adapt both
the mean and covariance if it is feasible, but for very high-
dimensional distributions we only adapt the mean, because
otherwise the adaptation is unstable given the used sample
sizes.

Sections 3.1 and 3.2 show low-dimensional examples
where the function h whose expectation is being computed
gets large values in the tails of the distribution over which
the expectation is being computed. These cases highlight
the importance of our proposed double adaptation, as the
target densities are available in unnormalized form. Sec-
tions 3.3 and 3.4 show correlated and high-dimensional
examples which are significantly more difficult. In Sect. 3.4,
the distribution over which the expectation is defined is also
multimodal. In these cases, we demonstrate the usefulness of
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using a complex nonparametric proposal distribution instead
of Gaussian or Student-t densities.

3.1 Experiment 1: gaussian data with a single outlier

In this section, we demonstrate with a simple example what
happens when we try to assess the predictive performance of
a misspecified model. We emphasize that even though this
is a simple example, it still provides valuable insight for real
world data and models as evaluating misspecified models
is an integral part of any Bayesian modelling process. In
terms of Monte Carlo sampling, this is an example of an
expectation (1) where the largest values of the function h are
in the tails of the target distribution p.

We generate 29 observations from a standard normal dis-
tribution, and manually set the value for a 30’th observation
to introduce an outlier. This mimics a situationwhere the true
data generatingmechanism has thicker tails than the assumed
observation model. Keeping the randomly generated obser-
vations fixed, we repeat the experiment for different values of
the outlier ranging from y30 = 0 to y30 = 20. We model the
data with a Gaussian distribution with unknown mean and
variance, generate draws from the model posterior, and eval-
uate the predictive ability of the model using leave-one-out
cross-validation.

For all 30 observations, represented jointly by the vector
y, the model is thus

y ∼ Normal(μ, σ 2)

with mean μ and standard deviation σ . We set improper uni-
form priors on μ and log(σ ). In this model, the posterior
predictive distribution p(ỹ | y) is known analytically, and
is a Student t-distribution with n − 1 degrees of freedom,
mean at the mean of the data, and scale

√
1 + 1/n times

the standard deviation of the data, where n is the number of
observations. Thus, we can compute the Bayesian LOO-CV
estimate for the single left out point analytically via

elpdloo,i = log p(ỹ = yi | y−i ).

The left plot of Fig. 2 shows the computed êlpdloo,30 esti-
mates for the 30’th observation based on different sampling
methods, which are compared to the analytical elpdloo,30
values when the outlier value is varied. When the out-
lier becomes more and more different from the rest of the
observations and the analytical elpdloo,30 decreases, both the
simple Monte Carlo estimate from the true leave-one-out
posterior and the PSIS estimate from the full data pos-
terior become more and more biased due to insufficient
accuracy in the tails of the posterior predictive distribu-
tion. The same happens to adaptive importance sampling
using a single Gaussian proposal (AIS-G), and to a smaller

extent when using a Student-t3 proposal (AIS-t). Our pro-
posed importance weighted moment matching from either
the full posterior (PSIS+MM) or the leave-one-out posterior
(naive+MM) almost perfectly align with the analytical solu-
tion. Also the AIS-G and AIS-t give very accurate results
when using our proposed double adaptation. Similarly, the
results of all 4AMIS algorithms alignwellwith the analytical
solution and are omitted in Fig. 2 for improved readability.
While not shown in the plot, also PSIS+MM gives highly
biased results if omitting the split proposal of Eq. (9). In
“Appendix C”, we show the results of a similar experi-
ment, where the randomly generated points y1 to y29 are
re-generated at every repetition to show that the results are
not just specific to this particular data realization.

The right plot of Fig. 2 shows the Pareto k̂ diagnostic val-
ues corresponding to the different algorithms. The diagnostic
values are computed from both common and expectation-
specific weights, and the larger is reported. The plot shows
that both moment matching algorithms have k̂ < 0.7 which
indicates good finite sample accuracy. For all of the other
algorithms, the diagnostic value grows over 0.7 when the
problem becomes more difficult, which correlates well with
the biased results in the left plot. From the AIS algorithms,
the Student-t3 proposal distribution has much smaller bias
compared to the Gaussian proposal due to its much thicker
tails. Still, the Pareto k̂ diagnostic indicates poor finite sam-
ple convergence. When looking at the importance weights
of the individual runs, it is indeed clear that the result is
based on only a few Monte Carlo draws from the thick tails
of the Student-t3 distribution. Because of that, the variance
between different runs is large. In themost difficult casewhen
y30 = 20 and elpdloo,30 = −44.3, the variance of the esti-
mated elpdloo,30 for AIS-t is more than 1000 times higher
than for PSIS+MM.

Figure 2 highlights the importance of our proposed double
adaptation when some densities are available in unnormal-
ized form. All of the proposal distributions that we compared
fail without the double adaptation and split proposal of
Eq. (9). The Student-t proposal does quite well, but it has
high variance because of relying only on a few draws from
the tails. In more high-dimensional situations, it will also
fail quicker, as we show later. AMIS gives good results even
without the double adaptation because it was started from an
initial distribution based on the mean and covariance of the
full posterior, and it retains all earlier proposal distributions.
Because the initial distribution is already close to the target
of the second adaptation, the second adaptation is not needed
for the AMIS algorithms in this low-dimensional example.

3.2 Experiment 2: poisson regression with outliers

In the second experiment, we illustrate with a real data set
how poor finite sample convergence can cause significant
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Fig. 2 Computed êlpdloo,30 estimates of the left out observation y30 for
the normal model for different values between y30 = 0 and y30 = 20.
The black crosses depict the analytical results. The sampling results
are averaged from 100 independent Stan runs, and the error bars rep-

resent 95% intervals of the mean across these runs. The dashed line at
k̂ = 0.7 presents the diagnostic threshold indicating practically useful
finite sample convergence rate.

errors when estimating predictive performance of models.
The data are fromGelman and Hill (2006), where the authors
describe an experiment that was performed to assess how
efficiently a pest management system reduces the amount
of roaches. The target variable y describes the number of
roaches caught in a set of traps in each apartment. The model
includes an intercept plus three regression predictors: the
number of roaches before treatment, an indicator variable for
the treatment or control group, and an indicator variable for
whether the building is restricted to elderly residents.Wewill
fit a Poisson regression model with a log-link to the data set.
The traps were held in the apartments for different periods
of time, so the measurement time is included by adding its
logarithm as an offset to the linear predictor. The model has
only 4 parameters, so this is again a quite simple example.

On the left side of Fig. 3 we show the computed êlpdloo
estimates averaged from100 independent Stan runs as a func-
tion of the number of posterior draws S. On the right side,
the mean of the largest Pareto k̂ diagnostic values out of all
of the observations are presented. The diagnostic is always
computed from both the common and expectation-specific
weights, and the larger is reported. There is a large difference
between the PSIS and naive estimates, and they approach
each other very slowly when increasing S, which is due to
the poor convergence rate, as indicated by the high Pareto k̂
values on the right side plot. Importance weighted moment
matching from either the full posterior or leave-one-out pos-
teriors gives reliable estimates with very small error already
from 1000 draws. The accuracy is confirmed by the changed
Pareto k̂ values which are always below 0.7. For the single-
proposal parametric methods, using the Student-t3 proposal
distributions anddoing our proposed double adaptation (AIS-
t ×2) gives good results from 2000 draws onwards, but the
rest of the methods give highly biased results even with
S = 64000. Contrary to the previous example, now even the
double adaptation converges extremely slowly when using a
Gaussian proposal distribution (AIS-G ×2), which indicates
that the posterior distribution is non-Gaussian. All 4 versions

of the AMIS algorithm had Pareto k̂ values below 0.7 already
with 1000 draws, and had elpd estimates almost indistin-
guishable from the importance weighted moment matching
results. These are omitted from Fig. 3 for improved readabil-
ity.

3.3 Experiment 3: linear regression with correlated
predictor variables

In the previous examples, the used models were quite simple
and had a small number of parameters. In this and the fol-
lowing sections, we study the limitations of the importance
weighted moment matching method by considering models
with more parameters and correlated or non-Gaussian poste-
riors. The two previous experiments showed that the Pareto k̂
diagnostic is a reliable indicator of finite sample accuracy for
adaptive importance sampling methods. To demonstrate the
performance and computational cost of the different adaptive
algorithms, we report the number of leave-one-out (LOO)
folds where the algorithms fail to decrease the k̂ diagnostic
value below 0.7. In order to get reliable results for these
failed LOO folds, the user should generate new MCMC
draws from the LOO posterior, which can be very costly.
We fit all models to the full data set, and report the num-
ber of leave-one-out folds where the k̂ diagnostic value is
above 0.7 when using the full data posterior directly as a
proposal distribution. These are reported in the column PSIS
in Table 2. We run the moment matching algorithm for all
theseLOO folds, and report howmany k̂ values are still above
0.7 (PSIS+MM). Similarly, we run the 8 parametric adaptive
methods for the same LOO folds. In Table 2, we only show
the best performing parametric methods, which are AMIS
with double adaptation using either Gaussian or Student-t3
proposals (AMIS ×2 and AMIS-t ×2). In the lower part of
Table 2, we report run times in seconds for all the reported
algorithms. The run times are based on single core runs with
an Intel Xeon X5650 2.67 GHz processor.

123



Statistics and Computing (2021) 31 :16 Page 11 of 19 16

Fig. 3 Left: Computed êlpdloo estimates over the whole Roach data set
as a function of the number of posterior draws S. Right: Themean of the
largest Pareto k̂ diagnostic values among the observations. The results
are averaged from 100 independent Stan runs, and the error bars rep-

resent 95% intervals of the mean across these runs. The dashed line at
k̂ = 0.7 presents the diagnostic threshold indicating practically useful
finite sample convergence rate. The largest Pareto k̂ for AIS-t is around
10, and it is left out of the right plot for clarity.

For this experiment, we simulated data from a linear
regression model. The data consists of n = 60 observations
of one outcome variable and 30 predictors that are correlated
with each other by correlation coefficient of ρ = 0.8. Three
of the true regression coefficients are nonzero, and the rest
are all zero. Independent Gaussian noise was added to the
outcomes y. Because the predictors are strongly correlated,
importance sampling leave-one-out cross-validation is diffi-
cult and we get multiple high Pareto k̂ values when using the
full data posterior as the proposal distribution. The results
of Table 2 show that already with 2000 posterior draws, the
moment matching algorithm is able to decrease the Pareto
k̂ values of all LOO folds below 0.7. In contrast, none of
the parametric algorithms ever succeed in reducing k̂ val-
ues below 0.7, even when increasing the number of draws to
8000. This highlights the difficulty of adapting to a highly
correlated distribution. Because the moment matching starts
from the full data posterior sample, which is similarly corre-
lated, the moment matching can successfully improve the
proposal distribution with a small cost. The AMIS algo-
rithms were run for 10 iterations to limit the computational
cost. By increasing the number of iterations, they should suc-
ceed eventually, but at a high computational cost. In Table 3
in “Appendix C”, we show results for importance weighted
moment matching without Pareto smoothing the importance
weights. The results are slightlyworse compared to thePareto
smoothing case.

3.4 Experiment 4: binary classification in a small n
large p data set

In the fourth experiment, we have a real microarray Ovarian
cancer classification data set with a large number of pre-
dictors and small number of observations. The data set has
been used as a benchmark by several authors (e.g. Schummer
et al. 1999; Hernández-Lobato et al. 2010, and references).
The data consists of 54 measurements and has 1536 predic-
tor variables. We will fit a logistic regression model using
a regularized horseshoe prior (Piironen and Vehtari 2017b)

on the regression coefficients because we expect many of
them to be zero. This data set and model are difficult for
several reasons. First, because the amount of observations is
quite low, leaving out single observations changes the poste-
rior significantly, indicated by a large number of high Pareto
k̂ values. Second, because the number of parameters in the
model is 3075, moment matching in the high-dimensional
space is difficult. Third, the posterior distribution of several
parameters is multimodal, as illustrated in Fig. 1. Because
of the multimodality, we used Monte Carlo chains of length
1000, and increased the number of chains when increasing
S.

When fitting the model to the full data posterior, Table 2
shows the number of LOO foldswith k̂ > 0.7 before and after
moment matching. The results show that already with 1000
draws, PSIS+MM is able to reduce k̂ of many LOO folds
below 0.7. Investing more computational resources by col-
lecting more posterior draws increases the moment matching
accuracy, and more LOO folds can be improved. However,
even with 8000 posterior draws some folds have k̂ > 0.7
after moment matching, and thus the êlpdloo estimate may
not be reliable. Again, none of the parametric adaptive meth-
ods succeed in reducing Pareto k̂ values below 0.7 in 10
iterations. The lower part of Table 2 also shows the signif-
icantly higher computational time of the AMIS algorithms
compared to importance weighted moment matching.

The used data set and model are complex enough that
using naive LOO-CV by fitting to each LOO fold separately
takes a nontrivial amount of time. Omitting parallelization,
the model fit using Stan took an average of 27 minutes when
generating 4000 posterior draws. Naive LOO-CV would be
costly as fitting the model 54 times would take around 24
hours. With the same hardware, standard PSIS took less than
a second, but refitting the 34.8 (on average) problematic LOO
folds would take more than 15 hours. For the problematic
LOO folds, the total run time of PSIS+MM was only 26
minutes on average. This is less time than a single model fit
while decreasing the number of required refits from 34.8 to
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Table 2 Upper part: Numbers
of LOO folds with Pareto k̂
diagnostic above 0.7 when the
models are fitted to the full data
set (lower is better). Lower part:
Average run times in seconds
for different algorithms. Column
PSIS corresponds to using the
full data posterior directly as the
proposal distribution. Column
PSIS+MM corresponds to
importance weighted moment
matching. Column AMIS ×2
corresponds to adaptive multiple
importance sampling with our
proposed double adaptation
using Gaussian proposal
distributions. Column AMIS-t
×2 is the same, but using
Student-t3 proposals.

Data and model Draws PSIS PSIS+MM AMIS ×2 AMIS-t ×2

Folds with k̂ > 0.7

Section 3.2 2000 15.2 0 0 0

Roach data 4000 14.7 0 0 0

Poisson regression model 8000 14.2 0 0 0

Section 3.3 2000 14.0 0 14.0 14.0

Correlated predictor variables 4000 13.8 0 13.8 13.8

Linear regression model 8000 13.4 0 13.4 13.4

Section 3.4 1000 34.8 20.1 34.8 34.8

Ovarian cancer data (n < p) 2000 36.1 19.6 36.1 36.1

Logistic regression model 4000 34.8 16.2 34.8 34.8

8000 34.0 11.4 34.0 34.0

Computation times (s)

Section 3.2 2000 0 39 73 39

Roach data 4000 0 70 133 71

Poisson regression model 8000 0 140 330 176

Section 3.3 2000 0 52 196 191

Correlated predictor variables 4000 0 114 397 382

Linear regression model 8000 0 346 932 927

Section 3.4 1000 0 199 8857 11,330

Ovarian cancer data (n < p) 2000 0 372 12,289 12,311

Logistic regression model 4000 0 1558 30,814 27,477

8000 0 3733 54,534 68,082

16.2 on average, which shows that the importance weighted
moment matching is computationally efficient.

4 Conclusion

We proposed a method for improving the accuracy of Monte
Carlo approximations to integrals via importance sampling
and importance weighted moment matching. By match-
ing the moments of an existing Monte Carlo sample to its
importance weighted moments, the proposal distribution is
implicitly modified and improved. The method is easy to
use and automate for different applications because it has
no parameters that require tuning. We proposed separate
adaptation schemes and estimators for different importance
sampling estimators. In particular, we proposed a novel dou-
ble adaptation scheme that is beneficial for many existing
adaptive importance sampling methods when relying on the
self-normalized importance sampling estimator.

We also showed that the Pareto diagnostic method
from Vehtari et al. (2019c) is able to notice poor finite sam-
ple convergence for different Monte Carlo estimators and
adaptive algorithms when taking into account both the com-
mon and expectation-specific importance weights. We also
showed that it is useful as a stopping criterion in adaptive

importance sampling methods, reducing computational cost
by not running the algorithm excessively long.

We evaluated the efficacy of the proposed methods in
self-normalized importance sampling leave-one-out cross-
validation (LOO-CV), and demonstrated that they can often
increase the accuracy of model assessment and even sur-
pass naive LOO-CV that requires expensive refitting of the
model. Moreover, in complex or high-dimensional cases
we demonstrated that our proposed method has much bet-
ter performance compared to existing adaptive importance
sampling methods that use Gaussian or Student-t3 proposal
distributions. Additionally, our method has a small compu-
tational cost as it does not require recomputing proposal
densities during iterations.We also showed that our proposed
double adaptation scheme for self-normalized importance
sampling is crucial for caseswhere the functionwhose expec-
tation is being computed has large values in the tails of
the distribution over which the expectation is computed.
We showed that the double adaptation can also significantly
improve the performance of existing parametric adaptive
importance sampling methods.

The performance of the proposed implicit adaptation
method depends highly on the goodness of the initial pro-
posal distribution. Bayesian leave-one-out cross-validation
or bootstrap are examples where the full data posterior dis-
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tribution is already a good proposal, and moment matching
can improve performance with a small computational cost.
In the most complex cases, the simple affine transformations
proposed in this work are not enough to produce a good
proposal distribution, and more complex methods may be
required. Such methods are left for future research.
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Appendices

AMoment matching for self-normalized
importance sampling

B Bayesian leave-one-out cross-validation

In this section, we describe importance sampling leave-
one-out cross-validation and demonstrate how the proposed
implicit adaptation method can be applied to this problem.

B.1 Importance sampling leave-one-out
cross-validation

After fitting a Bayesian model, it is important to assess its
predictive accuracy as part of the modelling process. This
also enables comparison to other models for model averag-
ing or selection purposes (Geisser and Eddy 1979; Hoeting
et al. 1999; Vehtari and Lampinen 2002; Ando and Tsay
2010; Vehtari andOjanen 2012; Piironen andVehtari 2017a).

Leave-one-out cross-validation (LOO-CV) is a commonly
usedmethod for estimating the out-of-sample predictive abil-
ity of a Bayesian model.

As the target measure for the predictive accuracy of a
model, we use the expected log pointwise predictive density
(elpd) in a new, unseen data set ỹ = (ỹ1, . . . , ỹn):

elpd =
n∑

i=1

∫
pt (ỹi ) log p(ỹi | y)d ỹi ,

where pt (ỹi ) is the probability distribution of the true data
generating mechanism for the i’th observation. In this paper
we use the logarithmic score proposed by Good (1952) as the
utility function for evaluating predictive accuracy. The loga-
rithmic score is awidely used utility function for probabilistic
models due to its suitable theoretical properties (Bernardo
1979; Geisser and Eddy 1979; Bernardo and Smith 1994;
Gneiting and Raftery 2007).

Because we do not know the true data generating mecha-
nism, bymaking the assumption that future data has a similar
distribution as the measured data, we can estimate the elpd
by means of cross-validation. LOO-CV is a method for esti-
mating the predictive performance of a model by reusing the
observations y = (y1, . . . , yn) available. Using the log pre-
dictive density as the utility function, the Bayesian LOO-CV
estimator of elpd is

elpdloo = ∑n
i=1 log p(yi | y−i ), (11)

where p(yi | y−i ) is the LOO posterior predictive density
when leaving out the observation yi :

p(yi | y−i ) =
∫

p(yi | θ)p(θ | y−i )dθ . (12)

This integral has the form of Eq. (1) where the function h
is now the i’th likelihood term p(yi | θ) and the probability
distribution p is the corresponding i’th LOO posterior dis-
tribution p(θ | y−i ). Krueger et al. (2019) prove that model
assessment with the logarithmic score utility is consistent
when increasing the size of the posterior sample when using
a Monte Carlo approximation to the posterior predictive dis-
tribution and a posterior sample generated using a stationary
and ergodic Markov chain. They state that the theoretical
conditions for the rate of convergence are difficult to verify.
Therefore, the Pareto diagnostics are important for monitor-
ing the reliability of model assessment.

Computing each of the n integrals in Eq. (12) using the
simpleMonteCarlo estimator is expensive because it requires
refitting the model n times. However, if the observations are
modeled as conditionally independent given the parameters
θ of the model, the likelihood factorizes as
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Algorithm 2 Moment matching for self-normalized importance sampling

1: Input: kthreshold, proposal density g, draws {θ (s)
i }Ss=1 from g

2: Compute common weights {w(s)}Ss=1 and expectation-specific weights {v(s)}Ss=1, and compute diagnostics k̂w and k̂v ;

3: while k̂v > kthreshold do
4: for j in 1 : 3 do

5: Transform the draws with Tj : θ (s) 	→ θ̆
(s)

using absolute expectation-specific weights;

6: Recompute expectation-specific weights {v̆(s)}Ss=1 and
ˆ̆kv ;

7: if ˆ̆kv < k̂v then

8: Accept the transformation and update {θ (s)}Ss=1 = {θ̆ (s)}Ss=1, {v(s)}Ss=1 = {v̆(s)}Ss=1, and k̂v = ˆ̆kv ;
9: Exit for loop;
10: else
11: Discard the transformation;
12: end if
13: if j == 3 then
14: Moment matching failed, end algorithm with a warning about sampling inaccuracy;
15: end if
16: end for
17: end while
18: while k̂w > kthreshold do
19: for j in 1 : 3 do
20: Transform the draws with Tj : θ (s) 	→ θ̆

(s)
using common weights;

21: Recompute common weights {w̆(s)}Ss=1 and
ˆ̆kw;

22: if ˆ̆kw < k̂w then

23: Accept the transformation and update {θ (s)}Ss=1 = {θ̆ (s)}Ss=1, {w(s)}Ss=1 = {w̆(s)}Ss=1, and k̂w = ˆ̆kw;
24: Exit for loop;
25: else
26: Discard the transformation;
27: end if
28: if j == 3 then
29: Moment matching failed, end algorithm with a warning about sampling inaccuracy;
30: end if
31: end for
32: end while
33: Momentmatching succeeded, compute common and expectation-specificweights using themultiple importance sampling density of equation (9)

as the proposal density;
34: Compute expectation Ep[h(θ)] using equation (3);

p(y | θ) =
n∏

i=1

p(yi | θ)

and the LOO predictive density can be estimated with
(self-normalized) importance sampling from the full data
posterior (Gelfand et al. 1992). Here, we assume that only
unnormalized posterior densities are available, and present
only the self-normalized importance sampling equations.
With draws {θ (s)}Ss=1 from the full data posterior distribu-
tion p(θ | y), the unnormalized importance weights for the
i’th LOO fold are defined as

w
(s)
loo,i = 1

p(yi | θ (s))
∝ p(θ (s) | y−i )

p(θ (s) | y) . (13)

The self-normalized importance sampling estimator of
Eq. (12) is

p(yi | y−i ) ≈
1
S

∑S
s=1 w

(s)
loo,i p(yi | θ (s))

1
S

∑S
s=1 w

(s)
loo,i

= 1
1
S

∑S
s=1 w

(s)
loo,i

.

(14)

LOO-CV using the full data posterior as proposal dis-
tribution and the log predictive density utility is a very
special application of self-normalized importance sampling
for two reasons. First, using the same proposal distribution
for all LOO folds reduces the computational cost roughly
by a factor equal to the number of observations compared
to directly sampling from each LOO posterior distribution.
This is because inference on the full data posterior and each
LOO posterior is approximately equally expensive. Second,
the numerator of Eq. (14) evaluates to one, which indicates
that the full data posterior is an optimal proposal distribution
in terms of estimating the numerator of the self-normalized
importance sampling estimator. Thus, only an adaptation tar-
getting the denominator is required, whereas usually with
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self-normalized importance sampling, two separate adapta-
tions are required. This is a good justification for using the
full posterior as the proposal distribution instead of a simpler
parametric distribution.

B.2 Implementing the proposedmethods for
leave-one-out cross-validation

Here, we show the implementation of the importance
weightedmomentmatching for leave-one-out cross-validation.
We focus on the case of self-normalized importance sampling
with a sample from the full data posterior distribution. When
sampling from the full data posterior p(θ | y), the unnor-
malized common importance weights are given by Eq. (13).
After an affine transformation, the importance weights are
computed as

w̆
(s)
loo,i = p(θ̆

(s) | y)
p(θ (s) | y)p(yi | θ̆

(s)
)

∝
(
p(θ̆

(s) | y−i )

p(θ (s) | y)

)
. (15)

While the denominator term p(θ (s) | y) is a constant for
the s’th draw and equal for all LOO folds, the additional
cost compared to Eq. (13) is that for each transformed draw

θ̆
(s)
, both the full data posterior density p(θ̆

(s) | y) and the

likelihood term p(yi | θ̆
(s)

) need to be evaluated, instead of
just the likelihood. However, even with multiple iterations,
this cost is much smaller than running a full inference on the
LOO posterior.

After moment matching, the transformations are com-
bined as Tw(θ) = Twm(...Tw2(Tw1(θ))), and only half of
the S of the original draws {θ (s)}Ss=1 are transformed using
Tw(θ (s)):

1 ≤ s ≤ S

2
: θ̆

(s) = Tw(θ (s))

S

2
< s ≤ S : θ̆

(s) = θ (s).

We construct analogically an inverse transformation T−1
w (θ)

= T−1
w1 (T−1

w2 ...(T−1
wm(θ))) and a pseudo-set of draws as θ̆

(s)
inv =

T−1
w (θ̆

(s)
), i.e.

1 ≤ s ≤ S

2
: θ̆

(s)
inv = θ (s)

S

2
< s ≤ S : θ̆

(s)
inv = T−1

w (θ (s)).

Then, the importance weights are computed as

w̆
(s)
loo, split,i = p(θ̆

(s) | y−i )

gsplit,loo(θ̆
(s)

)
= p(θ̆

(s) | y)
gsplit,loo(θ̆

(s)
)p(yi | θ̆

(s)
)
,

where gsplit,loo(θ) is the split proposal distribution

gsplit,loo(θ) ∝ p(θ | y) + pTw(θ | y)
∝ p(θ | y) + |JTw |−1 p(Tw

−1(θ) | y). (16)

In addition to the log likelihood values for each obser-
vation and each posterior draw that are required by self-
normalized importance sampling LOO-CV, the user must
now also provide functions for computing the log pos-
terior density of the model and the log likelihood based
on parameter values in the unconstrained parameter space.
The latter is required because moment matching in a
constrained space via affine transformations might vio-
late the constraints. Thus, the algorithm operates in the
unconstrained space where each parameter can have any
real value. For example, model parameters that are con-
strained to be positive, can be unconstrained by a log-
transformation. The full method is presented in Algo-
rithm 3.

The moment matching method presented in this work is
implemented in R (R Core Team 2020) so that users can
easily compare the predictive performance of models. The
complete code is available on Github (https://github.com/
topipa/iter-mm-paper). The method is also implemented
in the loo R package (Vehtari et al. 2019a) for impor-
tance sampling LOO-CV. We also provide convenience
functions that implement the moment matching method
for models fitted with probabilistic programming language
Stan (Carpenter et al. 2017). In this case, it is enough that
the user supplies a Stan fit object, where the log likeli-
hood computation is included in the generated quantities
block. Internally, the method then uses the loo package
for importance sampling, and the given Stan fit object for
computing the likelihoods and posterior densities. Our code
is specifically modularized to make it straightforward to
implement the moment matching also for other fitted model
objects.

C Additional results

C.1 Normal model: optimality of the split proposal
distribution

For illustrationary purposes, let us simplify the normalmodel
from Sect. 3.1 such that we assume the variance of the
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Algorithm 3 adaptive moment matching for LOO-CV

1: Define stopping threshold kthreshold corresponding to Pareto k̂ diagnostic value;
2: Run inference to obtain a sample {θ (s)}Ss=1 from the full data posterior of the model p(θ | y);
3: For each draw θ (s), precompute the full data posterior density Qs = p(θ (s) | y)
4: for observation i in 1 : n do
5: Initialize draws for this LOO fold as {θ (s)

i }Ss=1 = {θ (s)}Ss=1;

6: Compute common importance weights w
(s)
loo,i = p(yi | θ (s))−1;

7: Fit generalized Pareto distribution to the largest weights w
(s)
loo,i and report the shape parameter k̂i ;

8: if k̂i < kthreshold then
9: Compute the estimate êlpdloo,i using self-normalized importance sampling;
10: else
11: Run Algorithm 2: Moment matching for self-normalized importance sampling;
12: if k̂i < kthreshold then
13: Compute the estimate êlpdloo,i using self-normalized importance sampling;
14: else
15: Run inference to obtain a sample {θ (s)

i }Ss=1 from the LOO posterior p(θ | y−i );

16: Fit generalized Pareto distribution to the largest expectation-specific weights v
(s)
loo,i = p(yi | θ (s)) and report the shape parameter k̂i ;

17: if k̂i < kthreshold then
18: Compute the estimate êlpdloo,i using simple Monte Carlo sampling;
19: else
20: Run Algorithm 3: Moment matching for simple Monte Carlo sampling;
21: if k̂i < kthreshold then
22: Compute the estimate êlpdloo,i using simple Monte Carlo sampling;
23: else
24: Give a warning that estimating êlpdloo,i is difficult, and more Monte Carlo draws may help;
25: end if
26: end if
27: end if
28: end if
29: end for

normally distributed data is known. Then, the model has
just one parameter, the mean of the data, and the posterior
distribution of that parameter is Gaussian. Using the one-
dimensional posterior, we can efficiently visualize why both
the LOO posterior and the full data posterior can be inade-
quate proposal distributions for self-normalized importance
sampling LOO-CV. In the top row of Fig. 4 we illustrate
the LOO posterior and the full data posterior of the model
together with the optimal proposal distribution for com-
puting the self-normalized importance sampling LOO-CV
estimate when we move the outlier y30 further. It is evi-
dent that when the left-out observation is influential, neither
the LOO posterior nor the full data posterior can provide
enough draws from one of the tails to adequately estimate the
LOO-CV integral. In the bottom row of Fig. 4 we illustrate
the split proposal distribution in Eq. (9), which conversely
becomes closer and closer to the optimal proposal distri-
bution when the left-out observation y30 becomes more
influential.

C.2 Normal model: randomly generated data

In Fig. 5, the results of Fig. 2 are replicated, but now the
normally distributed observations y1 to y29 are different for
each Stan run. The results are in principle similar to those
discussed in Sect. 3.1.

C.3 Importance weightedmomentmatching
without Pareto smoothing

In Table 3, we show similar results as in Table 2, but the
importance weighted moment matching does not use Pareto
smoothing to smooth the importance weights during adapta-
tion (Vehtari et al. 2019c).
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Fig. 4 For the normal model
with known variance, the shape
of the optimal proposal
distribution together with
different proposal distributions
for different values of the outlier
y30. Top row: LOO posterior
and full data posterior. Bottom
row: Split proposal distribution
from Eq. (9).

// //

Fig. 5 Computed log predictive density estimates of the left out obser-
vation y30 for different values between y30 = 0 and y30 = 20 in the
Gaussian model of Sect. 3.1. The black crosses depict the analytical
LOO predictive density. The sampling results are averaged from 100

independent Stan runs, and the error bars represent 95% intervals of the
mean across these runs. For every Stan run, the observations y1 to y29
are randomly re-generated.
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Table 3 Upper part: Numbers
of LOO folds with Pareto k̂
diagnostic above 0.7 when the
models are fitted to the full data
set (lower is better). Lower part:
Average run times in seconds
for different algorithms. Column
PSIS corresponds to using the
full data posterior directly as the
proposal distribution. Columns
PSIS+MM and IS+MM
correspond to importance
weighted moment matching
with and without Pareto
smoothed importance weights,
respectively.

Data and model Draws PSIS PSIS+MM IS+MM

Folds with k̂ > 0.7

Section 3.2 2000 15.2 0 0

Roach data 4000 14.7 0 0

Poisson regression model 8000 14.2 0 0

Section 3.3 2000 14.0 0 0.5

Correlated Predictor Variables 4000 13.8 0 0.3

Linear regression model 8000 13.4 0 0.2

Section 3.4 1000 34.8 20.1 20.7

Ovarian cancer data (n < p) 2000 36.1 19.6 19.9

Logistic regression model 4000 34.8 16.2 17.1

Computation times (s) 8000 34.0 11.4 13.5

Section 3.2 2000 0 39 39

Roach data 4000 0 70 70

Poisson regression model 8000 0 140 140

Section 3.3 2000 0 52 51

Correlated Predictor Variables 4000 0 114 114

Linear regression model 8000 0 346 340

Section 3.4 1000 0 199 181

Ovarian cancer data (n < p) 2000 0 372 344

Logistic regression model 4000 0 1558 1566

8000 0 3733 3816
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