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Abstract— Comparing competing mathematical models of com-
plex processes is a shared goal among many branches of science.
The Bayesian probabilistic framework offers a principled way to
perform model comparison and extract useful metrics for guiding
decisions. However, many interesting models are intractable
with standard Bayesian methods, as they lack a closed-form
likelihood function or the likelihood is computationally too
expensive to evaluate. In this work, we propose a novel method
for performing Bayesian model comparison using specialized
deep learning architectures. Our method is purely simulation-
based and circumvents the step of explicitly fitting all alternative
models under consideration to each observed dataset. Moreover,
it requires no hand-crafted summary statistics of the data and is
designed to amortize the cost of simulation over multiple models,
datasets, and dataset sizes. This makes the method especially
effective in scenarios where model fit needs to be assessed
for a large number of datasets, so that case-based inference
is practically infeasible. Finally, we propose a novel way to
measure epistemic uncertainty in model comparison problems.
We demonstrate the utility of our method on toy examples and
simulated data from nontrivial models from cognitive science
and single-cell neuroscience. We show that our method achieves
excellent results in terms of accuracy, calibration, and efficiency
across the examples considered in this work. We argue that our
framework can enhance and enrich model-based analysis and
inference in many fields dealing with computational models of
natural processes. We further argue that the proposed measure
of epistemic uncertainty provides a unique proxy to quantify
absolute evidence even in a framework which assumes that the
true data-generating model is within a finite set of candidate
models.

Index Terms— Bayesian inference, computational and artifi-
cial intelligence, machine learning, neural networks, statistical
learning.
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I. INTRODUCTION

RESEARCHERS from various scientific fields face the
problem of selecting the most plausible theory for an

empirical phenomenon among multiple alternative theories.
These theories are often formally stated as mathematical
models which describe how observable quantities arise from
unobservable (latent) parameters. Focusing on the level of
mathematical models, the problem of theory selection then
becomes one of model selection.

For instance, neuroscientists might be interested in com-
paring different models of spiking patterns given in vivo
recordings of neural activity [22]. Epidemiologists, on the
other hand, might consider different models for predicting the
spread and dynamics of an unfolding infectious disease [54].
Crucially, the preference for one model over alternative mod-
els in these examples can have important consequences for
research projects or social policies.

Accounting for complex natural phenomena often requires
specifying complex models which entail some degree of
randomness. Inherent stochasticity, incomplete description,
or epistemic ignorance all call for some form of uncertainty
awareness. To make matters worse, empirical data on which
models are fit are necessarily finite and can only be acquired
with finite precision. Finally, the plausibility of many non-
trivial models throughout various branches of science can be
assessed only approximately, through expensive simulation-
based methods [7], [8], [22], [34], [43], [50].

Ideally, a method for approximate model comparison should
meet the following desiderata.

1) Theoretical Guarantee: Model probability estimates
should be, at least in theory, calibrated to the true model
probabilities induced by an empirical problem.

2) Accurate Approximation: Model probability estimates
should be accurate even for finite or small sample sizes.

3) Occam’s Razor: Preference for simpler models should
be expressed by the model probability estimates.

4) Scalability: The method should be applicable to complex
models with implicit likelihood within reasonable time
limits.

5) Efficiency: The method should enable fully amortized
inference over arbitrarily many models, datasets, and
different dataset sizes.

6) Maximum Data Utilization: The method should capital-
ize on all information contained in the data and avoid
information loss through insufficient summary statistics
of the data.

In this article, we address these desiderata with a novel
method for Bayesian model comparison based on eviden-
tial deep neural networks. Our method works in a purely
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Fig. 1. (Left) Simulation-based training phase of our evidential method. (Right) Inference phase with real data and a pretrained evidential network.

simulation-based manner and circumvents the step of sepa-
rately fitting all alternative models to each dataset. To this
end, for any particular model comparison problem, we propose
to train a specialized expert network which encodes global
information about the generative scope of each model fam-
ily. In this way, Bayesian model comparison amortizes over
multiple models, datasets, and dataset sizes, which makes our
method applicable in scenarios where case-based inference is
way too costly to perform with standard methods (cf. Fig. 1).

In addition, we propose to avoid hand-crafted summary
statistics (a feature on which standard methods for simulation-
based inference heavily rely) using novel deep learning archi-
tectures which are aligned to the probabilistic structure of the
raw data (e.g., permutation invariant networks [2], recurrent
networks [13]).

Finally, we explore a novel way to measure epistemic
uncertainty in model comparison problems, following the
pioneering work of [45] on image classification. We argue that
this measure of epistemic uncertainty provides a unique proxy
to quantify absolute evidence even in an M-closed framework,
which assumes that the true data-generating model is within
the candidate set [58].

II. BACKGROUND

A. Bayesian Inference

A consistent mathematical framework for describing uncer-
tainty and quantifying model plausibility is offered by the
Bayesian view on probability theory [23]. In a Bayesian
setting, we start with a collection of J competing generative
models M = {M1,M2, . . . ,MJ }. Each M j is associated
with a generative mechanism g j , typically realized as a Monte
Carlo simulation program, and a corresponding parameter

space � j . Ideally, each g j represents a theoretically plausible
(potentially noisy) mechanism by which observable quantities
x arise from hidden parameters θ and independent noise ξ

x = g j
�
θ j , ξ

�
with θ j ∈ � j (1)

where � j is the corresponding parameter space of model g j
and the subscript j explicates that each model might be
specified over a different parameter space. We assume that the
functional or algorithmic form of each g j is known and that
we have a sample (dataset) {xi}N

i=1 := x1:N of N (multivariate)
observations xn ∈ X generated from an unknown process p∗.
The task of Bayesian model selection is to choose the model
in M that best describes the observed data by balancing
simplicity (sparsity) and predictive performance.

B. Likelihood Function

A central object in Bayesian inference is the likelihood
function, denoted as p(x | θ j ,M j). Broadly speaking, the
likelihood returns the relative probability of an observation
x (or a sequence of observations x1:N ) given a parameter
configuration θ j and model assumptions M j . When the para-
meters are systematically varied and the data held constant,
the likelihood can be used to quantify how well each model
instantiation fits the observed data.

If the likelihood of a generative model can be asso-
ciated with a known probability density function (PDF)
(e.g., Gaussian), the model can be formulated entirely in
terms of the likelihood and the likelihood can be evaluated
analytically or numerically for any pair (x, θ). On the other
hand, if the likelihood is unknown or intractable, as is the case
when dealing with complex models, one can still generate
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random samples from the model by running the simulation
program with a random configuration of its parameters.

This is due to the fact that each stochastic model, viewed as
a Monte Carlo simulator, defines an implicit likelihood given
by the relationship

p
�
x | θ j ,M j

� =
�

�

δ
�
x − g j

�
θ j , ξ

��
p
�
ξ | θ j

�
dξ (2)

where δ(·) is the Dirac delta function and the integral runs over
all possible execution paths of the stochastic simulation for a
fixed θ j . For most complex models, this integral is analytically
intractable or too expensive to approximate numerically, so it
is much easier to specify the model directly in terms of
the simulation program g j instead of deriving the likelihood
p(x | θ j ,M j ). Importantly, we can still sample from the
likelihood by running the simulator with different Monte Carlo
realizations of ξ , that is, for a fixed θ j , we have the following
equivalence:

xn ∼ p
�
x | θ j ,M j

� ⇐⇒ xn = g j
�
θ j , ξ n

�
, ξ n ∼ p(ξ ). (3)

C. Bayes Factors

How does one assign preferences to competing models using
a Bayesian toolkit? The canonical measure of evidence for a
given model is the marginal likelihood

p
�
x1:N |M j

� =
�

� j

p
�
x1:N | θ j ,M j

�
p
�
θ j |M j

�
dθ j (4)

which is, in general, intractable to compute for nontrivial
models. Importantly, the dependence on the prior over model
M j ’s parameters introduces a probabilistic version of Occam’s
razor, which expresses our preference for a simpler model over
a more complex one, given that both models can account for
the data equally well. The marginal likelihood thus focuses
on prior predictions and penalizes the prior complexity of
a model (i.e., the prior acts as a weight on the likelihood).
This is in contrast to posterior predictions, which require
marginalization over the parameter posterior p(θ j | x1:N ,M j)
and can be used to select the model which best predicts new
data.

Provided that the marginal likelihood can be efficiently
approximated, one can compute the ratio of marginal like-
lihoods for two models M j and Mk via

BF jk = p
�
x1:N |M j

�
p(x1:N |Mk)

. (5)

This famous ratio is called a Bayes factor (BF) and is used
in Bayesian settings for quantifying relative model preference.
Thus, a BF jk > 1 indicates preference for model j over
model k, given a set of observations x1:N . Alternatively, one
can directly focus on the (marginal) posterior probability of a
model M j

p
�M j | x1:N

� ∝ p
�
x1:N |M j

�
p
�M j

�
(6)

which equips the model space itself with a prior distribution
p(M) over the considered model space encoding potential
preferences for certain models before collecting any data. Such
a prior might be useful if a model embodies extraordinary
claims (e.g., telekinesis) and thus requires extraordinary evi-
dence supporting it. However, if no prior reasons can be given

for favoring some models over others (i.e., one prefers not to
prefer), a uniform model prior p(M) = 1/J can be assumed.

The ratio of posterior model probabilities is called the pos-
terior odds and is connected to the BF via the corresponding
model priors

p
�M j | x1:N

�
p(Mk | x1:N )

= p
�
x1:N |M j

�
p(x1:N |Mk)

× p
�M j

�
p(Mk)

. (7)

If two models are equally likely a priori, the posterior odds
equal the BF. In this case, if the BF, or, equivalently, the
posterior odds equal one, the observed data provide no decisive
evidence for one of the models over the other. However, a rel-
ative evidence of one does not allow to distinguish whether the
data are equally likely or equally unlikely under both models,
as this is a question of absolute evidence. Needless to say,
the distinction between relative and absolute evidence is of
paramount importance for model comparison, so we now turn
our attention to this distinction.

D. M-Frameworks

In Bayesian inference, the relationship between the true
generative process p∗ and the model list M can be clas-
sified into three categories: M-closed, M-complete, and
M-open [58]. Closely related to the distinction between
relative and absolute evidence is the distinction between
M-closed and M-complete frameworks. Under an M-closed
framework, the true model is assumed to be in the predefined
set of competing models M, so relative evidence is identical
to absolute evidence. Under an M-complete framework, a true
model is assumed to exist but is not necessarily assumed to
be a member of M. However, one still focuses on the models
in M due to computational or conceptual limitations.1

Deciding on the particular M-framework under which a
model comparison problem is tackled is often a matter of prior
theoretical considerations. However, since in most nontrivial
research scenarios M is a finite set and candidate models
in M are often simpler approximations to the true process,
there will be uncertainty as to whether the observed data could
have been generated by one of these models. In the following,
we will refer to this uncertainty as epistemic uncertainty.

Our method uses a data-driven way to calibrate its epis-
temic uncertainty, in addition to model posterior probabilities,
through simulations performed within an M-closed frame-
work. Consequently, given real observed data, a researcher
can obtain a measure of uncertainty with regard to whether
the generative model of the data is likely to be in M
or not. From this perspective, our method lies somewhere
between an M-closed and an M-complete framework as it
provides information from both viewpoints. In this way, our
approach to model misspecification differs from likelihood-
tempering methods, which require an explicit evaluation of a
tilted likelihood (raised to a power 0 < t < 1) to prevent
overconfident Bayesian updates [17].

III. RELATED WORK

Bayesian methods for model comparison can be cate-
gorized as either posterior predictive or prior predictive

1In this work, we delegate the discussion of whether the concept of a
true model has any ontological meaning to philosophy. See also [58] for
a discussion of an M-open framework, in which no true model is assumed
to exist.
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approaches [11], with our method falling into the latter
category. Posterior predictive approaches are concerned with
predicting new data using models trained on the current data.
In prior predictive approaches, models are conditioned only
on prior information but not on the current data. Accordingly,
all current data count as new data for the purpose of prior
predictive methods.

Naturally, cross-validation (CV) procedures are the main
approach for posterior predictive comparisons [53]. Examples
for widely applied methods that fall into this category are
approximate CV procedures using Pareto-smoothed impor-
tance sampling [5], [52], information criterion approaches such
as the widely applicable information criterion (WAIC; [56]),
or stacking of posterior predictive distributions [58].

All these methods require the ability not only to evaluate the
likelihood of each model for each observation during parame-
ter estimation but also for new observations during prediction.
What is more, if application of exact CV methods is required
because approximations are insufficient or unavailable, models
need to be estimated several times based on different datasets
or subsets of the original dataset. This renders such methods
practically infeasible when working with complex simulators
for which estimating models even once is already very slow.
Thus, even a single intractable model in the model set suffices
to disproportionately increase the difficultly of performing
model comparison.

In contrast, our proposed method circumvents explicit para-
meter estimation and focuses directly on the efficient approx-
imation of BFs (and posterior model probabilities). Moreover,
it overcomes two major sources of intractability that stand
in the way of Bayesian model comparison via BFs: the
likelihood (3) and the marginal likelihood (4).

When the likelihood can be computed in closed
form, sophisticated algorithms for efficiently approximating
the (intractable) marginal likelihood have been proposed in
the Bayesian universe, such as bridge sampling and path
sampling [12], [16]. However, these methods still depend
on the ability to evaluate the likelihood p(x | θ j ,M j ) for
each candidate model. If, in addition, the likelihood itself is
intractable, as is the case with complex simulators, researchers
need to resort to expensive simulation-based methods [34],
[37], [49], [50].

A standard set of tools for Bayesian simulation-based infer-
ence is offered by approximate Bayesian computation (ABC)
methods [35], [47]. ABC methods approximate the model
posterior by repeatedly sampling parameters from each pro-
posal (prior) distribution and then simulating multiple datasets
by running each simulator with the sampled parameters.
A predefined similarity criterion determines whether a sim-
ulated dataset (or a summary statistic thereof) is sufficiently
similar to the actually observed dataset. The model that most
frequently generates synthetic observations matching those
in the observed dataset is the one favored by ABC model
comparison.

Despite being simple and elegant, standard ABC methods
involve a crucial trade-off between accuracy and efficiency.
In other words, stricter similarity criteria yield more accu-
rate approximations of the desired posteriors at the price
of higher and oftentimes intolerable rejection rates. What
is more, most ABC methods require multiple ad hoc deci-
sions from the method designer, such as the choice of
similarity criterion or the summary statistics of the data
(e.g., moments of empirical distributions) [34]. However, there

is no guarantee that hand-crafted summaries extract all relevant
information and model comparison with insufficient summary
statistics can dramatically deteriorate the resulting model
posteriors [44]. More scalable developments from the ABC
family (ABC-SMC, ABC-MCMC, ABC neural networks, and
the recently proposed ABC random forests) offer great effi-
ciency boosts but still rely on hand-crafted summary statistics
[24], [34], [46].

Recently, a number of promising innovations from the
machine learning and deep learning literature have entered
the field of simulation-based inference [6]. For instance,
the sequential neural likelihood (SNL, [37]), the automatic
posterior transformation (APT, [15]), the amortized ratio esti-
mation [18], or the BayesFlow method [41] all implement
powerful neural density estimators to overcome the short-
comings of standard ABC methods. Moreover, these methods
involve some degree of amortization, which ensures extremely
efficient inference after a potentially costly upfront training
phase. However, neural density estimation focuses solely on
efficient Bayesian parameter estimation instead of scaling
up Bayesian model comparison. With certain caveats, neural
density estimators can be adapted for Bayesian model com-
parison by post-processing the samples from an approximate
posterior/likelihood over each model’s parameters. However,
such an approach will involve training a separate neural
estimator for each model in the candidate set and has not yet
been systematically investigated. In addition, most of these
methods also rely on fixed summary statistics [37] and few
applications using raw data directly exist [15], [41].

Alongside advancements in simulation-based inference,
there has been an upsurge in the development of methods
for uncertainty quantification in deep learning applications.
For instance, much work has been done on the efficient
estimation of Bayesian neural networks [19], [31], [32] since
the pioneering work of [33]. Parallel to the establishment of
novel variational methods [27], [28], these ideas have paved
the way toward more interpretable and trustworthy neural net-
work inference. Moreover, the need for distinguishing between
different sources of uncertainty and the overconfidence of
deep neural networks in classification and regression tasks has
been demonstrated quite effectively [26], [45]. Our current
work draws on recent methods for evidence and uncertainty
representation in classification tasks [45]. However, our goal is
to efficiently approximate BFs between competing mechanistic
models using non-Bayesian neural networks, not to estimate
neural network parameters (e.g., weights) via Bayesian
methods.

Our method combines latest ideas from simulation-based
inference and uncertainty quantification for building effi-
cient and uncertainty-aware estimators for amortized Bayesian
model comparison. As such, it is intended to complement
the toolbox of the simulation-based methods for parameter
estimation with crucial model comparison capabilities and
incorporates some unique features beyond the scope of the
standard ABC methods. In the following, we describe the
building blocks of our method.

IV. EVIDENTIAL NETWORKS FOR BAYESIAN

MODEL COMPARISON

A. Model Comparison as Classification

In line with previous simulation-based approaches to model
comparison, we will use the fact that we can generate arbitrary
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Algorithm 1 Monte Carlo Generation of Synthetic Datasets for Model Comparison
Require: p(M) - prior over models, {p(θ j |M j)} - list of priors over model parameters, {g j} - list of stochastic simulators,

{p j(ξ )} - list of noise distributions (RNGs), p(N) - distribution over dataset sizes, B - number of datasets to generate
(batch size)

1: Draw dataset size: N ∼ p(N)
2: for b = 1, . . . , B do
3: Draw model index from model prior: M(b)

j ∼ p(M)

4: Draw model parameters from prior: θ
(b)
j ∼ p(θ j |M(b)

j )
5: for n = 1, . . . , N do
6: Sample noise instance: ξ n ∼ p j(ξ)

7: Run simulator j to obtain nth synthetic observation: xn = g j(θ
(b)
j , ξ n)

8: end for
9: Encode model index as a one-hot-encoded vector: m(b) = OneHotEncode(M(b)

j )

10: Store pair (m(b), x(b)
1:N ) in D(B)

N
11: end for
12: return mini-batch D(B)

N := {m(b), x(b)
1:N )}B

b=1

amounts of data via (3) for each model M j . Following
[34], [40], we cast the problem of model comparison as a
probabilistic classification task. In other words, we seek a
parametric mapping fφ : X N → �J from an arbitrary data
space X N to a probability simplex �J containing the posterior
model probabilities p(M | x1:N ). Previously, different learning
algorithms (e.g., random forests [34]) have been used to
tackle model comparison as classification. Following recent
developments in algorithmic alignment and probabilistic sym-
metry [2], [57], our method parameterizes fφ via a specialized
neural network with trainable parameters φ which is aligned
to the probabilistic structure of the observed data (see the
Network Architectures section in Appendix A for a detailed
description of the used networks’ structure).

In addition, our method differs from previous classification
approaches to model comparison in the following aspects.
First, it requires no hand-crafted summary statistics, since
the most informative summary statistics are learned directly
from data. Second, it uses online learning (i.e., on-the-fly
simulations) and requires no storage of large reference tables
or data grids. Third, the addition of new competing mod-
els does not require changing the architecture or re-training
the network from scratch, since the underlying data domain
remains the same. In line with the transfer learning literature,
only the last layer of a pretrained network needs to be changed
and training can be resumed from where it had stopped.
Finally, our method is uncertainty-aware, as it returns a higher
order distribution over posterior model probabilities. From
this distribution, one can extract both absolute and relative
evidences as well as quantify the model selection uncertainty
implied by the observed data.

To set up the model classification task, we run Algorithm 1
repeatedly to construct training batches with B simulated
datasets of size N and B model indices of the form D(B)

N :=
{(m(b), x(b)

1:N )}B
b=1. We then feed each batch to a neural network

which takes as input simulated data with variable sizes and
returns a distribution over posterior model probabilities. The
neural network parameters are optimized via standard back-
propagation. Upon convergence, we can apply the pretrained
network to arbitrarily many datasets of the form x(obs)

1:N to obtain
a vector of probabilities pφ(m | x(obs)

1:N ) which approximates the

true model posterior p(M | x(obs)
1:N ). Note that this procedure

incurs no memory overhead, as the training batches need not
be stored in memory all at once.

Intuitively, the connection between data and models is
encoded in the network’s weights. Once trained, the evidential
network can be reused to perform instant model comparison
on multiple real observations. As mentioned above, the addi-
tion of new models involves simply adjusting the pretrained
network, which requires much less time than retraining the
network from scratch. We now describe how model probabil-
ities and evidence are represented by the evidential network.

B. Evidence Representation

To obtain a measure of absolute evidence by considering a
finite number of competing models, we place a Dirichlet dis-
tribution over the estimated posterior model probabilities [45].
This corresponds to modeling second-order probabilities in
terms of the theory of subjective logic (SL) [25]. These
second-order probabilities represent an uncertainty measure
over quantities which are themselves probabilities. We use
the second-order probabilities to capture epistemic uncertainty
about whether the observed data have been generated by one
of the candidate models considered during training.

The PDF of a Dirichlet distribution is given by

Dir(π | α) = 1

B(α)

J�
j=J

π
α j −1
j (8)

where π belongs to the unit J − 1 simplex (i.e., π ∈
�J := {π | �J

j=1 π j = 1} and B(α) is the multivariate beta
function. The Dirichlet density is parameterized by a vector of
concentration parameters α ∈ R

J+ which can be interpreted as
evidences in the ST framework [25]. The sum of the individual
evidence components α0 = �J

j=1 α j is referred to as the
Dirichlet strength, and it affects the precision of the higher
order distribution in terms of its variance. Intuitively, the
Dirichlet strength governs the peakedness of the distribution,
with larger values leading to more peaked densities (i.e., most
of the density being concentrated in a smaller region of the
simplex). We can use the mean of the Dirichlet distribution,

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on February 08,2022 at 11:48:38 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Three different hypothetical model comparison scenarios with different observations. First column: observing a dataset which is equally probable
under all models. In this case, the best candidate model cannot be selected and the Dirichlet density peaks in the middle of the simplex. Second column: dataset
which is beyond the generative scope of all models and no model selection decision is possible. The Dirichlet density in this case is flat which indicates total
uncertainty. Third column: observed dataset which is most probable under model 2, so the Dirichlet simplex is peaked toward the corner encoding model 2,
and the corresponding model posterior for model 2 is highest.

which is a vector of probabilities given by

Eπ∼Dir(α)[π ] = α
1

α0
(9)

to approximate the posterior model probabilities p(M | x1:N ),
as will become clearer later in this section. A crucial advan-
tage of such a Dirichlet representation is that it allows to
look beyond model probabilities by inspecting the vector of
computed evidences. For instance, imagine a scenario with
three possible models. If α = (5, 5, 5), the data provide
equally strong evidence for all models (Fig. 2, first column)—
all models explain the data well. If, on the other hand, α =
(1, 1, 1), then the Dirichlet distribution reduces to a uniform
on the simplex indicating no evidence for any of the models
(Fig. 2, second column)—no model explains the observations
well. Note that in either case one cannot select a model on
the basis of the data, because posterior model probabilities
are equal, yet the interpretation of the two outcomes is very
different: The second-order Dirichlet distribution allows one
to distinguish between equally likely (first case) and equally
unlikely (second case) models. The last column of Fig. 2
illustrates a scenario with α = (2, 7, 3) in which case one can
distinguish between all models (see also Fig. 6 for a scenario
with data simulated from an actual complex model).

We can further quantify this distinction by computing an
uncertainty score given by

u = J

α0
(10)

where J is the number of candidate models. Importantly,
in our framework, individual concentration parameters (resp.
neural network outputs) are lower bounded by 1. Thus, the
uncertainty score ranges between 0 (total certainty) and 1
(total uncertainty) and has a straightforward interpretation.
Accordingly, the total uncertainty is given when α0 = J ,
which would mean that the data provide no evidence for
any of the J candidate models. On the other hand, u 	 1
implies a large Dirichlet strength α0 
 J , which would
read that the data provide plenty of evidence for one or
more models in question. The uncertainty score corresponds
to the concept of vacuity (i.e., epistemic uncertainty) in the
terminology of SL [25]. We argue that epistemic uncertainty
should be a crucial aspect in model comparison and selection,
as it quantifies the strength of evidence and, consequently, the
strength of the theoretical conclusions we can draw given the
observed data.

Consequently, model comparison in our framework consists
in inferring the parameters of a Dirichlet distribution given an
observed dataset. The problem of inferring posterior model
probabilities can then be formulated as

p(M | x1:N ) ≈ pφ(m | x1:N ) = Eπ∼Dir( fφ(x1:N ))[π] (11)

where fφ is a neural network with positive outputs greater
than one, fφ : X N → [1,∞]J . Additionally, we can also
obtain a measure of absolute model evidence by considering
the uncertainty encoded by the full Dirichlet distribution (10).
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C. Learning Evidence in an M-Closed Framework

How do we ensure that the outputs of the neural net-
work match the true unknown model posterior probabilities?
Consider, for illustrational purposes, a dataset with a single
observation, that is, N = 1 such that x1:N = x. As per
Algorithm 1, we have unlimited access to training samples
from p(M, x) = �

p(M)p(θ |M)p(x | θ,M)d θ . We use
the mean of the Dirichlet distribution pφ(m | x) parameterized
by an evidential neural network with parameters φ to approx-
imate p(M | x). To optimize the parameters of the neural
network, we can minimize some loss L in expectation over
all possible datasets

φ∗ = argmin
φ

E(m,x)∼p(M,x)

�L�
pφ(m | x), m

�	
(12)

where m is a one-hot encoded vector of the true model
index M j . We also require that L be a strictly proper
loss [14]. A loss function is strictly proper if and only if
it attains its minimum when pφ(m | x) = p(M | x) [14].
When we choose the Shannon entropy H(pφ(m | x)) =
− �

j pφ(m | x) j log pφ(m | x) j for L, we obtain the strictly
proper logarithmic loss

L�
pφ(m | x), m

� = −
J


j=1

m j log pφ(m | x) j (13)

= −
J


j=1

m j log

�
fφ(x) j�J

j =1 fφ(x) j 

�
(14)

where m j = 1 when j is the true model index and 0 otherwise.
Thus, to estimate φ, we can minimize the expected logarithmic
loss over all simulated datasets where fφ(x) j denotes the
j -th component of the Dirichlet density given by the evidential
neural network. Since we use a strictly proper loss, the
evidential network yields the true model posterior probabilities
over all possible datasets when perfectly converged.

Intuitively, the logarithmic loss encourages high evidence
for the true model and low evidences for the alternative mod-
els. Correspondingly, if a dataset with certain characteristics
can be generated by different models, evidence for these
models will jointly increase. Additionally, the model which
generates these characteristics most frequently will accumulate
the most evidence and thus be preferred. However, we also
want low evidence, or, equivalently, high epistemic uncer-
tainty, for datasets which are implausible under all models.
We address this problem in the next section.

D. Learning Absolute Evidence Through Regularization

We now propose a way to address the scenario in which
no model explains the observed data well. In this case,
we want the evidential network to estimate low evidence for
all models in the candidate set. To attenuate evidence for
datasets which are implausible under all models considered,
we incorporate a Kullback–Leibler (KL) divergence into the
criterion in Eq.13. We compute the KL divergence between
the Dirichlet density generated by the neural network and
a uniform Dirichlet density implying total uncertainty. Thus,
the KL shrinks evidences which do not contribute to correct
model assignments during training, so an implausible dataset
at inference time will lead to low evidence under all models.

This type of regularization has been used for capturing out-
of-distribution (OOD) uncertainty in image classification [45].
Accordingly, our modified optimization criterion becomes

φ∗ = argmin
φ

E(m,x)∼p(M,x)

�L�
pφ(m | x), m

� + λ	(α̃)
	

(15)

with 	(α̃) = KL[Dir(α̃) || Dir(1)]. The term α̃ = m +
(1 − m) � α represents the estimated evidence vector after
removing the evidence for the true model. This is possible,
because we know the true model during simulation-based
training. For application on real datasets after training, know-
ing the ground truth is not required anymore as φ has already
been obtained. The KL regularizer penalizes evidences for
the false models and drives these evidences toward unity.
Equivalently, KL acts as a ground-truth preserving prior on the
higher order Dirichlet distribution which preserves evidence
for the true model and attenuates misleading evidences for
the false models. The hyperparameter λ controls the weight
of regularization and encodes the tolerance of the algorithm
to accept implausible (OOD) datasets during inference. With
large values of λ, it becomes possible to detect cases where
all models are deficient; with λ = 0, only relative evidence is
generated. Note that in the latter case, we recover our original
proper criterion without penalization. The KL weight λ can be
selected through prior empirical considerations on how well
the simulations cover the plausible set of real-world datasets.

Importantly, the introduction of the KL regularizer ren-
ders the loss no longer strictly proper. Therefore, a large
regularization weight λ would lead to poorer calibration of
the approximate model posteriors, as the regularized loss is
no longer minimized by the true model posterior. However,
since the KL prior is ground-truth preserving, the accuracy
of recovering the true model should not be affected. Indeed,
we observe this behavior throughout our experiments.

To make optimization tractable, we use the fact that we can
easily simulate batches of the form D(B)

N = {(m(b), x(b)
1:N )}B

b=1
via Algorithm 1 and approximate (15) via standard backprop-
agation by minimizing the following loss:
L(φ)

= 1

B

B

b=1

⎡⎢⎣−
J


j=1

m(b)
j log

⎛⎜⎝ fφ
�

x(b)
1:N

�
j�J

j =1 fφ
�

x(b)
1:N

�
j 

⎞⎟⎠ + λ	
�
α̃(b)

�⎤⎥⎦
(16)

over multiple batches to converge at a Monte Carlo estimator�φ of φ∗. In practice, convergence can be determined as the
point at which the loss stops decreasing, a criterion similar to
early stopping. Alternatively, the network can be trained for a
predefined number of epochs. Note that at least in principle,
the network can be trained arbitrarily long, since we assume
that we can access the joint distribution p(M, x, N) through
simulation [cf. Fig. 1, (left)].

E. Implicit Preference for Simpler Models

Remembering that pφ(m | x1:N ) ∝ p(x1:N |M)p(M),
we note that perfect convergence implies that preference for
simpler models (Bayesian Occam’s razor) is automatically
encoded by our method. This is due to the fact that we
are approximating an expectation over all possible datasets,
parameters, and models. Accordingly, datasets generated by
a simpler model tend to be more similar compared with
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Algorithm 2 Training Phase and Inference Phase for Amortized Bayesian Model Comparison

Require: fφ - evidential neural network, {x(obs)
1:Ni

}I
i=1 - list of I observed datasets for inference, λ - regularization weight, B -

number of simulations at each iteration (batch size)
1: Training phase:
2: repeat
3: Generate a training batch D(B)

N = {(m(b), x(b)
1:N )}B

b=1 via Algorithm 1
4: Compute evidences for each simulated dataset in D(B)

N : α(b) = fφ(x(b)
1:N )

5: Compute loss according to Eq.16
6: Update neural network parameters φ via backpropagation
7: until convergence to �φ
8: Amortized inference phase:
9: for i = 1, . . . , I do

10: Compute model evidences α
(obs)
i = f�φ(x(obs)

1:Ni
)

11: Compute epistemic uncertainty ui = J/
�J

j=1 α(obs)
i, j

12: Approximate true model posterior probabilities p(M | x(obs)
1:Ni

) via pφ(m | x1:Ni ) = α
(obs)
i /

�J
j=1 α(obs)

i, j
13: end for
14: Choose further actions

those from a more complex competitor. Therefore, during
training, certain datasets which are plausible under both
models will be generated more often by the simpler model
than by the complex model. Thus, a perfectly converged
evidential network will capture this behavior by assigning
higher posterior probability to the simpler model (assuming
equal prior probabilities). Therefore, at least in theory, our
method captures complexity differences arising purely from
the generative behavior of the models and does not presuppose
an ad hoc measure of complexity (e.g., number of parameters).

F. Putting It All Together

The essential steps of our evidential method are summarized
in Algorithm 2. Note that steps 2–7 and 9–13 can be exe-
cuted in parallel with GPU support to dramatically accelerate
convergence and inference. In sum, we propose to cast the
problem of model comparison as evidence estimation and
learn a Dirichlet distribution over posterior model probabilities
directly via simulations from the competing models. To this
end, we train an evidential neural network which approximates
posterior model probabilities and further quantifies the epis-
temic uncertainty as to whether an observed dataset is within
the generative scope of the candidate models. Moreover, once
trained on simulations from a set of models, the network
can be reused and extended to new models across a research
domain, essentially amortizing the model comparison process.
Accordingly, if the priors over model parameter do not
change, multiple researchers can reuse the same network for
multiple applications. If the priors over model parameters
change or additional models need to be considered, the para-
meters of a pretrained network can be adjusted or the network
augmented with additional output nodes for the new models.

V. EXPERIMENTS

In this section, we demonstrate the utility of our method on
a toy example and relevant models from chemistry, cognitive
science, and neurobiology. A further toy example with 400
models and details for neural network training, architectures,
performance metrics, and forward models are to be found in
the Appendix.

A. Experiment 1: Beta-Binomial Model With Known
Analytical Marginal Likelihood

As a basic proof of concept for our evidential method,
we focus on a toy model comparison scenario with an
analytically tractable marginal likelihood. Thereby, we pur-
sue a couple of goals. First, we want to demonstrate that
the estimated posterior probabilities closely approximate the
analytic model posteriors. To show this, we compare the
analytically computed with the estimated BFs. In addition,
we want to show that the accuracy of recovery matches closely
the accuracy obtained by the analytic BFs across all N . For
this, we consider the simple beta-binomial model given by

θ ∼ Beta(α, β) (17)

xn ∼ Bernoulli(θ) for n = 1, . . . , N. (18)

The analytical marginal likelihood of the beta-binomial
model is

p(x1:N ) =
�

N

K

�
Beta(α + K , β + N − K )

Beta(α, β)
(19)

where K denotes the number of successes in the N trials. For
this example, we will consider a model comparison scenario
with two models, one with a flat prior Beta(1, 1) on the
parameter θ and another with a sharp prior Beta(30, 30). The
two prior densities are depicted in Fig. 3(a).

We train a small permutation invariant evidential network
with batches of size B = 64 until convergence. For each batch,
we draw the samples size from a discrete uniform distribution
N ∼ UD(1, 100) and input the raw binary data to the network.
We validate the network on 5000 separate validation datasets
for each N . Convergence took approximately 15 min, whereas
inference on all 5000 validation datasets took less than 2 s.

Our results demonstrate that the estimated BFs closely
approximate the analytic BFs [Fig. 3(b)]. We also observe
no systematic under- or overconfidence in the estimated BFs,
which is indicated by the calibration curve resembling a
straight line [Fig. 3(c)]. Finally, the accuracy of recovery
achieved with the estimated BFs closely matches that of the
analytic BFs across all sample sizes N [Fig. 3(d)].
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Fig. 3. (a) Prior densities of the θ parameter for both models of Experiment 1.
(b) True versus estimated BFs obtained from the network-induced Dirichlet
distribution at N = 100. (c) Calibration curve at N = 100 indicating very
good calibration (dotted line represents perfect calibration). (d) Accuracy
at all N achieved with both the analytic and estimated BFs (the shaded
region represents a 95% bootstrap confidence interval around the accuracies
of the evidential network). (a) Models’ priors. (b) True versus estimated
BFs at N = 100. (c) Calibration curve at N = 100. (d) Accuracy
across all N .

B. Experiment 2: Markov Jump Process of Stochastic
Chemical Reaction Kinetics

In this experiment, we apply our evidential method to a
simple model of nonexchangeable chemical molecule con-
centration time series data. Furthermore, we demonstrate the
efficiency benefits of our amortized learning method compared
with a nonamortized ABC-SMC algorithm. We define two
Markov jump process models M1 and M2 for conversion
of (chemical) species z into species y

M1 : z + y
θ1−→ 2y (20)

M2 : z
θ2−→ y. (21)

Each model has a single rate parameter θi . We use a
Gillespie simulator to generate simulated time series from the
two models with an upper time limit of 0.1 s. Both models start
with initial concentrations x0 = 40 and y0 = 3, so they only
differ in terms of their reaction kinetics. The input time series
x1:N consist of a time vector t1:N and two vectors of molecule
concentrations for each species at each time step, z1:N and
y1:N , which we stack together. We place a wide uniform prior
over each rate parameter: θi ∼ U(0, 100).

We train an evidential sequence network for 50 epochs
of 1000 minibatch updates and validate its performance on
500 previously unobserved time series. Wall clock training
time was approximately 52.3 min. In contrast, the wall clock
inference time on the 500 validation time series was 254 ms,
leading to dramatic gains due to amortization. The bootstrap
accuracy of recovery was 0.98 (SD = 0.01) over the entire
validation set.

Fig. 4. Observed concentration time series from both Markov jump models
of Experiment 2 with θ = 2.0.

We also apply the ABC-SMC algorithm available from
the pyABC [29] library to a single dataset x(obs)

1:N generated
from model 1 (M1) with rate parameter θ1 = 2.0. Fig. 4
depicts time series generated from model 1 (left) and time
series generated from model 2 with θ2 = 2.0. Notably, the
generative differences implied by the two models are subtle
and not straightforward to explicitly quantify.

For the ABC-SMC method, we set the minimum rejection
threshold � to 0.7 and the maximum number of populations
to 15, as these settings lead to perfect recovery of the true
model. As a distance function, we use the L2 norm between
the raw concentration time series of species z, evaluated at
20 time points.2

The convergence of the ABC-SMC algorithm on the single
dataset took 12.2-min wall clock time. Thus, inference on the
500 validation datasets would have taken more than four days
to complete. Accordingly, we see that the training effort with
our method is worthwhile even after as few as five datasets.
As for recovery on the single test dataset, ABC-SMC selects
the true model with a probability of 1, whereas our evidential
network outputs a probability of 0.997 which results in a
negligible difference of 0.003 between the results from two
methods.

C. Experiment 3: Stochastic Models of Decision Making

In this experiment, we apply our evidential method to com-
pare several nontrivial nested stochastic evidence accumulator
models (EAMs) from the field of human decision-making
[42], [51]. With this experiment, we want to demonstrate the
performance of our method in terms of accuracy and posterior
calibration on exchangeable data obtained from complex cog-
nitive models. Additionally, we want to demonstrate how our
regularization scheme can be used to capture absolute evidence
by artificially rendering the data implausible under all models.

1) Model Comparison Setting: EAMs describe the dynam-
ics of decision-making via different neurocognitively plausible
parameters (i.e., speed of information processing, decision
threshold, bias/pre-activation, etc.). EAMs are most often
applied to choice reaction times (RTs) data to infer neurocog-
nitive processes underlying generation of RT distributions in
cognitive tasks. The most general form of an EAM is given
by a stochastic differential equation

dx = vdt + cdξ (22)

where dx denotes a change in activation of an accumulator,
v denotes the average speed of information accumulation

2These settings were picked from the original pyABC documentation avail-
able at https://pyabc.readthedocs.io/en/latest/examples/chemical_reaction.html
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(often termed the drift rate), and dξ represents a stochastic
additive component with dξ ∼ N (0, c2).

Multiple flavors of the above-stated basic EAM form exist
throughout the literature [3], [42], [50], [51]. Moreover, most
EAMs are intractable with standard Bayesian methods [3],
so model selection is usually hard and computationally cum-
bersome. With this example, we pursue several goals. First,
we want to demonstrate the utility of our method for per-
forming model selection on multiple nested models. Second,
we want to empirically show that our method implements
Occam’s razor. Third, we want to show that our method can
indeed provide a proxy for absolute evidence.

To this end, we start with a very basic EAM defined by
four parameters θ = (v1, v2, a, t0) with vi denoting the speed
of information processing (drift rate) for two simulated RT
experimental tasks i ∈ {1, 2}, a denoting the decision thresh-
old, and t0 denoting an additive constant representing the time
required for nondecisional processes such as motor reactions.
We then define five more models with increasing complexity
by successively freeing the parameters zr (bias), α (heavy-
taildness of noise distribution), st0 (variability of nondecision
time), sv (varibaility of drift-rate), and szr (variability of bias).
Note that the inclusion of non-Gaussian diffusion noise renders
an EAM model intractable, since in this case no closed-form
likelihood is available (see [55] for more details). Table S1 in
Appendix E lists the priors over model parameters and fixed
parameter values.

The task of model selection is thus to choose among six
nested EAM models M = {M1,M2,M3,M4,M5,M6},
each able of capturing increasingly complex behavioral pat-
terns. Each model j is able to account for all datasets
generated by the previous models i < j , since the previous
models are nested within the j th model. For instance, model
M6 can generate all datasets possible under the other models
at the cost of increased functional and parametric complex-
ity. Therefore, we need to show that our method encodes
Occam’s razor purely through the generative behavior of the
models.

To show that our regularization method can be used as
a proxy to capture absolute evidence, we perform the fol-
lowing experiment. We define a temporal shifting constant
K ∈ (0, 10) (in units of seconds) and apply the shift to
each response time in each validation dataset. Therefore,
as K increases, each dataset becomes increasingly implausible
under all models considered. For each K , we compute the
average uncertainty over all shifted validation datasets and
plot as a function of K . Here, we only consider the maximum
number of trials N = 300.

We train three evidential neural networks with different KL
weights: λ ∈ {0.0, 0.1, 1.0} to investigate the effects of λ
on accuracy, calibration, and uncertainty. All networks were
trained with variable number of trials N ∼ UD(1, 300) per
batch for a total of 50 000 iterations. The training of each
network took approximately half a day on a single computer.
In contrast, performing inference on 5000 datasets with a pre-
trained network took less than 10 s.

2) Validation Results: To quantify the global performance
of our method, we compute the accuracy of recovery as
a function of the number of observations (N) for each of
the models. We also compute the epistemic uncertainty as a
function of N . To this end, we generate 500 new datasets for
each N and compute the accuracy of recovery and average
uncertainty. These results are depicted in Fig. 5.

a) Accuracy: We observe that the accuracy of recovery
increases with increasing sample size and begins to flatten
out around N = 100, independently of the regularization
weight λ [Fig. 5(a)]. This behavior is desirable, as selecting
the true model should become easier when more information
is available. Furthermore, since the models are nested, perfect
recovery is not possible, as the models exhibit a large shared
data space.

b) Calibration: Fig. 5(d) depicts the calibration curves
for each model and each regularization value. The unregu-
larized network appears to be very well-calibrated, whereas
the regularized networks become increasingly underconfident
with increasing regularization weight. This is due to the
fact that the regularized networks are encouraged to generate
zero evidence for the wrong models, so model probabilities
become miscalibrated. Importantly, none of the networks
shows overconfidence.

c) Occam’s razor: We also test Occam’s razor by gen-
erating 500 datasets from each model with N = 300 and
compute the average predicted model posterior probabilities
by the unregularized network. Thus, all datasets generated by
model j are plausible under the remaining models Mi , i > j .
These average model probabilities are depicted in Fig. 5(e).
Even though the datasets generated by the nested simpler mod-
els are plausible under the more complex models, we observe
that Occam’s razor is encoded by the behavior of the network,
which, on average, consistently selects the simpler model when
it is the true data-generating model. We also observe that
this behavior is independent of regularization [the results for
λ = 0.1 and λ = 1 are not depicted in Fig. 5(e)].

d) Epistemic uncertainty and absolute evidence: Epis-
temic uncertainty over different trial numbers (N) is zero
when no KL regularization is applied (λ = 0). On the
other hand, both small (λ = 0.1) or large (λ = 1.0)
regularization weights lead to nonzero uncertainty over all
possible N [Fig. 5(b)]. This pattern reflects a reduction in
epistemic uncertainty with increasing amount of information
and mirrors the inverse of the recovery curve. Note that the
value at which epistemic uncertainty begins to flatten out is
larger for the highly regularized model, as it encodes more
cautiousness with respect to the challenging task of selecting
a true nested model. Finally, the results on shifted datasets are
depicted in Fig. 5(c). Indeed, we observe that the regularized
networks are able to detect implausible datasets and output
total uncertainty around K > 4 for all manipulated datasets.
Uncertainty increases faster for high regularization. On the
other hand, the unregularized model does not have any way of
signaling impossibility of a decision, so its uncertainty remains
at 0 over all K .

D. Experiment 4: Stochastic Models of Single-Neuron
Activity

In this experiment, we apply our evidential method to com-
plex nested spiking neuron models describing the properties
of biological cells in the nervous system. The purpose of
this experiment is threefold. First, we want to assess the
ability of our method to classify models deploying a variety
of spiking patterns which might account for different cortical
and sub-cortical neuronal activities. Second, we want to chal-
lenge the network’s ability to detect biologically implausible
data patterns as accounted by epistemic uncertainty. Finally,
we compare our method with other viable neural network
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Fig. 5. Detailed validation results from Experiment 3. (a) Accuracy over all N . (b) Epistemic uncertainty over all N . (c) Epistemic uncertainty over all K .
(d) Calibration curves at N = 300. (e) Occam’s razor at N = 300.

Fig. 6. Three simulated firing patterns, corresponding estimated Dirichlet densities, and model posteriors. Each row illustrates a different value of the
parameter ḡK : ḡK = 0.1, ḡK = 0.5, and ḡK = 0.75, respectively. An increase in the parameter ḡK is accompanied by a decrease in epistemic uncertainty [as
measured via (10)]. An implausible value of ḡk (first row) results in a flat density as an index of total uncertainty (uniform green areas). As the parameter
value surpasses the plausible boundary (second and third rows), the Dirichlet simplex becomes peaked toward the bottom left edge encoding M1.

architectures that are able to perform amortized model com-
parison as classification. To this aim, we rely on a renowned
computational model of biological neuronal dynamics.

1) Model Comparison Setting: In computational neuro-
science, mathematical modeling of neuroelectric dynamics
serves as a basis to understand the functional organization
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of the brain from both single-cell and large-scale network
processing perspectives [1], [4], [9], [20], [21]. A plurality
of different neural models has been proposed during the past
decades, spanning from completely abstract to biologically
detailed models. The former offers a simplified mathematical
representation able to account for the main functional prop-
erties of spiking neurons, and the latter provides a detailed
analogy between models’ state variables and ion channels
in biological neurons [38]. Importantly, these computational
models differ in their capability to reproduce firing patterns
observed in real cortical neurons [22].

The model family we consider here is a Hodgkin-
Huxley-type model of cerebral cortex and thalamic neurons
[20], [39]. The forward model is formulated as a set of five
ordinary differential equations (ODEs) describing how the
neuron membrane potential V (t) unfolds in time as a function
of an injected current Iin j (t) and ion channels’ properties. See
Appendix D for more details regarding the forward simulation
process.

To set up the model comparison problem, we treat different
types of conductance, gL, ḡNa, ḡK , and ḡM , as free parameters,
and formulate three neural models based on different para-
meter configurations. In particular, we consider three models
M = {M1,M2,M3} defined by the parameter sets θ1 =
(ḡNa, ḡK ), θ2 = (ḡNa, ḡK , ḡM), and θ3 = (ḡNa, ḡK , ḡM , gL).
When not treated as free parameters, we set ḡM and gL to
default values, such that ḡM = 0.07 and gL = 0.1.

We compare the performance of our evidential method
with the following methods: a standard softmax classifier,
a classifier with Monte Carlo dropout [10], and two vari-
ational classifiers using a KL [27] and a maximum mean
discrepancy (MMD, [59]) latent space regularizer, respectively.
We also train three evidential networks with λ = 0 (no
regularization), λ = 0.5, and λ = 1.0 to better quantify the
effects of performing regularized model comparison. Here,
we do not consider nonamortized methods, such as ABC or
ABC-MCMC, as implemented in [35], since they would have
taken an infeasible amount of time to validate on hundreds of
datasets.

2) Validation Results: To assess performance, we train an
unregularized evidential network for 60 epochs resulting in
60 000 minibatch updates. For each batch, we draw a random
input current duration T ∼ UD(100, 400) (in units of mil-
liseconds), with the same constant input current, Iin j , for each
dataset simulation. Here, T reflects the physical time window
in which biological spiking patterns can unfold. Since the
sampling rate of the membrane potential is fixed (dt = 0.2),
T affects both the span of observable spiking behavior and
the number of simulated data points. The entire training phase
with online learning took approximately 2.5 h. On the other
hand, model comparison on 5000 validation time series took
approximately 0.7 s, which highlights the extreme efficiency
gains obtainable via globally amortized inference.

Regarding model selection, we observe accuracies above
0.92 across all T , with no gains in accuracy for increasing T ,
which shows that even short input currents are sufficient
for performing reliable model selection for these complex
models. Furthermore, the mean bootstrap calibration curves
and accuracies on 5000 validation datasets are depicted in
Figure S4d. We observe good calibration for all three models,
with calibration errors less than 0.1. Notably, the overconfi-
dence was 0 for all three models. The normalized confusion
matrix is depicted in Fig. S4b.

TABLE I

COMPARISON RESULTS FROM EXPERIMENT 4

To assess how well we can capture epistemic uncertainty
for biologically implausible firing patterns, we train another
evidential network with a gradually increasing regularization
weight up to λ = 1.0. We then fix the parameter ḡNa = 4.0
of model M1 and gradually increase its second parameter
ḡK from 0.1 to 2.0. Since spiking patterns observed with
low values of ḡK are quite implausible and have not been
observed during training, we expect uncertainty to gradually
decrease. Three example firing patterns and the corresponding
posterior estimates are depicted in Fig. 6. On the other hand,
changing the sign of the output membrane potential, which
results in biologically implausible firing patterns, leads to a
trivial selection of M3. This is contrary to the expectations and
shows that absolute evidence is also relative to what features
the evidential network has learned during training.

Finally, Table I presents the comparison results in terms
of accuracy and calibration error (all methods achieved 0
overconfidence). We train each neural network method for 30
epochs with identical optimizer settings and the same recurrent
network architecture for ease of comparison. We then compute
validation metrics on 3000 simulated neural firing patterns and
report means and standard errors. Our unregularized eviden-
tial network (λ = 0) achieves the lowest calibration error,
followed by the MC dropout classifier. In terms of accuracy,
the KL variational classifier performs slightly better than our
unregularized evidential network (but still within one standard
deviation). Overall, the performance of all amortized methods
considered in this experiment is similar, which highlights the
viability of amortizing Bayesian model comparison in general.
Note that training of each method took less than 1.5 h, and
bootstrap validation on 3000 less than a minute. The latter
would have been impossible to achieve within a reasonable
time-frame using nonamortized methods.

VI. DISCUSSION

In this article, we introduced a novel simulation-based
method for approximate Bayesian model comparison based on
specialized evidential neural networks. We demonstrated that
our method can successfully deal with both exchangeable and
nonexchangeable (time-dependent) sequences with variable
numbers of observations without relying on fixed summary
statistics. Furthermore, we presented a way to amortize the
process of model comparison for a given family of mod-
els by splitting it into a potentially costly global training
phase and a cheap inference phase. In this way, pretrained
evidential networks can be stored, shared, and reused across
multiple datasets and model comparison applications. Finally,
we demonstrated a way to obtain a measure of absolute
evidence in spite of operating in an M-closed framework
during the simulation phase. In the following, we reiterate the
main advantages of our method.
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A. Theoretical Guarantee

Using a strictly proper loss [14], we showed that our method
can closely approximate analytic model posterior probabilities
and BFs in theory and practice. In other words, posterior
probability estimates are perfectly calibrated to the true model
posterior probabilities when the strictly proper logarithmic loss
is globally minimized. Indeed, our experiments confirm that
the network outputs are well-calibrated. However, when opti-
mizing the regularized version of the logarithmic loss, we are
no longer working with a strictly proper loss, so calibration
declines at the cost of capturing implausible datasets. However,
we demonstrated that the accuracy of recovery (i.e., selecting
the most plausible model in the set of considered models)
does not suffer when training with regularization. In any
case, perfect convergence is never guaranteed in finite sample
scenarios, so validation tools such as calibration and accuracy
curves are indispensable in practical applications.

B. Amortized Inference

Following ideas from inference compilation [30] and pre-
paid parameter estimation [36], our method avoids fitting
each candidate model to each dataset separately. Instead,
we cast the problem of model comparison as a supervised
learning of absolute evidence and train a specialized neural
network architecture to assign model evidences to each pos-
sible dataset. This requires only the specification of plausible
priors over each model’s parameters and the corresponding
forward process, from which simulations can be obtained on
the fly. During the upfront training, we use online learning
to avoid storage overhead due to large simulated grids or
reference tables [34], [36]. Importantly, the separation of
model comparison into a costly upfront training phase and a
cheap inference phase ensures that subsequent applications of
the pretrained networks to multiple observed datasets are very
efficient. Indeed, we showed in our experiments that inference
on thousands of datasets can take less than a second with
our method. Moreover, by sharing and applying a pretrained
network for inference within a particular research domain, the
results will be highly reproducible, since the settings of the
method will be held constant in all applications.

C. Raw Data Utilization and Variable Sample Size

The problem of insufficient summary statistics has plagued
the field of ABC for a long time, so as to deserve being dubbed
the curse of insufficiency [34]. Using suboptimal summary
statistics can severely compromise the quality of posterior
approximations and validity of conclusions based on these
approximations [44]. Our method avoids using hand-crafted
summaries by aligning the architecture of the evidential neural
network to the inherent probabilistic symmetry of the data [2].
Using specialized neural network architectures, such as per-
mutation invariant networks or a combination of recurrent and
convolutional networks, we also ensure that our method can
deal with datasets containing variable numbers of observations.
Moreover, by minimizing the strictly proper version of the
logarithmic loss, we ensure that perfect convergence implies
maximal data utilization by the network.

D. Absolute Evidence and Epistemic Uncertainty

Besides point estimates of model posterior probabilities,
our evidential networks yield a full higher order probability
distribution over the posterior model probabilities themselves.

By choosing a Dirichlet distribution, we can use the mean of
the Dirichlet distribution as the best approximation of model
posterior probabilities. Beyond that, following ideas from the
study of SL [25] and uncertainty quantification in classification
tasks [45], we can extract a measure of epistemic uncertainty.
We use epistemic uncertainty to quantify the impossibility
of making a model selection decision based on a dataset,
which is classified as implausible under all candidate models.
Therefore, the epistemic uncertainty serves as a proxy to
measure absolute evidence, in contrast to relative evidence,
as given by BFs or posterior odds. This is an important
practical advantage, as it allows us to conclude that all models
in the candidate set are a poor approximation of the data-
generating process of interest. Indeed, our initial experiments
confirm that our measure of epistemic uncertainty increases
when datasets no longer lie within the range of the considered
models. However, extensive validation is needed to explore and
understand which aspects of an observed sample lead to model
misfit. Furthermore, exploring connections to approaches using
auxiliary probabilistic classifiers for detecting model misspec-
ifications, such as the recent CARMEN method [48], seems
to be an interesting avenue for future research.

These advantageous properties notwithstanding our method
have certain limitations. First, our regularized optimization
criterion induces a trade-off between calibration and epistemic
uncertainty, as confirmed by our experiments. This trade-off
is due to the fact that we capture epistemic uncertainty via a
special form of KL regularization during the training phase,
which renders the optimized loss function no longer strictly
proper. We leave it to future research to investigate whether
this trade-off is fundamental and whether there are more
elegant ways to quantify absolute evidence from a simulation-
based perspective.

Second, our method is intended for model comparison from
a prior predictive (marginal likelihood) perspective. However,
since we do not explicitly fit each model to data, we can-
not perform model comparison/selection based on posterior
predictive performance. We note that in certain scenarios,
posterior predictive performance might be a preferable metric
for model comparison, so in this case simulation-based sam-
pling methods should be used (e.g., ABC or neural density
estimation, [7], [37]).

Third, perfect convergence might be hard to achieve in
real-world applications. In this case, approximation error will
propagate into model posterior estimates. Therefore, it is
important to use performance diagnostic tools, such as calibra-
tion curves, accuracy of recovery, and overconfidence bounds,
to detect potential estimation problems. Finally, even though
our method exhibited excellent performance on the domain
examples considered in this article, it might break down in
high-dimensional parameter spaces. Future research should
focus on applications to even more challenging model com-
parison scenarios, for instance, hierarchical Bayesian models
with intractable likelihoods, or neural network models.
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