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Highlights 
 

 We developed a large-scale atlas of human type 2 dopamine receptor (D2R). 

 D2R availability decreases similarly among males and females and overall females have a higher 
availability than males through age. 

 Potential sex-dependencies in D2R expression may predispose males and females to different 
neuropsychiatric conditions. 

 Striatal [11C]raclopride binding potential can be calculated reliably from positron emission 
tomography (PET) scan without magnetic resonance image (MRI). 

 
 

 
Abstract 

 
BACKGROUND: The dopamine system contributes to a multitude of functions ranging from reward 
and motivation to learning and movement control, making it a key component in goal-directed 
behavior. Altered dopaminergic function is observed in neurological and psychiatric conditions. 
Numerous factors have been proposed to influence dopamine function, but due to small sample sizes 
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and heterogeneous data analysis methods in previous studies their specific and joint contributions 
remain unresolved. 
 
METHODS: In this cross-sectional register-based study we investigated how age, sex, body mass 
index (BMI), as well as cerebral hemisphere and regional volume influence striatal type 2 dopamine 
receptor (D2R) availability in the human brain. We analyzed a large historical dataset (n=156, 120 males 
and 36 females) of [11C]raclopride PET scans performed between 2004 and 2018. 
 
RESULTS: Striatal D2R availability decreased through age for both sexes (2-5 % in striatal ROIs per 
10 years) and was higher in females versus males throughout age (7-8% in putamen). BMI and striatal 
D2R availability were weakly associated. There was no consistent lateralization of striatal D2R. The 
observed effects were independent of regional volumes. These results were validated using two 
different spatial normalization methods, and the age and sex effects also replicated in an independent 
sample (n=135). 
 
CONCLUSIONS: D2R availability is dependent on age and sex, which may contribute to the 
vulnerability of neurological and psychiatric conditions involving altering D2R expression. 
 
 
 
Keywords: Type 2 dopamine receptors, Positron emission tomography, [11C]raclopride, Ageing, Sex-difference, 
Bayesian data-analysis 
 

1. Introduction 

Dopaminergic function regulates emotion, cognition and learning as well as motor functions (1, 2), 

making the dopamine system a key component for goal-directed behavior (3-5). Aberrant dopaminergic 

function is observed in various neurological and psychiatric conditions, such as Parkinson’s disease, 

schizophrenia, drug abuse, obesity and depression (6-8). Dopamine receptors are divided into type 1 

(D1R including types D1 and D5) and type 2 (D2R including types D2, D3 and D4) receptor families (9, 

2). Particularly the D2R which is abundantly expressed in the striatum (10, 11) is centrally involved in 

the pathophysiology of neuropsychiatric conditions (7). 

 

Patients with schizophrenia show striatal hyperactivity of dopaminergic function (12) and 

elevated in vivo D2R density (13, 14), yet it remains unresolved how the disorder itself (e.g. illness 

duration) and exposure to antipsychotic medication link to these observations (15). D2Rs also mediate 

anxious symptomology (16, 17) and elevated D2R expression is observed in motivational disturbance 

(18) and possibly in depression, although the elevated D2R has been shown particularly in medicated 
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(19) rather than unmedicated depression (20), possibly reflecting antidepressant treatment (20). 

Conversely, Parkinson’s disease is associated with lowered D2R expression (7), at least after the early 

disorder stage of when increase of D2Rs may occur as a compensation to nerve terminal loss or medical 

treatment (21, 22). In addition to this neurodegenerative disease (7, 23), drug abuse is also associated 

with striatal D2R loss, and the lower D2R density may constitute a vulnerability factor for drug abuse 

(24, 25). 

 

To understand dopaminergic dysfunction and related pathophysiology, factors contributing to 

dopamine function in the healthy population need to be identified. Small-scale PET studies suggest that 

subject demographics, such as age (26-29), sex (30, 31) and body mass index (BMI) (29, 32, but see 33) 

might affect the D2R availability in striatum. However, there has been increasing concern over the lack 

of replicability of neuroimaging findings (34). Insufficient statistical power (34, 35), variable methods 

for analyzing data (36), as well as failure to appropriately control for multiple comparisons (37) have 

been proposed as main sources of the poor replicability. 

 

Because PET imaging is expensive, data pooling has recently emerged as an effective way of increasing 

sample sizes and consequently providing accurate statistical estimates (38). Additionally, Bayesian 

hierarchical modeling has been proposed to facilitate reproducible science by limiting the ―researcher 

degrees of freedom‖ in the analysis phase (39) and by removing the need for arbitrary multiple 

comparison correction methods (40). The primary aim of this study was to address the effects of age, 

sex, BMI and hemisphere on D2R lateralization using a well-powered dataset of historical scans. Using 

hierarchical Bayesian modeling, we were able to address the potential hierarchical nature of the effects 

and address potential differences arising from different PET scanners. We analyzed a large dataset of 

156 historical controls scanned with [11C]raclopride, a selective antagonist D2R radioligand. We also 

replicated the results in an independent sample of 135 subjects. Our secondary goal was development 

of age and sex-specific atlases of D2R availability in the brain that would be released to the 
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neuroimaging community via NeuroVault (https://neurovault.org; 

https://identifiers.org/neurovault.collection:12099). 

 

2. Methods and Materials 

2.1. Subjects 

 

The data were 156 baseline [11C]raclopride scans of healthy control subjects (sex 120 males and 36 

females; age 19-71 years,  BMI range 18-38, no information about the menstrual cycle) scanned at 

Turku PET Centre between 2004 and 2018.  Detailed sample information is shown in Table 1 (see also 

Table S6 for exclusion criteria). Studies were included in the analysis if they were baseline scans with 

injected dose > 100 MBq (to avoid low signal-noise ratio (SNR), see Table S7 for radiochemical details) 

and the magnetic resonance (MR) scan and basic demographic and anthropometric information (height, 

weight) was available. If multiple baseline scans were acquired for an individual, chronologically first 

scan was included in the analysis. There data were compiled across 5 different PET scanners. See 

Supplementary Material section Scanner Considerations for detailed information. Finnish legislation 

does not require ethical approval for register-based studies. 

 

 

Table 1. Characteristics of the sample. SD= standard deviation. 

 Males (n= 120) Females (n= 36) 

 Mean SD Range Mean SD Range 

Age (years) 25 5 19-56 37 14 20-71 

Height (cm) 181 7 167-199 166 7 151-190 

Weight (kg) 79 12 58-130 61 8 47-85 

BMI (kg/m2) 24 3 19-38 22 3 18-33 
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2.2. PET data acquisition and Image Processing 

 

Antagonist radioligand [11C]raclopride binds to D2Rs (41-43), allowing reliable quantification of striatal 

and thalamic D2R availability (43-48). However, the reliability of thalamic measures using 

[11C]raclopride is not as robust as in the striatum (49), and its binding in extrastriatal regions, such as 

the cerebral cortex, is unspecific (44, 49, 50, but see 48, 51). In this study, we included the following 

four regions of interest (ROIs): striatal nucleus accumbens (accumbens), caudate nucleus (caudate), 

putamen, as well as thalamus close by the striatal ROIs. The PET data was acquired using five different 

scanners (Scanner Considerations and Table S1 in SM). 

 

Preprocessing and kinetic modeling were done using Magia toolbox (52). Preprocessing 

consisted of framewise realignment and co-registration of the PET and magnetic resonance images 

(MRIs). Tracer binding was quantified using the outcome measure binding potential (BPND), which is 

the ratio of specific binding to non-displaceable binding in tissue (47). BPND was estimated using a 

simplified reference tissue model (SRTM) (53) with cerebellar gray matter as the reference region (54). 

Data length was harmonized by including first 52 minutes from each scan. Previous studies have shown 

that 52 minutes provides sufficient reproducibility and reliability for modelling striatal [11C]raclopride 

binding with SRTM (44). We thus used this cut-off for all the studies as it allowed us to apply it as a 

standard way to calculate the BPND estimates for the dataset while harmonizing the scan times across 

protocols. 

 

Individual frames were first realigned to account for between-frame movements. The first 

frame was omitted because it did not contain sufficient signal for every subject. T1-weighted MR 

images were processed using FreeSurfer (https://surfer.nmr.mgh.harvard.edu/). The MR images were 

then co-registered with the PET data for region of interest extraction. 
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2.3. Statistical modeling 

Statistical modeling was carried out in R (55) using brms (56, 57) that applies the Markov-Chain Monte 

Carlo sampling tools of RStan (58). The analysis script is available in SM code. 

 

Primary analysis 

 

We first standardized the continuous variables and log-transformed binding potential estimates because 

according to posterior predictive checks (59, 60), log-transformation of non-negative dependent 

variable enhances model fit, as it makes the model multiplicative instead of additive that is not optimal 

when limited to positive values (61). We also confirmed that the age and BMI effects on logarithmic 

BPND are well approximated by a linear function in each ROI (Linearity Assessment of the Age and 

BMI effects in SM). For the sake of conciseness, we simply refer to the linear effects on a logarithmic 

scale as linear. We used Bayesian hierarchical regression to model the data. Because ROI-wise effects 

were partially pooled across ROIs, this essentially removes the need to correct for multiple 

comparisons induced by investigating multiple ROIs (62). 

 

We estimated one primary model for assessing the main effects of age, sex and BMI on BPND. 

The effects were calculated separately for the left and right hemisphere. We also investigated the main 

effect of cerebral hemisphere (i.e. lateralization) on BPND separately for males and females, as our initial 

modeling showed sex-differences in lateralization and as previous research has pointed to greater 

lateralization in the male versus female brain (63-65). Toward the end of the age range, the relative 

number of males decreased, as did the overall number of observations. Although this might have 

masked the interaction effect of age and sex, there was no clear evidence for sex-specific age-effect 

(Figure S8), prompting us to calculate the age effect together for males and females with maximal 

statistical power. To estimate the effects of age, sex, BMI and hemisphere, we used regionally varying 
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random slopes. Subjects, scanners, and ROIs, were all modelled as varying (random) intercepts. We 

included a varying intercept for the combination of scanners and ROIs, to allow for regionally varying 

scanner effects (Scanner Considerations in SM). For the residual variances, we applied the same 

grouping structure, except for subject (no individual differences expected). Additional modeling 

information is presented in SM (Sampling Settings and Convergence Estimates). 

 

Sensitivity analysis and replication in an independent sample 

 

The large number of young male subjects resulted in an imbalanced sex ratio, especially after the age of 

40. Hence, we repeated the primary model with a balanced subset of the data (n= 140, see Tables S4 

and S6), including the data of subjects aged 40 and under. We also checked whether adjusting for inter-

individual differences in regional volumes of the ROIs changed the results or had main effects on D2R 

binding (See SM file). 

 

Differences between the scanner characteristics, such as spatial resolution and sensitivity, may 

have influenced our results (Table S1). Hence, we took the multiple scanners into account in the 

primary modeling by adjusting for the scanner in the statistical modeling. This allowed us to calculate 

the main effects of age, sex, BMI, hemisphere, and regional volume while allowing BPND to vary by 

scanner. Additionally, we conducted supplementary statistics where we assessed the associations of age 

and sex with BPND (including correlations and unpaired t-tests, see Scanner Considerations in SM) in 

scanner-specific subsets of the primary dataset. Additionally, we conducted supplementary analysis 

where we assessed the associations of age and sex with BPND (including correlations and unpaired t-

tests) in scanner-specific subsets of the primary dataset (see Scanner Considerations, particularly Tables 

S2-S3, in SM). The results highlight that using historical datasets pooling observations across scanners 

and holding imbalance (different age ratio of the sexes), modelling the variables in the same model, 
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including scanner-specific effects, is advantageous, as it can detect and account for this kind of 

variability in the effects. 

 

Our independent secondary sample of 135 scans (104 males, mean age 33 years, Tables S5 and 

S6) was not included in the primary analysis due to missing MR images or anthropometric 

measurements (weight, height) from these subjects. In a secondary analysis we maximized statistical 

power by applying template-based normalization method to the whole available sample (primary and 

secondary). We first validated the normalization and ROI extraction protocol without the MR images 

by conducting a within-subject comparison of the BPND estimates produced by the two normalization 

methods for the subjects that both normalization methods could be applied (MR image available, n= 

189, Table S6). The analysis showed that both methods yield comparable BPND estimates (Pearson’s 

product-moment correlation coefficients 0.97-0.99). Then, we replicated the statistical analysis of the 

global effects of age and sex on the D2R BPND (using template-based normalization method) using the 

secondary sample with no available MRI image. Finally, we also tested the effects of injected mass on 

the regional BPND estimates and found only weak evidence for a negative association between injected 

mass and BPND (see Injected mass in SM). See SM for more detailed information about the samples 

(Tables S5 and S6), validation and replication (Validation of an alternative approach for defining ROIs 

and reference regions, Injected mass). 

 

3. Results 

The [11C]raclopride binding was highest in striatum and practically nonexistent in the cortex (Figure 1). 

The BPND in the ROIs varies from below 1 to above 5, being lowest in thalamus and highest in 

putamen (Figure 2). Please see Figure S14 for the correlation of the BPND estimates between the ROIs. 
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Figure 1. Mean [11C]raclopride BPND (original scale from 0 to 4, MNI coordinates x= 26, y= 6, z= 0) 

in the primary sample, as well as its subsamples (subjects below 41 and above 40 years of age, males 

and females). 

 

 

 

Primary, n= 156 Male, n= 120 Above 40 n= 16 Below 41, n= 140 Female, n= 36

0        1 2 3 4
0 1            2            3            4

Above 40, n= 16 
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Figure 2. Regional [11C]raclopride BPND (original scale). The figure shows medians (middle line), 25% 

(lower hinge) and 75% (upper hinge) quantiles, min value (lower whisker) and max value (upper 

whisker), as well as the data points for the D2R BPND. 

 

 

3.1. Age and Sex 

 

There was a consistent age-related decline in striatal D2R binding (Figure 3-4). This applied particularly 

to the age-range from early 20s to 60s for which we had sufficient data. In putamen and caudate, 10 

years of ageing (one SD) decreased the binding approximately 5%. In accumbens, the approximate 

decrease was 2-3% per SD. Only in thalamus, the 95% posterior uncertainty interval overlapped with 

zero, suggesting uncertainty in the effects. These effects were similar in both hemispheres. The further 

assessment supported the linearity of the age effect (Linearity Assessment of the Age and BMI effects 

in SM) and that the effect remains clear even when adjusting for regional volumes (Figure S9). 

 

The data did not support an interactive effect of age and sex on D2R binding (Figure S8), 

instead suggesting that the age-related decline is similar for both sexes. However, the data revealed that 

females had on average approximately 7-8% higher D2R binding than males bilaterally in putamen 

(Figure 4). BPND tended to be higher in females versus males also in the other ROIs, although the 95% 

posterior uncertainty intervals overlapped with zero. 

 

The effect of sex was in general similar in both hemispheres, suggesting higher biding in 

females than males. Only in the accumbens, the effect of sex appeared to be hemisphere-specific 

(Figure 4). Left accumbens was the only region where the binding of males was similar as for females. 

After adjusting for regional volumes (Figure S9), the sex-specific lateralization effects became weaker, 

and the model suggested only slightly higher binding in females versus males across both hemispheres. 
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However, the posterior uncertainty intervals were wide in both conditions (Figures 4 and S9), reflecting 

uncertainty in the effects, and only in putamen the intervals did not cross zero. As there was overlap in 

the posterior uncertainty intervals, these results do not clearly support lateralization of the sex effect 

even in accumbens. Adjusting for regional volumes did not change the overall effects of sex. After the 

adjustment for regional volumes, however, the 95% posterior uncertainty interval of right accumbens 

and right caudate no longer overlapped with zero, suggesting that the difference between males and 

females was more profound (8% in accumbens and 6% in caudate) when adjusting for regional 

volumes (Figure S9). 

 

 

 

Figure 3. Left and right D2R BPND (original scale) as a function of age (original scale) in each ROI. The 

figure shows the original BPND estimates (points), linear regression lines separately for males and 

females (lines) and their 95% confidence intervals (shaded areas). 

 

 

3.2. Body Mass Index 
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We found no clear evidence for the effect of BMI in the D2R availability. However, the weak effect 

suggested an increase in BPND as a function of BMI across the whole range (18-38) (Figure 4). In the 

right thalamus, the posterior 95% uncertainty interval did not overlap with zero with an estimation of 

an approximate 3% increase in D2R binding for the increase of one SD (3 units) in BMI. In other 

ROIs, particularly in putamen, the majority of the posterior uncertainty intervals were above zero, also 

supporting the positive effect. Further assessment supported the linearity of the effects (Linearity 

Assessment of the Age and BMI effects in SM). Adjusting for regional volumes did not change the 

overall results of BMI (Figure S9). 

 

 

 

Figure 4. The effects of age (standardized), sex (male - female) and BMI (standardized) on striatal and 

thalamic D2R BPND (logarithmic) separately for left and right hemisphere. The figure shows medians 

(circles), 80% (thick line) and 95% (thin line) posterior uncertainty intervals of the regression 

coefficients on a logarithmic scale. 

 

 

3.3. Lateralization 

According to our data, lateralization was more prominent in males than in females. This was 

particularly prominent in accumbens, where males had higher left-hemispheric binding potentials, as 
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the posterior mean and the relatively narrow posterior uncertainty interval clearly parted from zero. The 

binding was approximately 9% higher in left versus right accumbens. For males the data supported 

lateralization in all ROIs, although the direction was not coherent between the closely located ROIs 

(modeling results in Figure 5). The binding was increased in left versus right putamen, and right versus 

left thalamus and caudate. These effects were however smaller and the posterior uncertainty intervals 

overlapped zero. In females, no clear lateralization effects were found (Figure 5). The uncertainty 

intervals for females were wider than for males, as we had less data for females than males. Although 

the posterior uncertainty interval overlapped with zero, there was some support for higher binding in 

right versus left caudate, in line with the data from male subjects. 

 

 

 

 

 

 

 

 

Figure 5. The effect of hemisphere (right - left) on striatal and thalamic D2R BPND (logarithmic) 

separately for males and females. The figure shows medians (circles), 80% (thick line) and 95% (thin 

line) posterior uncertainty intervals of the regression coefficients on a logarithmic scale. 

 

 

3.4. Replication analysis 

 

The regional effects of age and sex were replicated in the secondary sample (n= 135, see Tables S5 and 

S6) that was spatially normalized with an alternative method that does not require MR image, as many 
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subjects were lacking it (please see the detailed description of the secondary sample in SM). BMI could 

not be included in the analysis due to missing anthropometric measurements (weight, height) for some 

of the subjects. 

 

4. Discussion 

Our main findings were that i) there is a steady decline in D2R availability as a function of ageing and ii) 

females have higher D2R availability than men irrespective of age (at least from 20 to 60 years of age for 

which we had sufficient data). Additionally, higher BMI might be associated with increased D2R 

availability, as we found a weak positive effect of BMI. The effects of lateralization did not show clear 

consistence. Adjusting for volumes of the ROIs did not change the overall results, suggesting that 

among healthy adults, the striatal effects of age and sex on the D2R availability are global and 

independent from the regional volumes. 

 

 

4.1. Effects of Age & Sex 

 

Our data showed a clear age-dependent decline in the striatal BPND, supporting decrease through age in 

D2Rs (66, 67), starting from early adulthood. Compared to previous smaller studies (26, 27, 30, 28), our 

large-scale sample allowed a reliable assessment of this effect across a wide age range. Dopamine 

receptor loss starts already in early twenties and continues steadily throughout ageing, while previously 

the decline has suggested to slow down with age (26, 27, 68). The observed receptor decline changes 

the properties of dopamine neurotransmission (69), of which disturbance relates to several cognitive 

and motor symptoms (7). The etiology of Parkinson’s disease differs from mere age-related 

neurodegeneration (70) and doesn’t appear as accelerated aging of the dopaminergic function (71). The 

decline in dopamine neurotransmitter (70, 72), receptors and transporters (DATs) (73, 74, 71, 75), 

emerging through age, could however contribute to both the mild cognitive decline and motor 
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deficiency commonly observed among the elderly (76, 77), as well as the more severe forms of 

neurodegeneration, such as Parkinsonism (7). 

 

According to our data, the D2R availability declines in both sexes. This accords with previous 

studies that have detected the age-related decline in dopamine receptors (66) and transporters (75). 

However, our data also showed that the average D2R level remains higher in females throughout the 

studied age range. This contrasts with prior studies that have reported sex-dependent decline in 

dopamine function (78), with males showing steeper reduction in receptors (30) particularly in young 

adulthood (79), and presynaptic dopamine synthesis (80). 

 

Our data shows that although the decline in the available D2Rs is not sex dependent, the overall 

D2R level is, consistently higher in females from early adulthood to at least the age 60. However, with 

the current dataset overrepresenting young adults (particularly males), the associations of ageing and sex 

on D2R availability are more reliable in the subjects aged 40 and below than in the primary dataset with 

the wider age range. Sex differences have previously been observed in D2R affinity (lower in women) 

but not density, pointing to higher dopamine concentration in women (30). One study with 

[18F]Fluorodopa also showed greater striatal presynaptic dopamine synthesis capacity in females versus 

males (80). 

 

Sex differences in the dopamine system may contribute to vulnerability for neuropsychiatric 

disorders (30, 80). Accordingly, females (who have higher D2R binding) might be predisposed to 

pathology associated with elevated D2R availability, such as mood disorders (81, but also consider 20), 

schizophrenia, and psychoses (14, 82, but see also 83, 84). Conversely, lower D2R level in males may 

predispose them to Parkinson’s disease (81) that involves receptor loss (21, 7) and is approximately 1.5 

more common in males versus females (23). This may also explain males’ higher prevalence of 
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addictions, such as alcoholism (85, 86), substance use disorders (87), drug abuse (88, 25), as well as and 

mood-related impulsivity (89) which are associated with lowered D2R availability. 

 

Finally, low striatal D2R density has also been associated with A1 allele of the D2R gene (90) 

that possibly links to alcoholism (91). As the deficiency in dopaminergic function does not only 

increase the impulsive behavior toward the object of addiction but also disturbs the saliency attribution 

of other objects (25), altered dopaminergic function may well constitute a significant vulnerability 

endophenotype for addictive behaviors. Finally, sex-differences in the dopamine system have been 

observed not only in the striatal (30) and cortical (92) D2Rs but also in DATs (71, 93) and presynaptic 

dopamine synthesis capacity (80). In addition, sex-specific hormones and genes play a role in the 

dopaminergic function and neuropsychiatric well-being (81, 72). Hence, the sex-differences in the D2R 

level may reflect broader dopaminergic, as well as dopamine related hormonal and genetic differences 

between sexes, and those differences may together contribute sex-dependent prevalence of 

neuropsychiatric disorders. 

 

4.2. Effect of BMI 

 

BMI was only weakly associated with higher D2R availability, mainly in putamen and thalamus. 

Although the modeling showed uncertainty in the BMI effect, the effect was systematically positive in 

each ROI. As most subjects had BMI in the range of 18-30, the effects are uncertain beyond this point, 

thus being uninformative regarding the most seriously obese phenotypes. Previous in vivo imaging 

studies have yielded mixed results on the association between BMI and dopamine system suggesting i) 

diminished D2R availability in obesity (32, 94), ii) positive association after the age of 30 (29), and iii) no 

association between D2R availability and obesity with no effects of surgical weight loss on D2R 

availability (33, 95). Previously, decreased dopamine function (94), TaqA1 variant of D2R gene (96-98) 

and diminished incentive to physical exercise (high energy expenditure) (99) has been linked to obesity. 
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As dopamine contributes to food-related hedonia (100), the decreased dopaminergic function could 

limit the rewarding effect of food-intake compensated by compulsive overeating (94, 101, 102), and 

amplify the saliency of food while the inhibitory control weakens (102). Decreased dopamine function 

is supported by studies showing declined D2R in obesity both in humans (103, 32, 94, 104) and in 

animals (101). However, in some studies these finding have not replicated, as the association between 

BMI and D2R was observed either positive and dependent on age (29) or nonexistent (105, 33, 106). 

Some studies also point towards a curvilinear relationship between BMI and D2R, such that the 

association is positive up to a certain BMI level after which the relation turns negative (107). The 

contribution of D2R genotype to obesity neither replicated in a large sample (108). The present large-

scale study shows that the age-adjusted association of BMI and D2R availability is positive and linear, at 

least up to BMI of 30. It is thus possible that the effect is reversed beyond that point, but the current 

dataset does not have sufficient data for higher BMIs thus precluding such modeling that would be of 

great interest to confirm our finding. Overall, even though the estimates have some degree of 

uncertainty, we found no evidence for a negative relationship between BMI and striatal D2R availability. 

 

4.3. Lateralization of D2Rs 

 

Lateralization effects, strongest in nucleus accumbens (right > left), were subtle with stronger 

hemispheric asymmetry of D2R availability in males than in females. Our finding of greater hemispheric 

asymmetry of males versus females may have resulted from better statistical power in the male sample 

and overall, the lateralization of D2Rs remains uncertain (109). However, some studies have found 

stronger left hemispheric lateralization of striatal D2R on preadolescent (110) and adult rats (111). In 

humans, meta-analyses suggest that emotion-related brain activity is more lateralized in males than 

females (65). Although the direction of lateralization is region-specific, it is consistently and similarly as 

in our data greater for men (65). Accordingly, sex differences in lateralized emotional processing in the 

brain may link with D2R expression, but this issue needs to be addressed in future studies. Finally, 
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hemispheric asymmetry might relate to reward experiences involving dopaminergic function. Self-

administered cocaine exposure evokes D2R lateralization (left > right) in male monkeys (112). In 

humans, evocative stimuli also elicit left lateralized brain activation, and in cocaine users (14 males, 3 

females) it is particularly the cocaine-related cues that precede such activation (113). As cerebral 

lateralization and addictive behavior may both be more common in males, the interplay between these 

factors should be investigated in more detail. 

 

4.4. Limitations 

 

The data were acquired using five different scanners. Although we adjusted for the differences between 

the scanners using statistical modeling, this may have introduced noise in the data. The predictor 

variables were not optimally balanced, with relatively high sex-ratio (120 males and 36 females) and 

different age ranges across sexes. We also did not have complete documentation about the 

reconstruction algorithms that have been used for all the studies, thus these could not be taken into 

account. While the reconstruction algorithms are typically stable for a particular scanner in our site, it is 

possible that several different reconstruction algorithms have been used for some of the scanners. Our 

statistical model was however flexible with respect to such variation, as the residual variances could 

vary by scanner. 

 

In addition to age, sex and BMI, previous studies have revealed that genetic polymorphisms, 

such as A1 allele (90) and C957T (114), as well as other genetic and environmental factors that were not 

considered here may explain some of the individual differences in D2R availability (115). We used 

[11C]raclopride and BPND to measure striatal D2R availability. BPND being a product of receptor density 

and affinity (116) of unoccupied receptors (117), the level of binding reflects i) the D2R density, ii) the 

D2R affinity and ii) the D2R occupancy by endogenous dopamine (45, 47, 25, 118). Hence, using only 

one baseline image per subject we could not analyze receptor density and affinity separately (119). 
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However, as the binding affinity between dopamine and D2R is assumed constant (120), as the 

endogenous dopamine does not override D2R antagonists (e.g. [11C]raclopride) as effectively as 

agonists (117) and as we used baseline scans including no interventions boosting dopamine firing (121), 

we expect the BPND to dominantly measure the D2R density. 

 

4.5. Conclusions 

 

Striatal D2R availability decreases globally through age for both sexes. Females show on average 5-10% 

higher D2R availability than males. High BMI was associated with increased D2R availability, although 

this effect was only weak. D2R availability was more lateralized in males than in females, but the 

lateralization effects were overall subtle. Importantly, we confirmed that the template-based 

normalization method allows for accurate global ROI-level modeling of the PET data when 

deformation-field-based spatial normalization method is not possible due to missing MR image. In 

sum, D2R availability is dependent on subject demographics, particularly on age and sex. These effects 

may contribute to age and sex dependent prevalence in neurological and psychiatric conditions 

involving altered D2R expression. 
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