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We shed much needed light upon a critical assumption that is oft-overlooked—or not consid-
ered at all—in random-effects meta-analysis. Namely, that between-study variance is constant
across all studies which implies they are from the same population. Yet it is not hard to imagine
a situation where there are several and not merely one population of studies, perhaps differing in
their between-study variance (i.e., heteroskedasticity). The objective is to then make inference,
given that there are variations in heterogeneity. There is an immediate problem, however, in that
modeling heterogeneous variance components is not straightforward to do in a general way. To
this end, we propose novel methodology, termed Bayesian location-scale meta-analysis, that
can accommodate moderators for both the overall effect (location) and the between-study vari-
ance (scale). After introducing the model, we then extend heterogeneity statistics, prediction
intervals, and hierarchical shrinkage, all of which customarily assume constant heterogeneity,
to include variations therein. With these new tools in hand, we go to work demonstrating that
quite literally everything changes when between-study variance is not constant across studies.
The changes were not small and easily passed the interocular trauma test—the importance hits
right between the eyes. Such examples include (but are not limited to) inference on the overall
effect, a compromised predictive distribution, and improper shrinkage of the study-specific
effects. Further, we provide an illustrative example where heterogeneity was not considered a
mere nuisance to show that modeling variance for its own sake can provide unique inferences,
in this case into discrimination across nine countries. The discussion includes several ideas for
future research. We have implemented the proposed methodology in the R package blsmeta.
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Meta-analysis plays an important role in psychological
science. When summarizing the results from several studies,
researchers can determine the average effect size, the extent
to which the effects vary from study to study, and examine
whether study characteristics moderate the effect size. As a
result, meta-analysis has proven to be an indispensable tool,
casting doubt on long-standing theories (e.g., ego-depletion,
Hagger et al., 2016), offering a refined view of psychological
interventions (van Agteren et al., 2021), and resolving possi-
ble explanations of replication failures (e.g., “hidden moder-
ators”, Klein et al., 2018)

In this work, we tackle the important topic of between-
study heterogeneity or variance (τ2). This variability in the
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effects could be due to experimental design, age of the study
subjects, or environmental context (e.g., varying cultures or
country of origin). Because of these potential differences,
the analytical decision is often posited as a choice between
a fixed-effects or random-effects model (Aguinis, Gottfred-
son, & Wright, 2011). This is somewhat misguided, how-
ever, because both “provide perfectly valid inferences under
heterogeneity” (see p. 4 in Viechtbauer, 2010). The key
distinction is that a fixed-effects model provides conditional
inference for the observed studies. On the other hand, the
random-effects model allows for unconditional inference on
the average effect in a population of studies, of which the
observed are assumed to be a random sample (Hedges & Ve-
vea, 1998). Additionally, the random-effects model provides
an estimate of τ2, which opens the door to explaining hetero-
geneity (S. G. Thompson & Sharp, 1999). For these reasons,
we focus on the random-effects model in this work.

We have the lofty ambition of completely revising the typ-
ical view of heterogeneity in meta-analysis. Often the goal
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is unconditional inference, that is, to generalize beyond the
observed studies and to a “normally distributed superpopu-
lation” of hypothetical studies (Bonett, 2010). The mean µ
of this superpopulation is defined by the average of the true
effects, with τ2 defining their dispersion around µ (the over-
all/average effect). This assumption is made in almost all
meta-analyses, without considering the implications for the
observed effects. For example, as noted in Higgins, Thomp-
son, and Spiegelhalter (2009):

This variance [τ2] explicitly describes the ex-
tent of the heterogeneity and has a crucial role
in assessing the degree of consistency of effects
across studies, which is an element of random-
effects meta-analysis that often receives too little
attention (p. 139).

While we full heartedly agree with the importance of het-
erogeneity, a critical assumption is that τ2 is constant across
studies, which implies that they are all sampled from the
same population. However, it is not hard to imagine a sit-
uation in which several and not merely one population of
studies is more than plausible. Here there would be between-
study variances and not a between-study variance.

Our idea is to fully extend the notion of unconditional in-
ference to heterogeneous superpopulations, that potentially
differ in their between-study variances. This entails chang-
ing τ2 to τ2

i , wherein study i can be sampled from a normal
distribution with relatively more (or less) heterogeneity (see
Figure 1). In doing so, this (i) accounts for the possibility
that the effects are from populations with different variances
(i.e., heteroskedasticity), and (ii) opens the door to predicting
τ2

i with study-level covariates.

Are Variations in Heterogeneity Meaningful?

At first, over and above accommodating unequal
(between-study) variances, the importance of τ2

i may not
be readily apparent. The typical view is that heterogene-
ity is to be explained (i.e., accounted for by moderators,
S. G. Thompson & Sharp, 1999) or perhaps that variance
is a mere nuisance to understanding the overall effect. The
latter is reflected in the large literature on heterogeneity of
variance and error rates (e.g., Blanca, Alarcón, Arnau, Bono,
& Bendayan, 2018; Delacre, Lakens, & Leys, 2017; Ruscio
& Roche, 2012). While certainly important, this perspective
strikes us as rather coarse, perhaps the result of running from
rather than embracing variation (see for example Gelman,
2019). The following three examples provide motivation for
modeling τ2

i .
First, variability can be substantively interesting—

modeling variance for its own sake. In mixed-effects models,
often the “error” or within-person variance is not considered
error at all, but rather an indicator of intraindividual variabil-
ity or inconsistency (Ram, Stollery, Rabbitt, & Nesselroade,
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Figure 1. Illustrative example, where the studies are sampled
from two superpopulations that differ in their variance (het-
eroskedasticity). Notice that the studies from the blue pop-
ulation are more “dispersed” around the overall effect. This
implies that there are variations in heterogeneity.

2005). For example, in Kalin et al. (2014), inconsistency
of response times in a cognitive task was suggested to be a
marker of Alzheimer’s disease. Translated to τ2, this would
be akin to investigating heterogeneity in relation to whether
the studies included subjects with a major versus mild neu-
rocognitive disorder. There is also a long tradition of study-
ing variability in gerontology (e.g., MacDonald, Hultsch, &
Dixon, 2003; Rast, 2011). In this case, modeling τ2 could
shed light upon age related heterogeneity in treatment effects.

Second, τ2 is an important component of measures used to
quantify heterogeneity in meta-analysis (Higgins & Thomp-
son, 2002). For example, I2 is defined as “the proportion of
the variance in study estimates that is due to heterogeneity”
(p. 2, Von Hippel, 2015), and it is reported in most meta-
analyses. These measures are computed under the assump-
tion that the studies are from one superpopulation. When τ2

i
is determined to be a function of covariates, however, this
implies that heterogeneity measures are a function of those
same covariates. The importance of this cannot be under-
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stated, relating again to the idea of heterogeneous popula-
tions. Given a study-level characteristic (e.g., age groups),
that is, there could be varying amounts of heterogeneity that
can then be explained or interpreted for its own sake. Fur-
ther, it has been argued that meta-analyses should include
prediction intervals, with the goal of assisting in “the clinical
interpretation of the heterogeneity by estimating what true
treatment effects can be expected in future settings” (p. 1,
IntHout, Ioannidis, Rovers, & Goeman, 2016). Here, too,
prediction intervals are computed under the assumption that
τ2 is constant across studies. In essence, by relaxing this
assumption prediction intervals become a function of covari-
ates as well.

Third, even when the focus is the overall effect and het-
erogeneity is an after thought, the magnitude and uncertainty
of the overall effect is computed under the assumption of a
common τ2 (see Equations 15 and 16 in Hedges, 1992). In
other words, that the studies were indeed sampled from a dis-
tribution with a constant between-study variance. As demon-
strated below, when this is not the case the total variance in
the effect size estimates is incorrect, thereby compromising
statistical inference on the overall effect (i.e., not getting τ
“right” affects µ). The objective is to then estimate the over-
all effect and its uncertainty, given that there are variations in
τ2

i .

Major Contributions

Importantly, the idea of varying τ2
i is not itself novel, as,

for example, it was described in Bowater and Escarela (2013)
and C. G. Thompson and Becker (2020). It is the full thrust
of the implications therein that have the chance to alter the
trajectory of meta-analysis, which, to date, have not been un-
packed. Hence, by way of example, our first contribution
is demonstrating the importance of considering τ2

i in meta-
analysis—quite literally everything changes. There is an im-
mediate challenge, however, in that modeling variance com-
ponents is not straightforward to do in a general way. To this
end, our second contribution is proposing a novel Bayesian
model for location-scale meta-analysis. The location refers
to mean (or effect size) whereas the scale is the between-
study variance. A key advantage of our methodology is that
it readily captures uncertainty in all measures of heterogene-
ity that are typically computed from τ2 (e.g., I2). Our third
contribution is to compute them from τ2

i (resulting in I2
i ).

To our knowledge, τ2
i has not been incorporated into hetero-

geneity statistics or prediction intervals. In addition, as our
fourth contribution, we implemented the methods in the new
R package blsmeta.

Overview

In what follows, we first describe the customary random-
effects model. Here we focus on the implications of assum-
ing τ2 is across studies, when, in fact, there is variation in

between-study heterogeneity. In the next section, we in-
troduce our Bayesian formulation for location-scale meta-
analysis. This section includes demonstrating how our model
naturally incorporates τ2

i into customary heterogeneity statis-
tics and prediction intervals that are typically computed from
τ2. We then demonstrate the utility of our method in two
illustrative examples, including unique insights that can be
gleaned from directly modeling τ2

i .

Motivating Example

We begin by revisiting the random-effects model esti-
mated in what is considered a “frequentist” framework. The
reason for this is rhetorical in nature, in that it readily allows
for teasing apart the implications of τ2

i with closed form solu-
tions. The basic idea also applies to Bayesian estimation, al-
though the expressions are less familiar in the meta-analysis
literature. To see this, we refer interested readers to Equation
17 in Röver (2020), as compared to those in Higgins and
Thompson (2002, see section 3.1.1 therein).

The typical goal is to make inference on µ, given i =

1, . . . , k independent effect size estimates, yi, and their sam-
pling variances, σ2

i , that are assumed to be known in advance
(i.e., computed from the sample data within each study). In
essence, the random-effects model is analogous to the cus-
tomary normal-normal hierarchical model with known vari-
ances (Röver, 2020). Accordingly, at level-one, we have

yi ∼ N (θi, σ
2
i ), (1)

where θi is the corresponding true effect for the ith study. We
use “true” because it is common in the literature (Borenstein,
Hedges, Higgins, & Rothstein, 2010; Higgins et al., 2009),
but reserve the possibility that true effects do not actually ex-
ist and are hypothetical themselves. Alternatively, θi can be
considered the “study-specific” effects. From Equation (1),
it follows that the level-one or within-study variance com-
ponent is σ2

i . To investigate additional variability, over and
above the sampling variances, the true effects are assumed to
be drawn from a normal distribution, that is,

θi ∼ N (µ, τ2), (2)

where µ and τ2 denote the average true effect and between-
study variance, respectively. τ2 is the level-two variance
component that captures between-study heterogeneity in the
true effects. To make sense of the hierarchical structure, it
helps to consider that each effect can deviate from µ. It is the
magnitude of those deviations, or their dispersion around the
overall effect, that defines τ2 (e.g., Figure 1). Accordingly, in
the event that τ2 = 0, the study-specific effects are equal to
the overall effect (θ1 = . . . = θk = µ).

Notice in Equation (2) that τ2 is assumed to be the same
for each study. This translates into an assumption regarding
the total variance in the observed effects. Under constant τ2,
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we have that var(yi) = σ2
i + τ2 (see also p. 80 in Raudenbush

& Bryk, 1985), which is readily seen when expressing the
random-effects model in its marginal form. This is given by

yi ∼ N (µ, σ2
i + τ2). (3)

Equation (3) is often used when θi is not of direct interest. In
this case, we use it to emphasize the underlying assumption
of var(yi) that is made in most meta-analyses.

Inference on the Overall Effect

Although our primary focus is heterogeneity, it is impor-
tant to note that inference on µ is inextricably linked to τ2 in
a random-effects meta-analysis. In the literature, this can be
seen by the sheer number of estimators for τ2 (see Table 3 in
Veroniki et al., 2016). In part, this can be attributed to τ̂2 af-
fecting “the estimate of the mean effect and its confidence in-
terval” (p. 182, Langan, Higgins, & Simmonds, 2017). This
is because heterogeneity has a direct bearing upon var(yi), as
seen in Equation (3). To our knowledge, however, there has
been little work considering the implications of variation in
τ2

i (but see Rubio-Aparicio et al., 2020). In what follows, we
open Pandora’s jar on this important topic.

With the observed effects, yi, and the corresponding sam-
pling variances, σ2

i , the overall effect can be computed ana-
lytically. This is given by

µ̂ =

k∑
i=1

w∗i · yi

k∑
i=1

w∗i

, (4)

which is effectively a weighted average. Further, an ap-
proximate variance of µ̂ under the random-effects model is
σ2
µ = 1/(

∑k
i=1 w∗i ). It is the weights, w∗i , that are of clear

importance for making inference on µ and they are typically
computed under the assumption that τ2 is constant for each
study, that is,

w∗i =
1

σ2
i + τ̂2

, (5)

where τ̂2 can be obtained from any of the common estimators
(see Table 3 in Veroniki et al., 2016). The basic idea of Equa-
tion (5) is that the weights correspond to the inverse of the to-
tal variance for each study (i.e., the precision), corresponding
to “the within-study variance for study (i) plus the between-
studies variance, tau-squared” (p. 16, Borenstein, Hedges,
& Rothstein, 2007). Hence, when taking the reciprocal, the
more precise effect size estimates necessarily receive a larger
w∗, given that τ2 is constant across the k studies. This, in turn,

means they have relatively more influence on the overall ef-
fect and its variance—the necessary ingredients for statistical
inference.

However, if there are variations in heterogeneity, then
Equation (5) would be incorrect. This is because it would
have the incorrect variance in the denominator. To accom-
modate study-specific heterogeneity, τ2

i , the marginal formu-
lation given in Equation (3) can be redefined as

yi ∼ N (µ, σ2
i + τ2

i ), (6)

where it is readily apparent that var(yi) = σ2
i +τ2

i . As a result,
the modified random-effects weights are

w∗∗i =
1

σ2
i + τ̂i

2 , (7)

which now reflects the total variance in yi. These would
then take the place of w∗i in Equation (5) and Equation (4).
Hence, the overall effect and its variance will change, now re-
flecting variations in heterogeneity. Of course, if there is no
variation to speak of, the between-study variances are equal
(τ2

i = . . . = τ2
k = τ2). The weights in Equation (5) can

therefore be viewed as a special case of those in Equation
(7).

Random-Effects Weights. To highlight the importance
of τ2

i , we first examined w∗i and w∗∗i under the assumption
that σ2

i and τ2
i (i = 1, . . . , 20) were known in advance. Each

sampling variance was set to σ2
i ≈ 0.021, in essence a Fisher

z-transformed correlation with n = 50. Heterogeneity for
the first superpopulation was set to τ2

g1 = 0.052, whereas,
for the second superpopulation, τ2

g2 took on a range of val-
ues that spanned from 0.052 to 1. In this set up, each of the
k studies belonged to either population, with the proportion
“drawn” from the first ranging from 0.50, 0.60 . . . , 0.90. It
follows that w∗∗i ≈ 42 is the true weight for studies from the
first population and when assuming a constant variance the
(incorrect) weights are w∗i = 1/(σ2

i + 1
k
∑k

i=1 τ
2
i ).

Figure 2 (panel A) includes the computed weights. Notice
the horizontal line at the true value, whereas the other lines
were computed under the assumption that heterogeneity was
constant across the studies (equal to the average). As het-
erogeneity increased in the second superpopulation (denoted
g2), the weights approached zero. Said another way, given
that the weights correspond to the inverse of the variance,
the variance of the studies from g1 was overestimated as het-
erogeneity increased in g2. This was a function of the pro-
portion of studies from each population. When there were
fewer studies from g1, the (incorrect) weight more quickly
approached zero. These findings can be understood in refer-
ence to the total variance of yi (Equation 6), in that, again, it
was overestimated for studies from the first population.
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Figure 2. Panel A includes random-effects weights (inverse of the variance). Between-study variance (τ2) for group two is on
the x-axis, whereas the dotted line denotes τ2 for group one. The true weight was computed with Equation (7), that accounts for
variations in τ2

i . The other (incorrect) weights were instead computed assuming that τ2 was constant across studies (Equation
5). This indicates that the weights used to compute the overall effect (Equation 4) and its uncertainty are compromised when
there are variations in heterogeneity, but assumed constant. Panel B includes statistical power to detect a small correlation
(r = 0.1). There was an equal number of studies in each group (τ2

g1 = 0.102 and τ2
g2 = 0.452). The difference in power is a

result of computing the weights when assuming constant versus varying heterogeneity.

Statistical Power. A natural question is then the extent
to which getting the total variance wrong influences statisti-
cal inference. To this end, we investigated statistical power
for detecting an effect size of 0.10 for k = 4, 8, . . . , 60. The
sampling variances were again set to σ2

i = 0.021 in two su-
perpopulations (τ2

g1 = 0.102 and τ2
g2 = 0.452). These values,

while certainly different from each other, were obtained from
real data used in the illustrative examples. In this case, an
equal number of studies belonged to each population. Be-
cause all of the variances are known, we computed power for
a two-sided Z-test (see p. 212, Hedges & Pigott, 2001).
The key distinction is whether each study had the correct
variance, with the corresponding model denoted Mv, or that
computed under the assumption of a constant τ2 (i.e., the av-
erage of τ2

i , with the model denoted Mc).
These results are presented in Figure 2 (panel B). There is

a striking difference in statistical power. For example, power
with k = 20 and the correct variance was nearly 0.50 (Mv),
but it was only 0.25 when assuming a constant between-study
variance (Mc). In fact, it was not until k = 44 that power
reached 0.50 (over twice as many studies). Although not in-
cluded in the results, the number of studies required to reach
power of 0.80 was 100 for Mc—this required only k = 44
for Mv.

Summary

Together, although we made a slight modification to nota-
tion (i.e., merely adding i to τ2) and presented an intention-
ally simplistic example, the importance of changing variance
was readily apparent. As we demonstrated, when the weights
are incorrect, this can result in overestimating the variance of

µ̂. This translated into a drastic reduction in statistical power
(Figure 2, panel B). We revisit this topic in the discussion,
including several ideas to further explore the implications of
τ2

i (e.g., type I error rate). In the next sections, we introduce
the Bayesian location-scale meta-analysis and then illustrate
the implications of modeling τ2

i .

Bayesian Location-Scale Meta-Analysis

Our methodology is based upon a straightforward ex-
tension of the traditional mixed-effects approach in meta-
analysis. To understand the innovation, it is important to
first note that there are two kinds of variance in meta-
analysis: (i) that which cannot be explained or the strictly
unexplainable, corresponding to the sampling variances, and
(ii) that which can be explained (potentially), corresponding
to between-study heterogeneity. Our approach further parti-
tions the latter by incorporating a sub-model to account for
between-study variances (i.e., τ2

i ). Models for meta-analysis
that can accommodate moderators (study-level variables) for
both the location, or the overall effect, and the scale, or the
between-study variance, are analogous to the mixed-effects
location-scale model (Hedeker, Mermelstein, & Demirtas,
2008, 2012), which builds upon earlier work on variance
heterogeneity (e.g., Aitkin, 1987; Cleveland, Denby, & Liu,
2003).1

1Location-scale modeling is also known as, for example, distri-
butional regression (Bürkner, 2017) and doubly hierarchical models
(Lee & Nelder, 2006)
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Model Formulation

We now part ways from the traditional meta-analysis liter-
ature, and align our notation with that common to Bayesian
mixed-effects (a.k.a., multilevel or hierarchical) modeling.
The starting point is defining the likelihood for i = 1, . . . , k
independent effect sizes, that is,

yi ∼ N (µi, σ
2
i ) (8)

which, in this case, is assumed to be Gaussian, with yi and
σ2

i denoting the effect size estimates and the known sampling
variances, respectively.

Location Sub-Model. The mean of this distribution can
be predicted, in essence a meta-regression. In full generality,
this is given by

µi = Xl
iβ + ui, (9)

where Xl is the k × p design matrix including the study-level
variables for the location sub-model (notice the l) and β is a
p × 1 vector including the regression coefficients. Note that
first column in Xl typically includes 1’s, corresponding to
the intercept, with the moderators in the remaining columns.
When the overall effect across all k studies is of interest (no
moderator variables are considered), this corresponds to hav-
ing p = 1 and thus fitting an “intercept only” model.

Scale Sub-Model. What remains from Equation (9) is
ui, the varying intercept for study i. Note that another term
for a varying effect is a random effect. We prefer vary-
ing because it captures the fact that it varies from study to
study, and avoids long-standing confusion surrounding what
are and are not “random effects” (see section 6 in Gelman et
al., 2005). In our formulation, this is given by

ui ∼ N (0, τ2
i ), (10)

where ui is the varying-effect and τ2
i is the between-study

variance, both for the ith study. Recall that τ2 is typically as-
sumed constant for each study in the random-effects model
(Equation 2), but here it has the subscript i.

At last, the sub-model for τ2
i is given by

τ2
i = exp(Xs

iγ) (11)

where Xs is the k × p design matrix including the study-
level variables for the scale sub-model (notice the s) and γ
the p × 1 vector including the regression weights. When
the average heterogeneity across all k studies is of interest
(no moderator variables are considered for the scale), this

corresponds to having p = 1 and thus fitting an “intercept
only,” resulting in the customary τ2 in random-effects meta-
analysis (e.g., Equation 2). In our formulation, heterogeneity
is modeled on the log scale, that is, log(τ2

i ) = Xs
iγ, which

is equivalent to Equation (11). This is motivated by needing
an (inverse) link function to ensure τi is positive and that the
“skewed, non-negative nature of the log-normal distribution
makes it a reasonable choice for representing variances” (p.
629 Hedeker et al., 2008).

Prior Specification. What remains is the prior distribu-
tions (or simply “prior”). While certainly not the only op-
tion, we assign each coefficient a weakly informative prior
(see discussion in Gelman, Simpson, & Betancourt, 2017).
In the location sub-model, the assumed prior for the inter-
cept is β1 ∼ N (ȳ, 1), which is centered at the empirical
mean of the effect size estimates 1

k
∑k

i=1 yi. This is reason-
able choice because we center all predictors before fitting the
model. Note that centering is often done in Bayesian analysis
to ease sampling from the posterior distribution. When mod-
erators are included in the model, the corresponding prior is
β2:p ∼ N (0, 1).

Importantly, the priors for the scale sub-model must be
considered on the log scale. For the intercept, the assumed
prior is γ1 ∼ N (−2, 1), which mirrors the informed prior
of Gronau et al. (2017, Figure 3 therein), that was based
on 162 estimates of τ from the psychological literature (van
Erp, Verhagen, Grasman, & Wagenmakers, 2013). Admit-
tedly, thinking about priors on the log scale is far from in-
tuitive. We recommend to rely on visualization when want-
ing to specify a different prior. In particular, samples can be
drawn from the prior predictive distribution, which “makes
use of simulations from the model rather than observed data”
(p. 10, Gelman et al., 2020). This can then be used to refine
the priors (see a proposed Bayesian workflow in Figure 1 of
Gelman et al., 2020). When moderators are included in the
scale sub-model, the corresponding prior is γ2:p ∼ N (0, 1),
which can be considered weakly informative. We return to
the topic of prior specification in the discussion, especially
when wanting to go beyond estimation (as in this work) and
to Bayesian hypothesis testing with the Bayes factor.

Full Model

Having specified all the necessary ingredients, we can de-
fine the full model succinctly as

yi ∼ N (µi, σ
2
i )

µi = Xl
iβ + ui

ui ∼ N (0, τ2
i )

τ2
i = exp(Xs

iγ)

This formulation readily accommodates the total variance in
yi, in the event that there are variations in τ2

i . Additionally,
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given that heterogeneity is now a function of covariates, all
measures based on it are a function of those same covariates.
We scratch the surface of considering τ2

i with the three exam-
ples, all of which are novel contributions to the meta-analysis
literature.

Hierarchical Shrinkage

A key aspect of random-effects meta-analysis is that
the study-specific effects, θi, are estimated by “borrowing
strength” from the other studies. This can provide shrinkage
towards the overall effect, µ, thereby reducing variability in
the estimates. Although this is sometimes related to “Stein’s
Paradox” from the statistics literature (Efron & Morris, 1977;
Stein, 1956), the basic idea, with derivations therein, was de-
scribed in psychometrics nearly a century ago (p. 178, see
eq. 22, Kelley, 1927).

An often overlooked—or not considered at all– assump-
tion of hierarchical shrinkage in meta-analysis is that there is
no variation in τ2

i , that is,

λi =
τ2

σ2
i + τ2

, (12)

where λi is sometimes called the shrinkage factor that de-
termines the amount of shrinkage. Note that λi is the aver-
age score intraclass correlation coefficient or reliability (see
p. 995 in Shieh, 2016).2 In psychometrics, the numerator
and denominator are thought to reflect “true score” and “ob-
served score” variance (p. 86 in Raudenbush & Bryk, 1985),
respectively.

In our formulation, due to relaxing the assumption of con-
stant heterogeneity, the amount of shrinkage can be under-
stood as

λi =
τ2

i

σ2
i + τ2

i

(13)

=
exp(Xs

iγ)
σ2

i + exp(Xs
iγ)

.

When assuming that heterogeneity is constant (Equation 12),
this corresponds to fitting an “intercept only” model to τ2

i
in our formulation (Equation 13). As a result, if there are
variations in τ2

i , the customary formulation can result in
“shrinkage of group-specific parameters [θi] by inappropri-
ate amounts” (p. 147, Hoff, 2009).3 This is due to assuming
that the effects are from the same population, whereas, in our
formulation, shrinkage can adapt to τ2

i .
With λi in hand from Equation (13), the estimates of θi are

given by

θi = λi · yi + (1 − λi) · µ, (14)

which is a weighted average for the ith effect size estimate
and the overall effect (i.e., the estimated mean of the super-
population). An approximate standard error of θi can be com-
puted as σi ·

√
λi (p. 146, Higgins et al., 2009). Accordingly,

with λi = 1, this results in θi = yi (no shrinkage). On the
other hand, with λi = 0, this results in θi = µ (complete
shrinkage to the overall effect). Again, we emphasize that
this derived under τ2

i and not τ2, with the latter understood as
a special case when τ2

1 = . . . = τ2
k = τ2.

Predicting Shrinkage. The estimates of θi naturally
arise from our Bayesian formulation (obtained during model
fitting). In a “frequentist” framework, they would be ob-
tained after fitting the model. In addition to highlighting
how τ2

i can influence the estimate of θi, the scale sub-model
allows for predicting λi (the amount of shrinkage), say, at
values of the moderators included in Xs. This is given by

λ̂i =
τ̂2

i

σ2
i + τ̂2

i

(15)

=
exp(Xs

new,iγ̂)

σ2
i + exp(Xs

new,iγ̂)
,

where new denotes values of the moderators for which τ2
i

is to be predicted. In words, Equation (15) effectively allows
for predicting the shrinkage factor. Equivalently, when think-
ing of psychometrics and measurement, we are in essence
predicting the reliability of effect size estimates. Hence,
given values of yi, σ2

i , and µ, the predicted θ̂i can be ob-
tained by plugging the numbers into Equation (14). The util-
ity of this approach is that the predictions are obtained at
any value of the moderator(s), which is akin customary re-
gression modeling of the mean (location), but in this case for
the between-study variance (scale). This approach is demon-
strated below.

Heterogeneity Statistics

Quantifying heterogeneity is an important aspect of meta-
analysis. Over and above reporting τ2, this is often done by
expressing heterogeneity as a proportion of the total variabil-
ity, known as I2 (Higgins & Thompson, 2002). Importantly,
the derivations for I2 are based on τ2 and not τ2

i (e.g., Equa-
tion 2 in Von Hippel, 2015). To incorporate variations in τ2

i ,
this entails making a modification to I2, that is,

2In mixed-effects models more generally (of which meta-
analysis is a special case), both σ2 and τ2 are typically assumed
to be constant across groups.

3In Hoff (2009), the focus was on assuming a common σ2 for all
groups. The same logic extends to assuming a common between-
study variance.
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I2
i =

τ2
i

s2 + τ2
i

(16)

=
exp(Xs

iγ)
s2 + exp(Xs

iγ)
,

where s2 is the so-called “‘typical’ within-study variance” (p.
1546, Higgins & Thompson, 2002). Note that the constant
counterpart, I2, would instead have τ2 in Equation (16). This
raises the question of choosing a value for s2, with recent
proposals including the harmonic or arithmetic mean (Table
1, Lin, 2020). The most common estimator is that of Higgins
and Thompson (2002), which was “originally motivated by
the expectation of the Q statistic” (p, 378 Lin, 2020). For
simplicity, we also adopt that approach (Equation 9 in Hig-
gins & Thompson, 2002), although, in our view, there could
be several reasonable choices for s2. Our proposal results in
I2
i for each of the k studies, with the customary I2 being a

special case when τ2
1 = . . . = τ2

k = τ2. Further, it would be
possible to obtain predictions of I2

i , given an assumed value
for s2 and moderators in the scale sub-model, as described in
Predicting Shrinkage.

Prediction Intervals

Our final extension is to prediction intervals, defined as
“the range of the predicted true treatment effect in a new
[future] study, given the realized (past) studies” (p. 1, Na-
gashima, Noma, & Furukawa, 2019). A key aspect of pre-
diction intervals is that they incorporate heterogeneity into
the uncertainty of the overall effect. Often, their variance is
computed as τ2 + SE(µ)2, where SE(µ) is the standard error
of the overall effect (see Equation 12 in Higgins et al., 2009).
Hence, when τ2 > 0, they will be wider than the correspond-
ing confidence interval. In turn, they reduce to the confidence
interval for µ when τ2 = 0.

In a Bayesian framework, a future study, θnew, is obtained
by drawing samples from the posterior predictive distribution
(Gelman et al., 1996; Meng, 1994). Typically, as described
in Higgins et al. (2009), θnew is sampled from

θnew ∼ N (µ, τ2), (17)

where it is clear the underlying assumption is constant het-
erogeneity. Relating again to the idea of having effect size es-
timates from (potentially) several populations, our proposal
is to instead draw samples from the following distribution

θnew,i ∼ N (µ, τ2
i ) (18)

τ2
i = exp(Xs

iγ),

which accommodates our scale sub-model for the between-
study variance. Further, the basic idea of predicting λi and I2

i
with moderators similarly applies to θnew,i, resulting in pre-
diction intervals themselves being a function of covariates.
This extension furthers Riley, Higgins, and Deeks (2011),
where it was noted that reporting prediction intervals (in ad-
dition to confidence intervals) based on τ2 “can provide a
more complete summary of a random effects meta-analysis”
(p. 964). We are taking this one step further, in that Equa-
tion (18) can provide an even more complete summary by
accommodating heterogeneous populations.

Estimation and Software

We developed the R package blsmeta (Bayesian Location-
Scale Meta-Analysis) specifically to (i) fit the proposed
model, and (ii) compute our novel extensions to shrinkage,
heterogeneity measures (e.g., I2), and prediction intervals.
Under the hood of blsmeta, the models are estimated with
the popular Bayesian software JAGS (Plummer, 2013).

In the illustrative examples, the fitted models include four
chains of 25,000 iterations after discarding a burn-in of 5,000
iterations (the default in blsmeta). This resulted in a total of
100,000 samples from the posterior distribution. This num-
ber of samples provided a good quality of the parameter esti-
mates in which the models converged with potential scale re-
duction factors R̂ smaller than 1.1 (Brooks & Gelman, 1998).
Note that blsmeta provides R̂ in the summary output, and
there are diagnostics to assess convergence of the Markov
chain Monte Carlo algorithm. The posterior distributions are
summarized by their means and 90% credible intervals (CrI).
The R code to reproduce the analyses is provided online.

Illustrative Examples

In this section, we further demonstrate the utility of mod-
eling τ2

i . The overall effect, µ, is not a point of emphasis. Of
course, as shown in Figure 2, inference on µ can be compro-
mised as well. Those results followed directly from getting
the total variance in yi incorrect and thus they were (perhaps)
not too surprising. Further, in our view, long-run error rates
are not tangible, leaving much to be desired. Our intention
here is to instead highlight the importance of τ2

i with exam-
ples in real data.

Example 1: The Color Red and Cognitive Performance

An influential finding in psychology suggested that pre-
senting red stimuli in an achievement context, as opposed
to another color (e.g., green), resulted in worse performance
(Elliot, Maier, Moller, Friedman, & Meinhardt, 2007). Al-
though this finding has emerged elsewhere (e.g., Gnambs,
Appel, & Kaspar, 2015), others have not detected the effect
(e.g., Larsson & Von Stumm, 2015). In light of these con-
flicting results, Gnambs (2020) performed a meta-analysis of



PUTTING VARIATION INTO VARIANCE 9

studies examining whether the color red indeed affects cogni-
tive performance in achievement situations. After exclusion
criteria were applied, 67 effect sizes (Cohen’s d) from 22
studies were included in the meta-analysis. Because some
of them stemmed from the same sample, we cannot assume
independence. As such, we randomly selected one effect size
from each study, resulting in 22 independent effect sizes for
our analysis.

Model. In this example, our goal is to further clarify the
idea of modeling between-study heterogeneity. We begin by
defining the location sub-model for the i = 1, 2, . . . , 22 inde-
pendent effect sizes, that is,

µi = β0 + ui (19)

ui ∼ N (0, τ2
i ),

where β0 is the overall effect and ui is the varying effect
therein, with β0 + u1 denoting the hierarchical effect for the
first study (i.e., i = 1). Note that the likelihood is given in
Equation (8). In this example, we predict τ2

i with the sample
size of each study. The idea here is to investigate whether
the deviations from β0 are a function of sample size. This
was inspired by Bowater and Escarela (2013), where it was
argued that several factors are “likely to cause the hetero-
geneity between small [clinical] trials to be greater than that
between large trials” (p. 6). Our scale sub-model is given by

τ2
i = exp(γ0 + γ1Xs

i ), (20)

where Xi is the sample size for study i. Note that centering
can be very important in scale modeling, for both estimat-
ing the model and interpreting γ0. In this case, it is not rea-
sonable to estimate τ2

i when a study had zero observations
(n = 0). To make γ0 more interpretable, we subtracted 20
from each sample size (i.e., Xi = ni − 20). In Equation (20),
it follows that γ1 is interpreted as the change in τ2

i on the log
scale for every additional observation or per one unit increase
in n. The assumed priors are described above (section Prior
Specification).

For comparison purposes, we also estimated the custom-
ary random-effects model. In reference to Equation (20),
this is accomplished with an intercept only model, that is,
τ2

i = exp(γ0), which results in τ̂2
1 = . . . , τ̂2

22 = τ̂2. Herein, the
fitted models are abbreviated Mc (constant heterogeneity)
and Mv (varying heterogeneity). The priors were identical
for parameters included in both models.

Results. Figure 3 (panel A) includes the observed effect
sizes on the y-axis and the corresponding sample sizes on the
x-axis. The idea here is that the deviations from the average
(dotted line) can be seen to the eye. As described above, the
dispersion around the overall effect is what defines τ2. No-
tice that there is discernible pattern, in that the dispersion (or

“spread”) of the observed effects is largest for small sample
sizes and then reduces with larger sample sizes. This is what
the scale sub-model in Equation (20) is predicting.

We have been focusing on τ2, but we report τ because it
is more readily interpretable (due to being on the scale of the
effect sizes rather than on a squared scale). In Mv, there was
an inverse relation between n and heterogeneity (γ1 = −0.03,
90% CrI = [−0.05,−0.01]). This was not captured in Mc,
where τ was assumed to be constant across all values of n
(τ = 0.11, 90% CrI = [0.02, 0.28]). To emphasize this point,
we predicted τ for a range of sample sizes for both models
(n = 40, 41, . . . , 300). Note that computing conditional vari-
ance is a novel aspect of our methodology (see the numerator
in Equation 16). Panel E includes the predicted values, τ̂,
including 90% CrIs capturing the uncertainty. Here the dif-
ference between models is readily discernible, in that, when
assuming heterogeneity is constant (Mc), τ is the same for
each sample size. On the other hand, with increasing n, τ̂
approached zero for Mv. This parallels what can be seen in
the observed data (panel A).

Although not our focus, it is interesting to consider the
overall effect. As noted in Equation 4, with variations in τ,
this can affect µ and its uncertainty. In this case, the overall
effect went from “significant” in Mc (µ̂ = -0.10, 90% CrI = [-
0.20, -0.02]) to “non-significant” in Mv (µ̂ = -0.07, 90% CrI
= [-0.15, 0.01]). On closer inspection, however, the results
were not much different when considering the entire poste-
rior distribution—the most probable values for the true effect
size are small and negative.

Hierarchical Shrinkage. We now shift gears to the
study-specific effects (θi). Recall that these relations are ob-
tained by “pooling of information” from the group-level. Al-
though this is typically considered a good thing, an important
assumption underlying shrinkage is that τ2

i is constant across
all studies. In this case, because it is not constant (i.e., it is
function of n), we can readily observe what happens when
there is improper pooling of information.

Figure 3 (panel B) includes the study-specific effects.
There is a striking difference between models, both with re-
spect to the posterior means and uncertainty. For example,
many of the 90% CrIs from Mv were more than three times
the width of the corresponding interval from Mc. Yet, on
the other hand, several of the 90% CrIs were narrower for
Mv. This is because, in Mc, only the sampling variances
are contributing to differences in uncertainty (see Equation
13). By including the scale model, however, the estimates
reflect variations in τ2

i .
To further shed light upon shrinkage, we narrowed the fo-

cus onto the posterior means of the hierarchical estimates
in relation to the observed effect size estimates. These re-
sults are provided Figure 3 (panel C). The difference between
models was again striking. In Mc, the hierarchical estimates
were aggressively shrunk towards the overall effect. In Mv,
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Figure 3. Panel A includes the observed effects. Notice that their dispersion around the average (dotted line) decreases when
going from smaller to larger studies. The scale sub-model in Equation (19) predicted that dispersion or between-study variance
(τ2) with study size. Panel B includes the study-specific (hierarchical) effects from two models. The only difference is that τ2

was either varying (Mv), because it was predicted with study size, or assumed to be constant (Mc). In panel C, the estimates
reflect inappropriate shrinkage in Mc, whereas shrinkage from Mv adapted to variations in τ2

i . Panel D includes the predicted
shrinkage factors (Equation 13). As expected (from panel E), in Mv, there was less shrinkage when τ2 was large (smaller
studies) and complete shrinkage when τ2 was very small (larger studies). On the other hand, the predictions from Mc showed
the complete opposite pattern. Panel E includes conditional heterogeneity as a function of study size. In panels B and E, the
error bars and ribbon correspond to 90% credible intervals.
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while there was also shrinkage, it was much less severe. For
example, the largest observed effect (yi = 6) went from −1.5
to −1.05 in Mv. The same estimate was shrunk all the way
to −0.18 in Mc. Further, in reference to panel B, the models
could lead to different inferences, in that the 90% CrI ex-
cluded zero for several relations in Mv but not in Mc. This
was a result of some intervals being much different between
models.

To explain these (huge) differences, we next predicted the
shrinkage factor, λ̂i, following Equation (15) with a range
of sample sizes (n = 40, 41, . . . , 300). Recall that λi de-
termines the amount of shrinkage towards the overall effect,
with λi = 0 and λi = 1 corresponding to complete and com-
plete shrinkage, respectively. For demonstrative purposes,
we assumed a Fisher-z sampling variance σ2

i = 1/(n − 3).
Because τ decreases with larger n (panel E), this implies that
λi should approach zero—complete shrinkage towards the
overall effect (i.e., θi = µ). In reference to Equation (13),
this is because the numerator approaches zero. Indeed, with
increasing n, the predicted values of λ̂i approached zero for
Mv (Figure 3, panel D). Accordingly, in large sample sizes
the observed effects are predicted to converge upon the over-
all effect, as a result of complete shrinkage. In Mc, how-
ever, the exact opposite pattern emerged. With large sample
sizes, the model predicted less shrinkage towards the over-
all effect (perhaps no shrinkage at all with a large enough
sample size). Together, this indicates that models differing
in their between-study variance structures can provide much
different estimates (e.g., as seen in panels B and C)

Example 2: Cross-national Comparisons of Racial Dis-
crimination in Hiring

In this example, we highlight the utility of our methodol-
ogy for answering novel research questions. This is juxta-
posed to the previous example, where predicting τ2

i with n
was mainly for pedagogical purposes, in that it was readily
apparent when simply looking at the data and motivated by
the meta-analysis literature (Bowater & Escarela, 2013). The
following analysis builds directly upon the questions asked in
the primary source (Quillian et al., 2019).

In an effort to better understand disparities across racial
and ethnic groups play out in hiring practices, Quillian et
al. (2019) conducted a meta-analysis of 97 studies aimed
at determining variation in hiring discrimination across nine
countries in Europe and North America. The included stud-
ies had comparable designs in that majority and minority
groups were contrasted using applications for fictional job-
seekers that were equivalent in their labor-market relevant
characteristics. The resulting 159 effect sizes from these
studies were coded as discrimination ratios (a.k.a “relative
risk” or “risk ratio”) on the log scale. The discrimination
ratio is defined as the proportion of call-backs that the ma-
jority group received divided by the proportion of call-backs

received by a minority group. Intuitively, a discrimination
ratio greater than 1 (or 0 on the log scale) indicates that the
majority group received more positive responses than the mi-
nority group.

It is important to note that some studies in these data pro-
vide multiple effect sizes and are thus non-independent. To
account for these dependencies, (Quillian et al., 2019) used
robust standard errors for the fixed-effects, but a traditional
random-effects model to estimate τ2. As in the previous
example, we eliminate these dependencies by randomly se-
lecting one effect size from each study. We fit a random-
effects model to the remaining 97 effects, but as we have done
throughout this paper, allow for variations in heterogeneity.

Model 1. We estimated two location-scale models, dif-
fering in their mean structures (with and without a modera-
tor). Because both have the same likelihood as Equation (8),
we jump right to the model formulations.

For the i = 1, 2, . . . , 97 independent effect sizes, the mean
structure for model 1, (M1v), is given by

µi = β0 +

8∑
j=1

β jXl
i j + ui (21)

ui ∼ N (0, τ2
i )

where X is the dummy coded design matrix that includes
indicators for each country. Hence, β0 is the overall ef-
fect for the reference category (Belgium). We are not in-
terested in the regression coefficients themselves, but in-
stead the country-specific effects. From Equation (21), we
thus obtain µ̂ for each of the nine countries. For example,
β0 + β j ( j = 1, 2, . . . , 8) corresponds to the overall effect for
each country.

We then predict τ2
i with country as well, that is,

τ2
i = exp

(
γ0 +

8∑
j=1

γ jXs
i j

)
(22)

In this case, γ0 corresponds to heterogeneity on the log-
scale for the reference category (Belgium). We are again
not interested in the contrasts from the reference category,
but instead the country-specific estimates of τ2. For exam-
ple, γ0 +γ j ( j = 1, 2, . . . , 8) corresponds to the heterogeneity
for each country. Together, this baseline model effectively
allows each country to have their own overall effect and het-
erogeneity, whereas the latter was assumed constant for each
country in Quillian et al. (2019).

Model 2. It is common practice to fit a baseline model
without moderators for the overall effect and then compare it
to a model that includes moderators. The idea is to determine
the amount of heterogeneity explained by the moderator, re-
sulting in pseudo R2. We pursue that approach here, but with
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an important extension. Due to the scale sub-model in Equa-
tion (22), each country is permitted to have their own vari-
ance explained (i.e., R2

i ). Accordingly, by adding a predictor
to Equation (21), we can determine how much variance is ex-
plained for each country—perhaps a moderator has explana-
tory power for some but not other countries—which can be
answered with our methodology.

In model 2, M2v, the one modification to M1v is the lo-
cation sub-model in Equation (21). We included an addi-
tional predictor that corresponds to the proportion of the local
(where the study took place) population that was immigrants,
with the coefficient denoted β9. The models were otherwise
identical. As a result, when computing R2

i for each country,
we can determine how much variance in the log discrimina-
tion ratios is explained by how many immigrants there are
in the local area. Again, because we are allowing for vari-
ation in τ2

i , this implies that there can be varying variance
explained, in this case perhaps as a function of country. This
is but one example of the kinds of substantive questions that
can be answered with location-scale modeling.

For comparison purposes, we also estimated the same
models as above, but assuming that τ2 was constant across
the studies (one value for all countries). These are denoted
by M1c and M2c, respectively. These comparison are again
qualitative in nature and are meant to highlight the impor-
tance of thinking about variations in τ2

i . Later on, we discuss
the topic of formal model comparison and selection. The
priors were identical in all models (section Prior Specifica-
tion). The estimation information is provide above (section
Estimation and Software).

Results. We start by looking at the observed effects, yi

(x-axis), in relation to country (y-axis). The idea is to notice
the dispersion (“spread”) of yi within each country (Figure
4, panel A). To the eye, there are striking differences, with,
for example, those effects from Germany spanning from 1 to
1.5, whereas those from France had larger variation, span-
ning from 1 to 5. This goes back to the notion of having
studies from superpopulations that differ in their scale (i.e.,
unequal between-study variance). In this case, it appears the
studies are not sampled from a common population.

Of course, we cannot rely on visual inspection alone to
infer differences between countries in the dispersion of their
effects. Figure 4 (panel B) includes the country-specific esti-
mates of τ, in addition to that obtained from M1c (constant
across studies). While not shown here, there was “signifi-
cantly” more heterogeneity in those effects from France than
several of the other countries.4 This indicates that there are
variations in τ2

i that would be masked by assuming constant
heterogeneity. As shown earlier (e.g., Figure 2), this can im-
pact inference on the overall effect, which follows directly
from considering the total variance of yi (Equations 3 and
6): if τ2 is underestimated (overestimated) for a given coun-
try, then the interval for the overall effect will be too narrow

(wide).
Figure 4 (panel C) includes I2

i that corresponds to the pro-
portion of variability that is due to heterogeneity. This was
computed with Equation (16), where each country had their
own “typical” within-study variance (s2). This is effectively
what would be obtained if separate models were estimated
for each country. The results reveal that a common I2 would
not adequately describe each country. Further, when tak-
ing differences, I2 for both Sweden and France was notably
larger than I2 from some of the other countries.

The next question is how variation in τ2
i , when ignored, af-

fects inference for the overall effect of discrimination. Here
we focus on predictive inference. Figure 4 (panel D) in-
cludes 90% prediction intervals for M1v and M1c. Recall
from above that prediction intervals include additional un-
certainty due to heterogeneity. In this case, if an interval
excludes zero there is a 95% posterior probability (condi-
tional on the model) that a future study will have a posi-
tive effect. There are notable differences between models,
especially when looking to reject zero (not an approach we
recommend in practice). For example, in three countries a
different conclusion would be reached altogether. These dis-
crepant inferences map directly onto the estimate of τ2 in
Figure 4 (panel B). In countries where τ2 was underestimated
in M1c (e.g., France), that is, the corresponding prediction
intervals are narrower compared to those from M1v. This
again follows directly from what is assumed to be the total
variance of yi (e.g., Equation 6).

Variance Explained. To answer a novel research ques-
tion, we added a moderator to the location sub-model of
M1v. The idea is to determine country-specific variance
explained due to the proportion of the local population that
was immigrants. This example therefore demonstrates how
location-scale modeling can provide unique insights, in this
case into discrimination across nine countries in Europe and
North America.

Figure 4 (panel E) includes the posterior distribution for
the moderator effect (denoted β9). The models could again
lead to different inferences, in that the posterior means and
credible intervals were much different (M2v : β9 = 0.98,
90% CrI = [0.39, 1.53] versus M2c : β9 = 0.68, 90% CrI
= [−0.17, 1.52]). This seems to beg the question of which
model is “better.” We intentionally forgo model selection,
because, in our view, this topic deserves more attention than
we can give it here (see the Discussion).

Figure 4 (panel F) includes the estimates of pseudo R2.
The results are quite intriguing. Notice that R2 computed
from M2c was small (≈ 0.02), perhaps reflecting that β9
was not “significant” when assuming constant heterogene-
ity (panel E). In M2v, a much different picture emerged.
Here variance explained ranged from quite a bit (Norway and

4This was computed as the difference between the posterior dis-
tributions of τ2.
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Figure 4. Panel A includes the observed effects (discrimination ratio). Notice that the effects from France appear more
heterogeneous than those from Germany. The scale sub-model in Equation (22) predicted that heterogeneity (τ2) with country.
Panels B and C include the estimates of τ and I2 (Equation 16) from two models. The only difference is that τ2 was either
varying (Mv), because it was predicted with country, or assumed to be constant across countries (Mc). Panel D includes
prediction intervals, where the models would lead to different inferences for several countries, assuming that the goal was to
reject zero. In panels E and F, each model included a moderator in the location sub-model (the proportion of the local areas
population that was immigrants). The posterior distributions for that parameter, β9, are in panel E, again with the models
leading to different inferences. Panel F includes variance explained by the moderator for each country, which apparently
explains a lot of variance for some countries and none for others. The error bars correspond to 90% credible intervals.
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Canada) to none at all (Great Britain and France). There is a
caveat, in that we are relying on mere point estimates which
means we cannot infer which countries are actually different
from one another. Further, it is well known that computing
uncertainty for pseudo R2 is non-trivial. What does seem rea-
sonable, however, is that there are variations in R2

i that would
be missed by assuming a constant between-study variance for
each country.

Discussion

We set out to demonstrate the importance of considering
variations between-study variance. At the outset, we sug-
gested that going beyond τ2 and to τ2

i has serious implica-
tions for meta-analytic practice in psychological science (and
beyond). In a series of examples, we demonstrated that ev-
erything changes when τ2

i is not constant across studies. This
makes sense, because it implies the studies are sampled from
various populations that differ in their heterogeneity. The
goal is to then make inference, given that there are variations
in τ2

i , which has not been considered in the psychological
literature. The changes were not small and passed the inte-
rocular trauma test—the importance hits right between the
eyes.

To summarize, the following points towards the impor-
tance of modeling τ2

i :

1. Heterogeneity can be a function of the study size (Fig-
ure 3), as argued in Bowater and Escarela (2013).
While not reported here, we found this to be the case in
many other datasets. This suggest that meta-analyses
may routinely have the total variance in yi incorrect,
which can compromise statistical inference (Figure 2).

2. Assuming a constant τ2, when this is not the case, can
have a substantial impact on the study-specific esti-
mates and their uncertainty (Figure 3, panel B). Fur-
ther, this can result in improper “borrowing of infor-
mation,” given that a critical assumption of hierarchi-
cal shrinkage is constant heterogeneity (although this
can be relaxed; Figure 3, panel C).

3. Variations in τ2
i can be incorporated into heterogeneity

statistics (Figure 4, panel C) and prediction intervals
(Figure 4, panel D). In essence, when predicting τ2

i
with moderators, this implies that all quantities based
on heterogeneity are then a function of those same
moderators.

4. Computing conditional between-study variance opens
the door to investigating consistency of the effects with
an uncanny level of detail. This was demonstrated in
Figure 3 (panel E), where τ̂2

i was predicted to be large
in small studies and essentially zero in large studies.

5. Although not our focus, scale modeling has an appre-
ciable effect on the location model (e.g., moderators
for the effect size). In each example, assuming the
goal was to reject zero,5 several inferences would have
changed altogether when predicting τ2

i (e.g.. Figure 4,
panel D and E).

The First (and not the) Last Word

This work is the first word on the implications τ2
i . Our re-

sults do, however, provide the foundation for future research
on this topic (including simulation studies). Here we offer
one suggestion. Often, at the end of simulation-based papers,
the take home is that the “true” model is the winner, assum-
ing that there is enough data to estimate it. This is obvious, in
that a model accounting for unequal variances will typically
be better (e.g., having the nominal type one error rate) than
one that does not. This applies to model misspecification
more generally. More useful, in our view, is to investigate
situations in which the scale model can always be included
(whether it is “true” or not). For example, when investigating
whether the effect size is moderated, perhaps that same mod-
erator can be included for the scale. This suggestion is analo-
gous to using the unequal variance t-test by default (Delacre
et al., 2017).

Additionally, an open question is the number of studies
required for location-scale meta-analysis. Here the goal at
hand should be considered. For example, if the goal is to
detect differences in heterogeneity, then many studies will
likely be needed. This is similar to moderators for the effect
size, in that those tests are often under powered (due to few
studies). Alternatively, when the goal is to account for varia-
tions in τ2

i , then power is less of a concern. This is similar in
spirit to the recommendation for choosing a random versus
fixed-effects meta-analysis, as noted in Viechtbauer (2010),
which should be “the type of inference desired before exam-
ining the data” (p. 5).

We intentionally avoided formal model comparison. This
decision was made because we wanted focus on introducing
the method. Here, too, there is much opportunity for future
research. The presented models can be compared with ap-
proximate leave-one-out cross-validation (Gelman, Hwang,
& Vehtari, 2014; Vehtari, Gelman, & Gabry, 2016) or the
Bayes factor (Jeffreys, 1961). In the future, both options will
be implemented in blsmeta.

Prior Specification

We anticipate that the adopted priors will work well in a
variety of situations. An issue can arise when there are few
studies. This is not particular to Bayesian methods, as esti-
mating heterogeneity is difficult in these situations for “fre-
quentist” methods as well (Veroniki et al., 2016). Pragmati-

5We do not recommend this approach to statistical inference.
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cally, one solution is to forgo unconditional inference and to
simply use the fixed-effects model. Although the inference
does not generalize to a (hypothetical) population of studies,
perhaps this is a bridge too far with few studies anyhow. Al-
ternatively, we refer interested readers to Williams, Rast, and
Bürkner (2018), who investigated the properties of weakly
informative prior distributions in meta-analysis.

Often times Bayesian analysis is framed as estimation
(Kruschke & Liddell, 2017) or hypothesis testing (but see
Rouder, Haaf, & Vandekerckhove, 2018). This work is in
the traditions of estimation. Here the priors are important to
consider, but typically the estimates will be similar to “fre-
quentist ” methods when using weakly informative priors,
particularly when the number of studies is large. On the other
hand, in Bayesian hypothesis testing, the prior can play a
much more important role, sometimes leading to a different
conclusion than a null hypothesis significance test (Lindley,
1957). This is not to say it should be avoided altogether.
Rather, it should be noted that formulating meaningful pri-
ors for parameters corresponding to changes in variance (on
the log scale) is a difficult task. Going forward, we plan to
develop a framework for Bayesian testing in location-scale
meta-analysis.

Conclusion

Between-study heterogeneity has traditionally been con-
sidered constant across the studies included in a random-
effects meta-analysis. This implies that the studies are sam-
pled from the same population. Our Bayesian location-scale
model relaxes that assumption. The illustrative examples
highlighted that there can be substantial variations in het-
erogeneity, which necessarily influences the parameter esti-
mates, can be incorporated into commonly used heterogene-
ity statistics, and leads to unique inferences. The methodol-
ogy that made these insights possible is implemented in the
new R package blsmeta.
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