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Abstract
Count data is prevalent in many different areas of lin-
guistics, such as when counting words, syntactic con-
structions, discourse particles, case markers, or speech 
errors. The Poisson distribution is the canonical distribu-
tion for characterising count data with no or unknown 
upper bound. Given the prevalence of count data in 
linguistics, Poisson regression has wide utility no mat-
ter what subfield of linguistics is considered. However, 
in contrast to logistic regression, Poisson regression is 
surprisingly little known. Here, we make a case for why 
linguists need to consider Poisson regression, and give 
recommendations for when Poisson regression is more 
appropriate compared to logistic regression. This tutori-
al introduces readers to foundational concepts needed 
to understand the basics of Poisson regression, followed 
by a hands-on tutorial using the R package brms. We 
discuss a dataset where Catalan and Korean speakers 
change the frequency of their co-speech gestures as a 
function of politeness contexts. This dataset  also in-
volves exposure variables (the incorporation of time to 
deal with unequal intervals) and overdispersion (excess 
variance). Altogether, we hope that more linguists will 
consider Poisson regression for the analysis of count 
data.
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1 | INTRODUCTION

Counting the frequency of discrete events is fundamental to much research in linguistics. Ex-
amples include counting the number of pronouns in different referential contexts, the number 
of speech errors as a function of language disorders, or the number of co-speech gestures in 
different social contexts. Count data is also of pivotal importance to corpus linguistics, where 
the analysis of word frequencies takes centre stage. Poisson regression, a specific instance of the 
class of generalised linear models (GLMs), is the canonical way of analysing count data with no 
or no known upper bound in many different fields outside of linguistics (McElreath, 2020; Zuur 
et al., 2009). Surprisingly, despite the ubiquity of count data in linguistics, Poisson regression is 
used only very little, and most statistics textbooks targeted at linguists do not even mention the 
approach (Brezina, 2018; Desagulier, 2017; Gries, 2017; Levshina, 2015; Wallis, 2021). Here, we 
make a case for incorporating Poisson regression more strongly into the statistical analysis toolkit 
of linguists.

The field of linguistics is rapidly moving away from traditional significance tests towards ap-
proaches that emphasise statistical modelling (rather than testing) and parameter estimation. In 
particular, arguments for linear mixed effects models, also discussed under the terms of ‘hierar-
chical’ or ‘multilevel’ models, have been made in psycholinguistics (Baayen et al., 2008), sociolin-
guistics (Johnson, 2009; Tagliamonte & Baayen, 2012), corpus linguistics (Gries, 2015), phonetics 
(Kirby & Sonderegger,  2018; Vasishth et  al.,  2018), and typology (Jaeger et  al.,  2011), among 
others (for an overview, see Winter & Grice, 2021). Poisson regression fits naturally within this 
trend because Poisson models can also be fitted as mixed models, thereby allowing researchers 
to model count data while also incorporating complex dependency structures into the analysis.

After a brief primer on GLMs and Poisson regression (Section 2), we guide the reader step-
by-step through a mixed Poisson regression analysis implemented in R (R Core Team, 2019) and 
the package brms (Bürkner, 2017) (Section 3), which the reader can follow alongside a full data 
analysis script that is available in the accompanied Open Science Framework repository (https://
osf.io/ugpfd/). We conclude by discussing additional issues that may come up in the analysis of 
count data, as well as discussing frequently asked questions (Section 4).

2 | CONCEPTUAL INTRODUCTION TO POISSON REGRESSION

We begin by considering the Poisson distribution. In contrast to the normal or Gaussian distribu-
tion, which has two parameters (a mean E  ‘mu’ and a standard deviation E  ‘sigma’), the Poisson 
distribution has only one parameter, E  ‘lambda’. This parameter specifies the mean and variation 
(see below) of a count process. Lambda can be thought of as being analogous to the mean of the 
normal distribution, as it describes the mean number of occurrences of discrete events. So, the 
mean of any variable for which a researcher is counting discrete units (e.g., words, sentences, 
grammatical markers, gestures, and so on) is principally amenable to being modelled in terms of 
the parameter lambda (see Section 4.2 for cases that are more appropriate for logistic regression).

Figure 1 visualises the Poisson distribution for two different lambda values, with the x-axis 
indicating the possible outcomes (discrete integer counts), and the y-axis indicating the expected 
probability of each discrete count.

The normal distribution has the standard deviation E  as a parameter, modelling the variance 
or ‘spread’ of this distribution. In contrast, the Poisson lacks a separate parameter for the vari-
ance. Instead, the variance is tied to the mean E  , with the assumption that they are equal. The 
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dependence of mean and variance is also apparent in Figure 1, where the blue distribution is 
more fanned out than the yellow one. Because counts are bound by zero, counts with very low 
rates scrunch up close to zero. Higher counts go along with more variance because there is ‘space’ 
for the probability to be spread across high counts as well as low counts.

While the Poisson distribution may visually appear quite similar to the normal distribution 
for high lambda values, this similarity is deceiving. The distributions fundamentally differ in that 
the normal distribution is a continuous one, whereas the Poisson distribution is discrete. That 
is, whereas the normal distribution allows values in between positive integers (e.g., values in 
between 1 and 2), this is not the case for the Poisson. If one were to use the normal distribution 
for discrete count data, the data-generating process would not be correctly identified because the 
normal distribution can generate values that could not possibly be counts. In the example above, 
we explicitly chose lambda values with decimals to underscore the point that in contrast to the 
discrete counts, lambda is a continuous parameter.

In this tutorial, we demonstrate the utility of Poisson regression with a study that seeks to 
analyse the co-speech gestures used by Catalan and Korean speakers. The data comes from a dy-
adic task performed by Brown et al. (in press) in which participants first watched a cartoon and 
subsequently told a partner about what they had seen. The research question was whether the 
social context modulates people's politeness strategies, including nonverbal politeness strategies, 
such as changing the frequency of one's co-speech gestures. The key experimental manipulation 
was whether the partner was a friend or a confederate, who was an elderly professor. We ignore 
language differences for the time being and focus on the condition manipulation.

Framed in terms of the Poisson distribution, the goal of the analysis of count data is to es-
timate the parameter E  from the data. In the case of the multimodal data from Brown et al. (in 
press), E  specifies the mean number of gestures, and the goal is to use regression to see to what 
extent this number differs as a function of two conditions (friend/professor). We first begin by 
considering Gaussian linear models before moving into Poisson models. Linear models are a 
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F I G U R E  1  Counts with their associated probabilities expected under the Poisson distribution for two 
different values of lambda; yellow: λ = 0.5; blue: λ = 4.2



general approach to data analysis that can cover many of the cases commonly dealt with by run-
of-the-mill significance tests such as t-tests, ANOVAs, ANCOVAs etc., but they have the clear ad-
vantage of emphasising parameter estimation over testing, and they are a more flexible approach 
to data analysis that allows building more complex, theory-guided models.

A linear model involves a response variable ( E y ) conditioned on a predictor variable ( E x ):

 
  

 

Normal( , )i i

i i

y
x (1)

The first statement specifies that E y values are assumed to be generated by draws from a nor-
mal distribution with a specified mean and standard deviation. The mean iE  bears the subindex i, 
which is an index variable for the ith data point, i = 1, i = 2 etc. This subindex expresses the fact 
that the parameter of interest changes as a function of what data point is considered, such as de-
pending on the value of a predictor (e.g., condition A vs. condition B). The function by which the 
mean varies is    i iE x  , corresponding to the equation of a line, involving a linear combina-
tion of an intercept E  and a slope E  that is multiplied with a predictor x. In the context of GLMs, 
this right-hand side is called the linear predictor. The slope of the linear predictor specifies how 
much the mean E  changes as a function of one or more predictors, x. In many practical applica-
tions, researchers are primarily interested in interpreting these slopes, which specify the relation 
between the parameter of interest ( E  ) and the predictor variables, such as how response times, 
ratings, or voice pitch measurements differ as a function of a condition predictor.

Besides Gaussian linear regression, logistic regression and Poisson regression are two com-
mon versions of the GLM, among many others. Figure 2 shows the parallel architecture of the 
three most canonical GLMs. In each case, there is a linear predictor (   iE x  ) that predicts a 
parameter of interest: the mean E  of the normal distribution, the probability p of an event occur-
ring of the Bernoulli distribution,1 and finally, E  of the Poisson distribution, the mean of a count 
process.

A key difference between standard linear regression and other GLMs is that logistic regres-
sion and Poisson regression need an extra step to ensure that the linear predictor   iE x  pre-
dicts only sensible parameter values. The issue is that the parameter p of the Bernoulli/binomial 
distribution is a probability, so it has to be bounded by [0, 1]. Likewise, the parameter E  of the 
Poisson distribution has to be positive as the mean of a count process cannot sensibly be negative. 
Because the output of   iE x  can be any value ranging from negative to positive infinity, a ‘link’ 
function is introduced to ensure that only sensible parameter values are allowed. In the case of 
logistic regression, the logistic function ensures that values from negative to positive infinity are 
compressed into the range [0, 1]. In the case of Poisson regression, the exponential function is 
introduced to ensure that the output of   iE x  is always positive (exponentiating any number 
always yields a positive number).
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F I G U R E  2  Overview of three common generalised linear models



We can then formulate a simple Poisson regression model with one predictor (x) as follows:
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   (2)

Notice that the y's are draws from the Poisson distribution, that is, they will always be positive 
integers. In contrast, the parameter lambda is continuous-valued and positive.

To interpret the intercepts and slopes of this model more directly, a more useful representation 
of the above model ‘frees’ the linear predictor from the exponential function. This can be done by 
logarithmically transforming both sides of the equation (as the logarithmic is the inverse of the ex-
ponential function), which results in the following representation of our Poisson regression model:
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x
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Poisson(
  

)

log( )
 (3)

In the case of the multimodal politeness example, the predictor E x specifies the main condi-
tion variable—whether the participant is speaking to a friend or a professor. The slope E  then 
describes the difference between these two conditions. As we discuss below, it is important to 
keep in mind that in the context of Poisson regression, the slope term E  does not describe the raw 
difference in gesture counts between conditions, but the log difference. This means that special 
care needs to be taken when interpreting the output of Poisson regression models, which we 
discuss in more detail in the following hands-on tutorial.

3 | A HANDS-ON POISSON REGRESSION ANALYSIS EXAMPLE

3.1 | Software and Bayesian modelling

The following hands-on example uses the brms package (Bürkner,  2017), which stands for 
‘Bayesian regression models using Stan’, to implement a mixed Poisson regression model of co-
speech gesture data. ‘Stan’ is a probabilistic programming language specifically designed for 
Bayesian data analysis (Stan Development Team, 2021). brms acts as an R interface with Stan. 
Its syntax was inspired by the widely used lme4 package (Bates et al., 2015). Users familiar with 
fitting mixed effects models with the lme4 package can thus easily switch to fitting the corre-
sponding Bayesian mixed effects models.

There are several reasons for us to use brms rather than lme4 for this tutorial. One practical 
reason is that brms gives more flexibility in the types of distributions and model types that can 
be used (see Bürkner, 2017, tab. 1), as will become clear in the hands-on tutorial below. Another 
practical reason is that complex random effects structures that are often required for linguistic 
data analysis often do not, or not easily, converge with lme4. In contrast, complex random effects 
structures are more likely to converge when fitting Bayesian models (Eager & Roy, 2017; Kimball 
et al., 2019; Sorensen & Vasishth, 2015).

On top of these purely practical considerations, there are many conceptual reasons to pre-
fer Bayesian models over the corresponding frequentist models, such as implemented in lme4. 
In particular, the results of analyses involving p-values are widely misinterpreted (Haller & 
Krauss,  2002; Schneider,  2015), including by experienced statisticians (Lecoutre et  al.,  2003; 
McShane & Gal,  2017). In fact, the notion of significance is so counterintuitive that the ma-
jority of introductory textbooks explain it incorrectly (Cassidy et al., 2019). As people natural-
ly veer  towards a Bayesian interpretation of frequentist statistics (e.g., Dienes, 2011; Lecoutre 
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et al., 2001; Morey et al., 2016), more and more researchers call for using those methods that 
actually correspond to people's natural intuitions. Bayesian modelling also allows the incorpora-
tion of prior knowledge via the specification of prior distributions, which has several advantages 
for more theory-guided statistical modelling. Among other things, it allows specifying models in 
such a way that inferences are more conservative than the corresponding frequentist models (cf. 
Lemoine, 2019; McElreath, 2020), as we also detail below.

While this tutorial uses Bayesian models, the reader does not need to be familiar with Bayes-
ian modelling until the section that deals with prior specification. Luckily, as Bayesian methods 
are increasingly gaining traction in linguistics, there are by now numerous tutorials available. 
For an accessible conceptual introduction, see Nicenboim and Vasishth (2016). For an easy intro-
duction to analysing linguistic data with mixed effects models and brms, see Franke and Roett-
ger (2019). More advanced introductions with hands-on examples include Vasishth et al. (2018) 
and Nalborczyk et al. (2019). For excellent conceptual introductions to Bayesian statistics with a 
psychological orientation, see Dienes (2008) and Kruschke and Liddell (2018). For a full course 
in Bayesian statistics, we highly recommend McElreath's book-length treatment (2020).

3.2 | A simple Poisson regression model

The data for the following analysis is accessible here: https://osf.io/ugpfd/. To begin our analysis, 
we first load the tidyverse package for data processing (Wickham et al., 2019), as well as brms. 
We consistently use tidyverse-style code throughout this tutorial, for which Wickham and Grole-
mund (2016) give an excellent book-length introduction.

In the following, code in bold face is user input.

library(tidyverse)
library(brms)

Next, we load the data from a comma-separated spreadsheet and assign it to a tibble called 
'dyads'.

dyads <- read_csv('dyads.csv')

We can use sample_n() to print four random rows to the console to get a first impression 
of this dataset:

sample_n(dyads, 4)
# A tibble: 4 × 6

There are two data points per participant, one from the friend condition, and one from the 
professor condition. The 'ID' column lists participant identifiers for all 27 participants (14 
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ID context dur language gender gestures
<chr> <chr> <dbl> <chr> <chr> <dbl>
1 Catalan_2 prof 107 Catalan F 40
2 Korean_6 friend 87 Korean F 26
3 Catalan_1 friend 137 Catalan M 61
4 Korean_3 prof 138 Korean F 49
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Catalan speakers and 13 Korean speakers). The 'gestures' column contains the primary re-
sponse variable that we are trying to model, the number of gestures observed on each trial. The  
'context' predictor specifies the social context that was experimentally manipulated.

In the following, we start with a simple Poisson regression model to explain certain aspects 
of GLM before proceeding to mixed models. This progression is for pedagogical purposes only, 
and we do not wish to imply that researchers should explore a whole range of models. The read-
er should consider, as much as possible, what model may be appropriate prior to beginning the 
analysis. The process of expanding a model should be guided by posterior predictive simulations 
(Gelman & Shalizi, 2013; Kruschke, 2013), which we detail below.

For our first and most simple model, we can condition the count of gestures on the  
'condition' predictor with a Poisson regression model using the brm() function as follows:

mdl <- brm(gestures ~ 1 + condition, data = dyads,
family = poisson)

The '1' in the above function call corresponds to the intercept (R uses the number 1 as a 
default placeholder for intercepts in all linear model formulas), and the 'condition' term 
corresponds to the predictor variable. It is possible to omit the intercept term and use the model 
formula 'gestures ~ condition', for which the intercept is fitted automatically. However, 
the above notation is more explicit, making it clearer that there are two terms in this equation.

Typing mdl into the console returns a summary output, of which we show here an abbreviated 
coefficient table. This coefficient table is based on the posterior distribution, the principal outcome 
of fitting a Bayesian model. Each estimated parameter is associated with such a distribution. This 
posterior distribution is a probability distribution that indicates how probable particular parame-
ter values are, given the model specification (including the priors), and given the evidence from 
the data. For example, the posterior distribution for the slope coefficient tells the analyst which 
coefficient values are more or less probable. The coefficient table below lists the posterior mean 
(point estimate) of each term and the associated standard error, which is the standard deviation of 
the posterior distribution. The output also shows the 95% credible interval of each coefficient. In 
Bayesian statistics, credible intervals indicate the range within which a parameter value falls with 
a particular probability. More narrow credible intervals indicate higher precision in one's estimate.

mdl

We can combine the estimates for the intercept and slope together in the following equation 
of the mean (log) number of gestures in each condition:

log( )   3 99 0 18. . context (4)

R uses treatment coding by default to ‘dummy code’ categorical predictors into 0's and 1's. For 
this, whatever comes first in the alphabet will be assigned 0, the reference level. For the categor-
ical variable 'context', R will assign 0 to the 'friend' level and 1 to the 'prof' level. The 
negative slope (−0.18) therefore means that the number of gestures is estimated to be less in 
the professor condition.
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Estimate Est.Error l-95% CI u-95% CI

Intercept 3.99 0.03 3.93 4.04
contextprof −0.18 0.04 −0.26 −0.10



The brms package has several functions that make it possible to interpret the model's predic-
tion on the original count scale. One of these functions is conditional_effects(), which 
can simply be wrapped around the model object as follows, which yields Figure 3.

conditional_effects(mdl)

In addition, the hypothesis() function provides a generic framework for using the model 
to evaluate specific hypotheses. This function also makes it possible to compute values on the 
original count scale from the model. The function takes two arguments: the model object and a 
character vector of the hypothesis to be evaluated. The following two lines of code first define 
a character vector h specifying the hypothesis to be evaluated. Then this vector is given to the  
hypothesis() function together with the model to evaluate the specified hypothesis.

h < - 'exp(Intercept + contextprof * 1) = exp(Intercept + contextprof * 0)'
hypothesis(mdl, h)
Hypothesis Tests for class b:

For this particular hypothesis, we wrapped the linear predictor ‘  E  ’ in the exp() function 
to indicate that we want the hypothesis function to report values on the original count scale, 
rather than logged values. This effectively undoes the effects of the log link function. We plug 
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F I G U R E  3  Conditional effects plot of the Poisson regression model; the error bars display 95% credible 
intervals; the dots represent posterior medians
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in the values 0 (= friend) and 1 (= professor) of the dummy-coded categorical predictor. Thus, 
the left-hand side 'exp(Intercept + contextprof * 1)' corresponds to the prediction 
for the professor condition; the right-hand side 'exp(Intercept + contextprof * 1)' 
corresponds to the prediction for the friend condition. The results (abbreviated output shown) 
indicate that the raw difference between the condition is 8.76 gestures, with a credible interval 
spanning from 5.02 to 12.64.

3.3 | Extending the Poisson regression model with random effects

The above model does not account for the fact that there are repeated observations for speakers. 
Different observations from the same individual cannot be treated as independent data points, 
which warrants the inclusion of a speaker random effect,2 which is done in the following func-
tion call:

mdl <- brm(gestures ~ 1 + context + (1|ID),
data = dyads, family = poisson)

The notations for '(1|ID)' follow the general lme4 notation for random effects (Bates 
et al., 2015; Bürkner, 2018). This model adds one random intercept term to the model. In con-
trast to the previous model without this term, this model (which is now a mixed Poisson regres-
sion model) does not assume that all participants have the same intercepts, allowing for some 
participants to have higher/lower intercepts (= higher/lower gesture counts) than others. As 
a result of adding this random effect, the output now lists a standard deviation under section 
'Group-Level Effects', where random effects are listed. This standard deviation is an 
estimate of by-participant variation in intercepts.

mdl
Group-Level Effects:
~ID (Number of levels: 27)

While intercepts vary by participants within this random intercept-only model, the degree 
to which participants respond to the condition manipulation is assumed to be fixed, that is, all 
participants change the rate of co-speech gestures the same way when speaking to the professor. 
This is clearly an unrealistic assumption to make as social contexts can be expected to have differ-
ent effects on different people. It seems highly probable that some people would change gestures 
more than others when speaking with different partners, which warrants the inclusion of ran-
dom slopes. The next model incorporates by-participant variation in the condition manipulation 
via the '(1 + context|ID)' term:

mdl <- brm(gestures ~ 1 + context + (1 + context|ID),
data = dyads, family = poisson)
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Estimate Est.Error l-95% CI u-95% CI

sd(Intercept) 0.50 0.08 0.37 0.68



This random slope model now has additional random effects terms listed in the output:

~ID (Number of levels: 27)

The first new term 'sd(contextprof)' is an estimate of the standard deviation across 
condition slopes, thereby showing how much participants' mean number of gestures differ in 
response to social context. The third term is a random intercept/slope correlation term that can 
be interpreted like Pearson's r. In this case, this term estimates the degree to which participant 
variation in intercepts is associated with participant variation in slopes. A large intercept/slope 
correlation would indicate that people who produce overall more gestures (= higher intercepts) 
also show bigger differences between the friend and professor conditions (with the sign indi-
cating the direction of the difference). However, in this case, the 95% credible interval of this 
parameter is quite wide [−0.26, 0.70], suggesting that there is no convincing evidence for a slope/
intercept correlation with this data. Importantly, in what follows, we will stick to the random 
slope model, which not only is motivated on theoretical grounds (it makes sense to assume that 
people could differ in how social context affects gesture rate), but also because models without 
important random slopes terms can lead to severely anti-conservative estimates of fixed effects 
terms (Aarts et al., 2015; Barr et al., 2013; Schielzeth & Forstmeier, 2008).

3.4 | Incorporating exposure information with offset terms

The task used by Brown et al. (in press) allowed participants to talk with their partner for as 
long as they wished. This means that trials had differing durations. When analysing count data, 
it is crucial to account for unequal intervals, given that counting for longer intervals is generally 
expected to lead to higher counts. Time can be incorporated into a Poisson regression model as 
an ‘exposure variable’. To incorporate time into the model, we can think of lambda as being the 
ratio of the average counts E  over time, for which we use the symbol E  ‘tau’ in the equation below.

  


 
  

 
log log (5)

Replacing  logE  in Equation (3) with   log /E  and rearranging3 yields the following model 
with exposure term (random effects omitted for ease of presentation).

        log log x (6)

Thus, the log time variable is a term on the right-hand side of the equation, but in contrast to 
the predictors, the exposure variable is associated with a regression coefficient that is fixed to 1. 
In brms, adding an exposure variable involves adding an 'offset()' term as follows:

mdl <- brm(count ~ context + offset(log(dur)) +
(1 + context|ID),
data = dyads, family = poisson)
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Estimate Est.Error l-95% CI u-95% CI

sd(Intercept) 0.46 0.08 0.34 0.63

sd(contextprof) 0.29 0.07 0.16 0.45
cor(Intercept, contextprof) 0.26 0.25 −0.26 0.70



A look at the coefficients shows that the resultant numbers have drastically changed. For 
example, the intercept was previously -3.99 and is now -0.97. This change in value has to do 
with the fact that the model with an exposure term models a different quantity, not the counts 
but the counts over units of exposure. That is, in this case, the model with the time offset variable 
models gestures per second, rather than just the average count of gestures.

mdl

To calculate the predicted rate of gestures (rather than the log rate), we can again use the  
hypothesis() function. To demonstrate the flexibility of this function, this time around we 
calculate the values separately for each condition, which requires specifying separate ‘hypothe-
ses’ for the friend and professor conditions. Notice that we have to introduce some sort of equal-
ity (in this case = 0) for the function to work, as it expects input that can be interpreted as a 
hypothesis to be tested. The output (not shown here) reveals that the estimated rate of gestures 
in the friend condition is 0.38, in contrast to 0.34 for the professor condition. Thus, there was on 
average about 1 gesture every three seconds in the professor condition, and slightly more than 
that in the friend condition. These numbers are much lower than the values shown in Figure 3 
because they now correspond to rates of gestures rather than counts of gestures.

friend_h <- 'exp(Intercept + contextprof * 0) = 0'
hypothesis(exposure_mdl, friend_h)

prof_h <- 'exp(Intercept + contextprof * 1) = 0'
hypothesis(exposure_mdl, prof_h)

3.5 | Dealing with overdispersion with negative binomial regression

As mentioned above, for the Poisson distribution, the mean is equal to the variance. In the 
context of the Poisson distribution, the variance is also called ‘dispersion’. When the variance 
of counts exceeds what is expected under the mean, we speak of ‘overdispersion’. To esti-
mate whether there is excess variance, we can switch the above model to what is variously 
either called the ‘negative binomial distribution’ or the ‘gamma-Poisson distribution’. The 
key difference between the negative binomial distribution and the Poisson distribution is the 
inclusion of an additional parameter, often symbolised as E  ‘phi’ or in brms called ‘shape’, 
which directly estimates dispersion from the data. Making the dispersion E  a parameter that 
is estimated from the data relaxes the ‘mean  =  variance’ assumption of standard Poisson 
regression.

To implement this in brms, all that is needed is to switch the 'family = poisson' ar-
gument to 'family = negbinomial'. For negative binomial regression, the shape parame-
ter which characterises overdispersion (discussed below) can also scale with the rate/exposure. 
Because of this, the syntax for the exposure variable is different from the case of Poisson model 
above.
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Estimate Est.Error l-95% CI u-95% CI

Intercept -0.97 0.07 -1.12 -0.82
contextprof -0.12 0.06 -0.23 -0.01



negbinom_mdl <- brm(gestures | rate(dur) ~ 1 + context +
(1 + context|ID),
data = dyads,
family = negbinomial)

The output now contains an additional line with an estimate of the shape parameter.

Family Specific Parameters:

The less overdispersion there is in the data, the higher the shape parameter. Conversely, smaller 
shape parameters correspond to more overdispersion. To gain an intuition about this parameter, Fig-
ure 4 shows the negative binomial distribution for a mean of 4 with two different shape parameters; 
shape = 1 and shape = 100. The higher shape parameter creates a distribution that looks almost indis-
tinguishable from the Poisson distribution shown in Figure 1 (blue). In the limit, as the shape param-
eter moves closer to infinity, the negative binomial distribution converges on the Poisson distribution.

As the standard link function for negative binomial models is the same as the one for Poisson 
regression (the log link function), the model coefficients can be interpreted the same way.

To assess whether there is enough overdispersion in the data to warrant moving from Poisson 
regression to negative binomial regression, we can perform model comparison using (approxi-

Estimate Est.Error l-95% CI u-95% CI

shape 19.45 40.08 0.30 138.68

Estimate Est.Error l-95% CI u-95% CI

Intercept -0.97 0.08 -1.12 -0.82
contextprof -0.12 0.06 -0.23 -0.01
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mate) leave-one-out cross-validation (LOO-CV) (Vehtari et al., 2017).4 In using LOO-CV, we are 
evaluating models based on how well they predict unseen data. For more detailed descriptions 
with linguistic applications, see Vasishth et al. (2018) and Nalborczyk et al. (2019). We can per-
form LOO-CV separately for each model as follows:

pois_loo <- loo(mdl)
negbinom_loo <- loo(negbinom_mdl)

The comparison between the two models is performed with loo_compare():

loos <- loo_compare(pois_loo, negbinom_loo)
loos

ELPD stands for ‘expected log-predictive density’; it is a measure of the expected predictive ac-
curacy of the model, that is, it estimates how well the model is expected to predict unseen data. The 
model in the first row is always taken as the baseline and the model with the highest ELPD value in 
the comparison set. This means that in this particular case, the negative binomial model performs 
slightly better than the Poisson model. However, this difference is negligible. The loo_compare() 
function also provides estimates of uncertainty in the resultant LOO-CV criteria, which can be used 
to assess whether the differences between models are reliable. In this case, the difference in predic-
tive power between the two models is negligible (elpd_diff = −0.1) and associated with a compara-
bly large standard error (se_diff = 0.7), suggesting that the Poisson model and the negative binomi-
al model do not differ much from each other. This may lead one to consider using a Poisson model 
because it is the simpler model (one parameter less is being estimated) that performs about equally 
well in terms of predictive accuracy. However, there also would not be much harm by fitting a neg-
ative binomial model, which only includes one additional term, but importantly it has the flexibility 
of capturing overdispersion if it is present in the data. Linguistic data is very often overdispersed (for 
examples, see e.g., Bentz & Winter, 2014; Winter et al., 2018), and we recommend that if a researcher 
is in doubt about which model should be used, a negative binomial model is most often the more 
conservative choice and a sensible default to account for possible overdispersion.

3.6 | Incorporating weakly informative priors

So far, we have neglected a major advantage of Bayesian modelling because we have not specified 
any priors, a key component of Bayesian inference. Priors embody assumptions about plausible 
parameter values that are specified based on domain knowledge, such as drawn from the existing 
literature. Priors can vary in how specific or ‘informative’ they are, with more informative priors 
embodying stronger pre-existing information, which puts stronger constraints on what can be 
learned from the data.

Noninformative priors are priors where the range of uncertainty in a parameter's value is larger 
than any plausible parameter value. Using such noninformative priors effectively negates a key 
advantage of using Bayesian statistics (Lemoine, 2019) as it means that posterior estimates of pa-

elpd_diff se_diff

negbinom_mdl 0.0 0.0
mdl -0.1 0.7
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rameter values are almost entirely driven by the data. This feature of noninformative priors means 
that the corresponding models have a tendency to overfit (Lemoine, 2019; McElreath, 2020), which 
is also a characteristic of the corresponding frequentist models (such as fitted with lme4), which 
assume that all values are equally likely a priori. In contrast, ‘weakly  informative priors’ allow in-
corporating ‘mild skepticism’ (McElreath, 2020, p. 214) into the model while at the same time not 
imposing constraints that are too strong (e.g., wholly ruling out specific values). The use of weakly 
informative priors is generally recommended, but it is especially important in the case of small 
samples, as are often dealt with in linguistic data. This is because estimates from small samples 
are inherently more variable compared to the population they are drawn from, which means that 
extreme values should be penalised more strongly. Weakly informative priors are an excellent way 
to prevent overfitting, especially when sample size is small.

What counts as a ‘weakly informative prior’ depends on the parameter to be estimated and 
the given model (Gelman et al., 2017). Here, we discuss what is perhaps the most important prior 
from the analyst's perspective, which is the prior of the slope term—the difference between the 
friend and professor condition. By setting a normally distributed prior centred at zero on this 
slope term, the posterior estimates will be shrunken towards zero compared to a model that 
assumes that all slope values are equally likely. This embodies the view that unrealistically large 
effects, especially if they are based on small sample sizes, should be constrained (Lemoine, 2019). 
Thus, weakly informative priors allow making models more conservative than the corresponding 
frequentist models that uses noninformative priors, thereby improving out-of-sample predictions 
and reducing the probability of Type I errors.

Some possible prior choices for the slope term of the above model are visualised in Figure 5, 
which shows three normal distributions centred at zero differing only in their standard devi-
ations. The very wide prior (dotted line) corresponds to SD = 2; the solid line corresponds to 
SD = 1; the dashed line to SD = 0.5. The narrower the standard deviation, the more strongly the 
model assumes that slopes are closer to zero prior to having seen the data.

In this case, we went with SD = 0.5. Using the 68%–95% heuristic of the normal distribution 
as a guide, this embodies the prior belief that 68% of all slope values on the log scale would fall in 
between [−0.5, +0.5] (one standard deviation away from a zero difference), and 95% would fall in 
between the interval [−1, +1] (two standard deviations away from the mean). It is important to real-
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ise here that this is the prior of the slope, which in this case is the difference between the polite and 
non-polite conditions on the log scale. So, a normally distributed prior with SD = 0.5 means that the 
model assigns high probability (0.95) to differences ranging from −1 to +1 on a log scale. This prior 
specification correspondingly assigns low probabilities to very large differences exceeding this range.

An issue with choosing priors in the case of a GLM is that we have to keep the link function in 
mind (Lemoine, 2019). Because the log link is a nonlinear transformation, the same slope coefficient 
may result in different condition differences depending on the value of the intercept. For example, 
if we assume an intercept of −1 (similar to the model reported above), a prior of SD = 0.5 would 
mean that 68% of all differences would fall in between exp(-1 + 0.5) and exp(-1 – 0.5), 
which is between ~0.22 (about 1 gesture every five seconds) and ~0.60 (about 3 gestures every five 
seconds). Thus, SD = 0.5 is already quite a wide prior, allowing for a whole range of differences 
between the conditions. Nonetheless, it is more conservative than a fully noninformative prior and 
estimates of the main condition effects will be slightly shrunken towards zero, which is an appro-
priate degree of scepticism when working with a relatively small dataset like the present one. For a 
more detailed tutorial discussion on prior choice, see Lemoine (2019), as well as Schad et al. (2021).

We specify the prior outside of the brms() function call as follows:

weak_priors <- prior(normal(0, 0.5), class = b)

Refitting the above (negative binomial) model with the prior argument set to  
weak_priors yields the following new coefficient estimates:

Population-Level Effects:

Notice that in this particular case, the point estimate of the condition effect (-0.11) is nearly 
identical compared to the previous negative binomial model. It is important to stress that the 
impact of priors depends on the sample size: prior choices tend to matter progressively less the 
more data there is. For a ‘consumer's guide to weakly informative priors’ with detailed recom-
mendations for making choices, see Lemoine (2019).

In a Bayesian framework, all model parameters (including the random effects terms, the shape 
parameter in a negative binomial regression etc.) are associated with priors. brms has weakly or 
non-informative default prior choices (Bürkner, 2017) that can be interrogated with the function 
prior_summary(), but researchers can (and most often should) specify priors for all model pa-
rameters by hand to exercise control over model assumptions. In the context of a mixed model, 
for example, researchers also need to specify priors for the random effect terms as well. A detailed 
discussion of these additional prior specifications is beyond the scope of this paper, but we refer 
the reader to Vasishth et al. (2018) and Nalborczyk et al. (2019), who provide introductions with 
linguistic examples.

3.7 | Posterior predictive checks

Posterior predictive checks are a basic way of assessing model adequacy in a Bayesian framework 
(Gabry et al., 2019; Gelman et al., 2020). The purpose of performing posterior predictive checks 

Estimate Est.Error l-95% CI u-95% CI

Intercept -0.97 0.08 -1.12 -0.82
contextprof -0.11 0.06 -0.23 0.00
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is to look for any major discrepancies between the real data and the data simulated from the 
model. If there are major discrepancies, the model is highly unlikely to be close to the true (but 
unknown) data generating process, which is an argument for revising the original model. The 
following code executes posterior predictive checks for 100 posterior simulations based on the 
negative binomial model specified above.

pp_check(negbinom_mdl, ndraws = 100,
type = 'ecdf_overlay')

The pp_check() function allows a number of different visualisation types. Here we specify 
the argument type = 'ecdf_overlay' to return an empirical cumulative distribution func-
tion (ECDF). By default, pp_check() returns a smoothed output which may be inappropriate 
for discrete data, such as count data. The ECDF plot shown in Figure 6 results from the function 
call above and can be interpreted as follows: The y-axis indicates the proportion of values falling 
below a value on the x-axis. For example, for a count of 50 on the x-axis, the proportion is about 
0.5, indicating that about 50% of all observed counts fell beneath this value. The distribution 
function converges on 1.0 for values of 100, indicating that almost all observed counts were lower 
than that. The blue lines represent the simulated data, the black lines the actual data. What we 
are looking for is that the black line (the cumulative distribution function of the data) could rea-
sonably fall within the simulated data. This appears to be the case for this data, suggesting that 
the model could reasonably have generated the data.
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3.8 | Inference

There are many ways of performing inference with Bayesian models, as well as many dif-
ferent ways of assessing model performance via different criteria (Navarro,  2019; Vehtari 
et al., 2017). Here, we merely focus on interpreting the posterior estimates, the most basic 
aspect of interpreting the implications of one's model. We discuss two ways to communicate 
uncertainty in the parameter estimates to an audience. First, by communicating information 
about the posterior distribution, using 95% Bayesian credible intervals and visualisations of 
the posterior distribution. Second, by computing posterior probabilities for specific compar-
isons of interest.

Figure 7 shows the posterior distribution for the condition difference. This distribution clear-
ly shows that positive values (more gestures in the professor condition) are not entirely ruled out, 
but overall, it is much more plausible that participants gestured less in the professor condition.

We can also calculate the posterior probability of the effect being of below zero with the  
hypothesis() function as follows:

hypothesis(negbinom_mdl, 'contextprof < 0')

The resulting output shows that, given this model specification and data, the estimated poste-
rior probability of the condition effect being of the same sign is    0 0.98E p  . While posterior 
probabilities may be appealing to researchers as single-number summaries for specific hypoth-
esis tests, these should always be reported together with at least 95% credible intervals (or some 
other percentage interval, see McElreath, 2020). Even better is to present a full visualisation of 
the posterior distribution.

This completes our introductory analysis. In the following, we discuss common questions 
that we anticipate the reader may have.
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4 | ANTICIPATING COMMON QUESTIONS AND EXTENSIONS

4.1 | Can't I just log-transform counts?

When analysts new to Poisson regression hear that these models estimate the log rate of a 
count process, they often wonder whether one could apply standard linear regression to 
log-transformed counts. There are several reasons why this is not advisable (cf. O'hara & 
Kotze, 2010): First, conceptually, a simple linear regression of a log-transformed count variable 
models a different quantity—log counts—and not the primary quantity of interest (the actual 
counts). The Poisson model directly relates to the count process, which is different from ap-
plying linear regression to log counts. Second, log-transforming counts runs into issues when 
there are zeros in the data, since zeroes cannot be log-transformed (log(0) = −infinity). Third, 
due to the natural bounds of count data discussed above, there will often be heteroskedasticity 
(unequal variance) across the range of the predictor, even after log-transforming. This means 
that log transformed count data will frequently violate the homoscedasticity assumption of 
standard linear regression.

It is often possible to convert a count problem into a rate problem, such as when dividing 
counts over a temporal interval. This again results in interpretational problems with zeros, as any 
number divided by zero is still zero, thereby effectively cancelling any exposure information out 
for these values. This is problematic because observing a zero count for 10 s is much less informa-
tive than observing a zero count for 10 h, even though both would have the same zero value when 
rates are calculated by hand. As detailed above, exposure variables allow directly modelling rates 
within a Poisson regression context.

4.2 | How to decide between logistic regression and Poisson 
regression

Readers familiar with logistic regression may wonder how to make decisions about when to use 
Poisson regression as opposed to logistic regression. The critical difference between the two types 
of GLMs has to do with the presence of an upper bound. The binomial distribution that lies at the 
heart of logistic regression has a clear upper bound (the parameter N), whereas the Poisson distri-
bution extends towards positive infinity. Figure 1 above only showed the probabilities associated 
with the counts from zero to 10, but even very high counts have positive probabilities, although 
they may be exceedingly low probabilities for very high values. This is different from the binomi-
al distribution, which assigns zero probability to values above N. That is, the Poisson distribution 
is appropriate when dealing with count data for which the upper limit N is not known, does not 
exist, or is difficult or impossible to derive. When counts have a fixed and known upper limit, 
logistic regression is the more natural choice, such as when modelling correct versus incorrect 
responses on a trial-by-trial basis (N = 1), or when modelling the proportion of students in a 
classroom passing a test (where N is the number of students in a classroom).

The absence of a clear upper N is also why Poisson regression was a natural choice for the 
gesture data considered here. In this data, the unit of analysis was an entire trial, which included 
multiple sentences. Even if we broke the data down to individual sentences, there would be no 
clear upper N: a given sentence can have no gestures or many gestures, but it is not clear how 
many gestures can fit into a sentence. Many other phenomena in linguistics are similar to this, 
such as certain discourse markers, fillers, or silent pauses. For example, Winter and Grawun-

WINTER and BÜRKNER18 of 23



der (2012) modelled the number of ‘hisses’ Korean speakers produced when speaking formally 
(polite speech) or informally (intimate speech). These hisses are similar to interjections, and 
due to their lack of syntactic integration, they can occur within or in between sentences, or they 
can have multiple occurrences within the same sentence. Again, there is no a priori theory to 
suggest that there may be a knowable upper limit for how many hisses fit into a sentence, which 
is why the Poisson distribution was a natural choice for the analysis presented in Winter and 
Grawunder (2012). Similarly, examples with no clear upper N abound in corpus linguistics, for 
which there is generally no fixed upper limit for how many words a corpus, or a section of a cor-
pus, can contain. See Winter et al. (2018) for an example of an analysis of word frequency data 
with Poisson/negative binomial regression.

4.3 | Zero-inflation

This tutorial has dealt with overdispersion. Another situation analysts can run into is an excess 
number of zeroes. For example, when counting case markers in a language, a lot of languages 
have no case system to begin with, thus having zero counts (Bentz & Winter, 2014). As another 
example, consider the above-mentioned counts of ‘hisses’ (Winter & Grawunder, 2012): some 
people may never use these within a given experiment for any reason (e.g., personal preference). 
These and other situations will involve an excess number of zeroes (more than is expected un-
der the Poisson distribution), which can be dealt with by using zero-inflated Poisson regression 
(or zero-inflated negative binomial regression). These models assume that additional zeroes are 
generated by a separate process, distinct from the count process. Zero-inflated models are also 
implemented in brms and described in more detail with a hands-on example in Bürkner (2018).

5 | OUTLOOK

Given the ubiquity of count data in linguistics, Poisson regression should arguably be a much 
more widely adopted approach. We have applied Poisson/negative binomial regression to data 
analysis problems in phonetics (Winter & Grawunder,  2012), cognitive linguistics (Winter 
et al., 2018), and typology (Bentz & Winter, 2014). A particular field that would seem to benefit 
tremendously from considering Poisson regression as an alternative analysis approach is corpus 
linguistics. There, textbooks still teach students how to apply such significance tests as Chi-square 
tests to corpus data (Desagulier, 2017; Stefanowitsch, 2020; Wallis, 2021), even though when such 
tests are applied to corpus data, they violate the independence assumption, a problem that has 
received a lot of attention in corpus linguistics (Baroni & Evert, 2009; Brezina & Meyerhoff, 2014; 
Gries, 2015; Kilgarriff, 2005; Koplenig, 2019; Lijffijt et al., 2016; Oakes & Farrow, 2006; Winter & 
Grice, 2021). Mixed models are a natural solution to dealing with dependency structures within 
corpora (Gries,  2015), however, without Poisson regression, many situations where aggregate 
counts are analysed (e.g., word frequencies across entire texts), the cases to which mixed models 
can be applied are more limited. Thus, alongside logistic regression, Poisson regression is a natu-
ral extension of the analytical toolkit to widen the type of linguistic datasets that can be analysed 
with mixed models.
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ENDNOTES
 1 The Bernoulli distribution is a specific instance of the binomial distribution when 1E N  , as is common when 

logistic regression models are fitted to the individual trial level, or in the case of corpus data, to the level of indi-
vidual choices (such as double object vs. prepositional dative construction).

 2 For an extensive discussion of mixed models in various subfields of linguistics, see Winter and Grice (2021).
 3 According to the quotient rule of logarithms, log( / ) log( ) log( )      . Replacing log( )  in Equation (3) 

with this difference yields : log( ) log( )      x . Moving log( )  over by adding it to both sides of the 
equation yields Equation (6).

 4 Another way of assessing whether a negative binomial model is needed is by looking at posterior predictive 
checks (see Section 3.7), which could reveal overdispersion via a discrepancy between the simulated and the raw 
data.
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