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With the growing availability of multi-wave surveys, social scientists are
turning to latent trend models to examine changes in social and political
attitudes. Aiming to facilitate this research, we propose a framework for
estimating trends in public opinion consisting of three components: the
measurement model that links the observed survey responses to the
latent attitude, the latent trend model that estimates a trajectory based on
aggregated individual latent scores, and representativeness adjustments.
We use individual-level item response theory models as the measure-
ment model that is tailored to analyzing public opinion based on pooled
data from multi-wave surveys. The main part of our analysis focuses on
the second component of our framework, the latent trend models, and
compares four approaches: thin-plate splines, Gaussian processes, ran-
dom walk (RW) models, and autoregressive (AR) models. We examine
the ability of these models to recover latent trends with simulated data
that vary the shape of the true trend, model complexity, and data avail-
ability. Overall, under the conditions of our simulation study, we find
that all four latent trend models perform well. We find two main per-
formance differences: the relatively higher squared errors of AR and RW
models, and the under-coverage of posterior intervals in high-frequency
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low-amplitude trends with thin-plate splines. For all models and across
all scenarios, performance improves with increased data availability,
which emphasizes the need of supplying sufficient data for accurate esti-
mation of latent trends. To further illustrate the differences between the
four latent trend models, we present a case study with an analysis of
trends in political trust in Hungary, Poland, and Spain between 1995 and
2019. We note the relatively weaker performance of splines compared to
other models in this application and conclude by discussing factors to
consider when choosing the latent trend model, and further opportunities
in this line of research.

KEYWORDS: Gaussian processes; Latent trend models; Public opin-
ion; Random walk models; Survey data; Thin-plate splines.

1. INTRODUCTION

Trajectories of public opinion are of interest to social science researchers as a
tool for monitoring social change, and as hypothesized causes or consequences
of political, social, and economic developments. National and cross-national
surveys constitute a rich data source describing attitudes, values, and preferen-
ces from multiple countries over many decades. Combining these data into
country time series of aggregate public opinion creates new research opportu-
nities, yet requires a number of methodological choices that the literature has
thus far not systematically discussed. To guide researchers through these
choices, we propose a framework for analyzing public opinion over time by
pooling existing survey datasets. The framework includes three main compo-
nents: the measurement model to link the observed survey responses to the
latent trait, in this case an opinion or attitude, the latent trend model that

Statement of Significance

Researchers increasingly pool data from multiple surveys conducted over
many years to estimate trajectories of mass public opinion. To systematize
this research, we propose to distinguish three components of the modeling
procedure: the measurement model, the latent trend model, and represen-
tativeness adjustments. We focus on latent trend models, which account
for the temporal sequence of the data and estimate a trend from the aggre-
gated individual scores. We compare four approaches: thin-plate splines,
Gaussian processes, random walk models, and autoregressive models, via
a simulation study and a case study with survey data on political trust
from three countries. We find that the performance of the analyzed
approaches depends on the shape of the true trend and data availability.
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estimates a trajectory based on aggregated individual latent scores, and repre-
sentativeness adjustments to account for the possible deviations from represen-
tativeness of the survey sample. Distinguishing these three components
introduces structure to methodological research on the relative merits of differ-
ent approaches within components, as well as on the interplays of approaches
across components.

The present article focuses on the statistical validation of the middle com-
ponent of the framework, namely the model for the latent trend. Prior stud-
ies proposed solutions primarily relying on random walk (RW) models
(Caughey and Warshaw 2015; Claassen 2019; Solt 2020). The paper by
Kołczy�nska et al. (2020) used thin-plate splines (TPS). Gaussian processes
(GPs), and autoregressive (AR) models constitute additional alternatives
that—to the best of our knowledge—have not yet been applied or studied
in this context. Our analysis constitutes the first systematic comparison of
these four approaches and unifies previously disconnected model classes
that researchers have proposed.

We compare the performance of models with the latent trend modeled as
TPS, GP, RW, or AR process, in scenarios that differ with regard to the shape
of the true latent trend, presence or absence of between-person variation, and
data availability. Under the conditions of our simulation study, all four models
performed well in all scenarios, even in the most challenging condition that
combines small fluctuations of the true trend with data sparsity. Our results
point to relatively weaker performance of AR and RW models in terms of root
mean squared error (RMSE), posterior standard deviation, and absolute bias,
as well as to substantial under-coverage of posterior credible intervals implied
by the TPS models. GP models emerge as the option with reliably high per-
formance across all conditions of our simulation study. In scenarios with sparse
data coverage, performance increased with higher data availability in the given
year and in adjacent years.

To illustrate the differences in the four latent trend models applied to real
data, we present a case study with trajectories of political trust based on
cross-national survey data from three selected countries: Hungary, Poland,
and Spain, between 1995 and 2019. A comparison of political trust trajecto-
ries estimated by the four types of latent trend models points to further con-
siderations for model choice, namely the amount of smoothing and the
sensitivity of the estimated trajectory to single data points (in this case: sin-
gle surveys), as well as the sensitivity of uncertainty estimates to data avail-
ability. Based on these results, GP, AR, and RW models may be better
suited for estimating short-term volatility, on the condition that a sufficient
amount of uniformly high-quality data is available. TPS may be more
appropriate for estimating longer-term tendencies, especially if there is evi-
dence of mixed data quality.
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2. FRAMEWORK FOR MODELING AGGREGATE
PUBLIC OPINION

The framework we propose consists of three components: the measurement
model, the latent trend model, and sample representativeness corrections. The
focus of this article is on the second element, the latent trend model, so we
address the remaining two only briefly. The measurement model links the
latent variable, the individual’s unobservable level of a trait, to the observed
survey responses. Common approaches in models estimating dynamic public
opinion include individual- or group-level ordinal models (e.g., Caughey and
Warshaw 2015; Solt 2020; Kołczy�nska et al. 2020), binary models applied to
dichotomized data (e.g., McGann 2014; Claassen 2019), and linear models
applied to ordinal data treated as continuous (e.g., Durand et al. 2022). In the
present analysis, we choose the variant of modeling individual-level data with
ordinal item response theory (IRT) models, which has several advantages in
comparison to the other listed options: it reduces information loss, respects the
ordinal nature of the data, enables accounting for the different scale lengths,
and enables the inclusion of individual-level predictors. Future studies may
examine the relative advantages and disadvantages of these measurement mod-
els more systematically.

The latent trend model takes into account the temporal sequence of the data
and—based on assumptions about the stickiness and other properties of soci-
etal public opinion—estimates a trend from the aggregated individual latent
scores. We elaborate on the examined approaches to latent trend modeling in
detail below. The most common strategy for correcting sample representative-
ness is weighting the data; alternatives include multilevel regression and post-
stratification (Gelman and Little 1997). Since our simulations do not involve
non-response or individual-level covariates, we leave the relative merits of
weights and poststratification to future research. While the framework was
developed for studying public opinion, latent trend models are also applicable
to analyses of other types of trajectories in areas as diverse as democracy
(Treier and Jackman 2008) and lake sediments (Simpson 2018).

2.1 Measurement Model

The measurement model is formulated as an ordinal cumulative model (e.g.,
Samejima 1997; Bürkner and Vuorre 2019) of individuals’ (ordinal) survey
responses on a given item, that is, on the most fine-grained level of the survey
data. The cumulative model assumes that the ordinal response y originates
from the categorization of a latent, normally distributed, continuous variable ~y
according to an ordered latent threshold vector s:
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y ¼ k () sk�1 < ~y � sk; (1)

where k ¼ 1; . . . ;K þ 1 denotes the ordinal response categories implied by K
internal thresholds s ¼ ðs1; . . . ; sKÞ and two external thresholds s0 ¼ �1 and
sKþ1 ¼ 1. Assuming the latent factorization ~y ¼ lþ e into a latent mean l to
be predicted and a standard normally distributed error term e implies that the
probability of y being equal to k is given by

pðy ¼ kjlÞ ¼ Uðsk � lÞ � Uðsk�1 � lÞ;

where U is the cumulative distribution function of the standard normal distri-
bution. This distributional assumption has the advantage that the latent scale is
interpretable as (standardized) z-values, a widely known and understood scale,
but other choices are possible as well (Bürkner and Vuorre 2019). The design
of survey questions, in particular the length of response scales as well as ques-
tion wording, varies across projects, and there are also possible differences
between surveys within the same project. We use the term project to refer to
the organization that coordinates the survey process and publishes the survey
data under the same brand, for example, the European Social Survey or the
World Values Survey. Within projects, surveys include data collected from the
same sample of respondents in the same fieldwork process. Multi-wave proj-
ects include many waves of data collection. Within each project, the survey
process is coordinated and standardized, a condition to achieve comparability
of surveys from different countries and years.

Including project bias in models is intended to account for the differences in
item design and other aspects of the survey process, which may affect respond-
ents’ answers. Because of the differences in item design, we assume a separate
threshold vector for each survey-item combination. Further, to ensure that the
latent trend model (see below) is jointly identified with the threshold vectors,
we apply a sum-to-zero constraint to each of these threshold vectors. This con-
straint implies that changes in the latent trend over time are assumed to reflect
actual attitude changes instead of changes to the content or interpretation of
items.

The latent mean li for observation i now is modeled by

li ¼ b0 þ bprojecti þ bitemi þ bpersoni
þ f ðtiÞ; (2)

where b0 is the mean level of the attitude of interest across time, bproject and
bitem are project- and item-specific deviations from the mean (with a sum-to-
zero constraint across projects and items for identification), bperson is the
person-specific deviation from the mean (with a soft sum-to-zero constraint via
a hierarchical normal prior, Bürkner 2021), f ð:Þ is an unknown mean-zero
function of time, and ti represents the time point to which observation i
belongs. This model can be understood as an additive multilevel model on the
latent scale (Bürkner 2018). Importantly, the model of li can easily be
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extended to more additive terms that might be relevant in a given survey con-
text, thus providing researchers with a lot of flexibility to adjust the presented
framework to their specific modeling challenges. The latent trend we are pri-
marily interested in is given by b0 þ f ðtÞ, while the other terms are added to
account for the data structure commonly encountered in survey research.

2.2 Latent Trend Models

As latent trend models f, we consider four approaches to modeling non-linear
associations that do not require the user to a priori specify their functional
form: (a) thin-plate smoothing splines (Wood 2003), (b) zero-mean GPs with a
smooth covariance kernel (Williams and Rasmussen 1996; Rasmussen and
Williams 2006), (c) AR processes of order 1 (Box et al. 2015), and (d) RW
processes (Box et al. 2015). Approaches (a) and (d) have been applied already
in earlier research of modeling latent trends in public opinion across time with
survey data (RW: Caughey and Warshaw 2015; Claassen 2019; Solt 2020;
TPS: Kołczy�nska et al. 2020) but have never been compared with each other.
Approaches (b) and (c) have, to our knowledge, not yet been applied in this
context.

2.2.1 Thin-plate splines
For a basic intuition, splines can be thought of as piecewise polynomials that
are smoothly connected at their intersections, used for smoothing and interpo-
lation (for an overview see, e.g., Wood 2017). As our first approach to model-
ing f, we consider a more advanced form of splines, penalized smoothing
splines, which can be expressed via a basis function approach:

f ðtÞ ¼
XM
m¼1

am/mðtÞ þ
XL

l¼1

blwlðtÞ;

where /m and wl are simple analytic basis functions (e.g., polynomials), and
am and bl are the corresponding spline coefficients (model parameters) to be
estimated from the data. That is, for any given set of basis functions, the shape
of f is defined by the spline coefficients. The conceptual difference between the
coefficients sets famg and fblg is that one of them is penalized while the other
is not (Wood 2004). Suppose am are the penalized coefficients, then, from a
Bayesian perspective, this means that they have a joint hierarchical prior

am � priorðkÞ

with hyperparameters k that are themselves model parameters estimated from
the data; whereas bl have mutually independent, potentially flat priors (Wood
2004). The here considered splines are parameterized in a way that the priors
of am are zero-mean normal distributions with hyperparameters k representing
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standard deviations over the non-linear space of the splines (Wood 2004).
Importantly, k are estimated from the data, along with all other model parame-
ters. There is a wide range of basis functions to choose from implying different
properties for the corresponding splines. In this article, we focus on (low-rank)
TPS (Wood 2003). They constitute a class of smoothers that can be considered
optimal solutions to the variational problem of balancing accuracy (fit to the
observed data) and smoothness of the approximating function. More formally,
they solve a class of minimization problems given by

jjz� f ðxÞjj2 þ kJmdðf Þ;

where z denotes the outcome variable to be predicted, f(x) the corresponding
predictions based on input variables x, and Jmd is a penalty term depending on
the number of input variables d and the desired degree of smoothness m (i.e.,
the number of minimally existing derivatives of f) controlling the overall wigg-
liness of the resulting function. For example, if the penalty term is given by
Jmdðf Þ ¼

Ð
f ðmÞðxÞ2dx, the optimal f would be a cubic spline (James et al.

2013). The general solution to the above variational problem is given in equa-
tion (7) and surrounding equations in Wood (2003). In our application, we had
only one input variable (time) such that d¼ 1 and we set m¼ 2. Further, since
the exact solutions may be quite high-dimensional in the number of basis func-
tions and thus computationally demanding, a low-rank approximation was
obtained following Wood (2003).

2.2.2 Gaussian processes
As our second approach to modeling f, we consider (zero-mean) GPs (see, e.g.,
Roberts et al. 2013; Görtler et al. 2019, for a conceptual introduction). From
this perspective, f is a realization of an infinite dimensional normal
distribution:

f � normalð0;CðkÞÞ

where C is a covariance kernel with hyperparameters k that defines the cova-
riance between two function values f ðt1Þ and f ðt2Þ for two time points t1 and t2
(Rasmussen and Williams 2006). Similar to the different choices of the basis
function for splines, different choices of the covariance kernel lead to different
GPs. In this article, we consider the squared-exponential kernel defined as

CðkÞ :¼ Cðt1; t2; r; cÞ :¼ r2 exp �ðt1 � t2Þ2

2c2

 !

with hyperparameters k ¼ ðr; cÞ, expressing the overall scale of GP and the
length-scale, respectively (Rasmussen and Williams 2006). The advantages of
this kernel are that it is computationally efficient and (infinitely) smooth
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making it a reasonable choice for the purposes of the present article. Here
again, k are estimated from the data, along with all other model parameters.
For the finite set of tmax observed realization of f, that is, the finite time points
at which f(t) is evaluated in the training data, this implies a multivariate normal
prior as

ðf ðt1Þ; f ðt2Þ; . . . ; f ðtmaxÞÞ � normalð0;CovÞ;

where the covariance matrix Cov has elements Covij ¼ Cðti; tj; r; cÞ according
to the chosen kernel.

2.2.3 Autoregressive processes of order 1
As our third approach to modeling f, we consider an order 1 AR process model
(Box et al. 2015) such that

f ðtÞ ¼ ht � normalðqht�1; rÞ

for t ¼ 2; 3; . . . and f ð1Þ ¼ h1 � normalð0; rÞ, where ht are trend values of the
AR process, q is the order 1 AR hyperparameter controlling the strength of the
AR dependency, and r is a standard deviation hyperparameter controlling the
size of the discrete “jumps” from time t to time tþ 1. As for the other latent
trend models, the hyperparameters are estimated from the data along with all
other model parameters. To our knowledge, general AR processes have not yet
been applied in the context of modeling trajectories in public opinion based on
survey data. However, the special case of q¼ 1 known as RW process has
been applied multiple times already (Caughey and Warshaw 2015; Claassen
2019; Solt 2020). In this study, we investigate both AR and RW processes as
candidates for the latent trend model.

3. SIMULATION DESIGN

The simulations envision data from a single country from five projects (data
sources) over a period of 25 years. In all projects, each survey includes three
questions on the same three issues, but the length of response scales varies by
project. Data simulation scenarios represent combinations of (a) the shape of
the true latent trend, (b) the presence of between-person variation, and (c) data
availability.

3.1 Shape of the True Latent Trend

We examine seven shapes of the latent trend. The first six represent combina-
tions of three variants of the frequency of the trend, and two variants of the
long-term tendency, as presented in figure 1. The three frequencies we examine

8 Kołczy�nska and Bürkner

D
ow

nloaded from
 https://academ

ic.oup.com
/jssam

/advance-article/doi/10.1093/jssam
/sm

ad024/7221047 by U
niversitaetsbibliothek der TU

 D
ortm

und user on 12 Septem
ber 2023



include a pattern with low frequency and large amplitude (which covers much
of the range of the latent scale), medium frequency and medium amplitude,
and high frequency and small amplitude. All three trajectories represent realis-
tic variation patterns of aggregate societal values or attitudes, of which each
particular case of a country’s trajectory likely constitutes a mix. Given that
there is still little long-term longitudinal research of mass public opinion, the
true volatility of the latent trend may not be known a priori. The two long-term
tendencies include long-term stability and a weakly declining long-term linear
trend, which we label “periodic” and “periodic þ linear”, respectively. Since
we found no substantive differences between those two long-term scenarios,
we focus only on the former in the presentation of results, while results for the
“periodic þ linear” scenarios are provided in the appendix in the supplemen-
tary data online. The seventh type of the latent trend is a “zero trend” where
the true latent value equals zero in all years. While extended periods of no
change in public opinion are unlikely to occur in reality, we use this scenario
to verify, whether the models we use would overfit to noise and “invent” a pat-
tern where there is none. The results for the “zero trend” scenarios are also pre-
sented in the appendix in the supplementary data online.

3.2 Between-Person Variation

When modeling latent trends in public opinion, it is often desirable to use
responses to more than one question from the same respondent in a given sur-
vey. This nesting of responses in people needs to be accounted for by incorpo-
rating person-specific parameters (also known as person random effects) in the
latent model, as shown in (2). We note that the standard practice in studies of
trends in public opinion with survey data is to rely on group IRT models
regardless of whether the same respondents contribute one or more responses,
thus simply ignoring this aspect of data generation. In our simulations,
between-person variation is generated from a normal distribution with mean 0

Figure 1. Shapes of the True Latent Trend.
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and standard deviation s. The two possibilities we consider include no
between-person variation (i.e., s¼ 0) and s¼ 1.2, which is a realistic value
based on the results from our empirical illustration with political trust.
Comparing results for both sets of models demonstrates the effect of including
between-person variation on model performance. In both conditions, the esti-
mated models were correct, that is, they modeled between-person variation if
included in the data generation process and did not otherwise.

3.3 Sparsity of the Data

In the full data scenario, data are available for all projects, items, and all
25 years. In the sparse data scenario, data are available for 31 out of the 125
project-years (25 percent), for 19 out of 25 years (76 percent), and without
gaps in coverage longer than 1 year, as presented in figure 2. Whenever data

Figure 2. Data Availability Per Project and Year in the Sparse Scenario.

Table 1. Summary of Data Simulation Scenarios and Latent Trend Model Types

Data simulation scenarios

Shape of the true trend Between-
person

variation

Data sparsity Latent trend models

High frequency, periodic Zero Full data Thin-plate spline
Medium frequency, periodic Non-zero Sparse data Gaussian process
Low frequency, periodic Random walk model
High frequency, periodic þ linear Autoregressive model
Medium frequency,

periodic þ linear
Low frequency, periodic þ linear
Zero (flat)

NOTE.—On data simulated within each data simulation scenario, corresponding to
combinations of the conditions in first three columns, we estimated four types of latent
trend models, listed in the fourth column.
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are available, they are available for all three items. In the light of the availabil-
ity of survey data worldwide, this is a realistic but relatively comfortable situa-
tion characteristic for well-surveyed regions, including most of Europe.

Overall, we have 7� 2� 2 ¼ 28 data scenarios, which correspond to all
combinations of the conditions in the three first columns in table 1. For each
data scenario, we simulated 100 datasets.

3.4 Data Simulation

The simulated data include five survey projects, which—in the full data
scenarios—provide data every year for 25 years. In each year’s survey, there
are 100 respondents who gave responses to three items that can be treated as
indicators of an underlying latent variable. The number of respondents is lower
than the typical sample size in cross-national surveys, which usually ranges
between 1,000 and 2,000. The smaller number of respondents in our simula-
tion study was chosen to control computation time. In our data, there is no unit
or item non-response. Altogether, each simulated dataset in the full data sce-
narios has 5� 25� 100� 3 ¼ 37; 500 observations. In the sparse data sce-
narios, each dataset has 31� 100� 3 ¼ 9; 300 observations.

Data are simulated with the following procedure. For each of the true latent
trends described in section 3.1:

(1) Draw project bias (five projects) and item bias (three items) from
normalð0; 1Þ, and center the project and item biases to each have a mean
of 0.

(2) For each survey, draw 100 person-specific deviations from normalð0; sÞ,
where s equals 0 in the scenario without between-person variation, and s
equals 1.2 in the scenario with between-person variation.

(3) Each respondent’s latent mean li per item is the sum of project and item
bias, person-specific deviation, and latent trend f(t), following (2).

(4) Draw per-observation random errors ei from normalð0; 1Þ.
(5) Each respondent’s latent response ~yi per item is the sum of the latent mean

and random error.
(6) For each project, draw the number of thresholds from the set of options
f1; 3; 4; 6; 9; 10g corresponding to response scale lengths represented in
surveys f2; 4; 5; 7; 10; 11g with probabilities of f0:1; 0:2; 0:2; 0:2; 0:2;
0:1g, which roughly reflects the prevalence of the response scale lengths in
cross-national surveys.

(7) Draw the threshold values sk from normalð0; 1Þ.
(8) Center the thresholds to have a mean of 0 thereby enforcing the sum-to-

zero constraint mentioned in section 2.1.
(9) Use the thresholds to cut the latent response into discrete categories follow-

ing (1).
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(10) In the sparse scenario, keep only the project-years as indicated in figure 2
and discard the remaining simulated data.

On each of the 2,800 datasets (100 datasets for each of 28 scenarios) we ran
four types of latent trend models discussed in section 2.2.

3.5 Model Estimation

The analysis was performed using fully Bayesian estimation with Hamiltonian
Monte Carlo as implemented in Stan (Carpenter et al. 2017). We set normalð0; 3Þ
priors on the thresholds and for the remaining parameters we used default pri-
ors as specified in the brms package (Bürkner 2017). We list the priors in the
appendix in the supplementary data online.

We used default settings for adapt delta of 0.8 and maximum tree depth of
10, and set initial values to 0 on the transformed, unbounded scale. Each model
was run with one chain comprising 3,000 iterations, of which 1,000 were for
warm-up. Convergence was monitored based on the R-hat convergence diag-
nostic, bulk effective sample size, and tail effective sample size (Vehtari et al.
2021). The model code is available in the replication materials.

The large total number of models made the whole task computationally
intensive. Within each scenario, the 100 models were ran in parallel, one core
per model, on a high-performance computing cluster. Each set of 100 models
took up to 960 core-hours for the full data scenarios and up to 240 core-hours
for the sparse data scenarios.

For the subset of models with the “zero” trend, we monitored estimation
times per model. Median values for models with TPS, GPs, AR, and RW mod-
els in each data condition were within an order of magnitude: between 1 and
2 hours for full data and between 19 and 35 minutes for sparse data conditions.
It needs to be noted that similar estimation times, while observed in our analy-
sis, should not be extrapolated to other settings, as the four types of latent trend
models scale differently with the amount of data: TPS scale linearly with the
number of observations, GPs scale cubicly with the number of time points, and
AR and RW models scale linearly with the number of time points.
Additionally, in our analysis, all models shared the same measurement model,
which contributed to similar estimation times.

We performed the analysis in R (R Core Team 2018) using the brms pack-
age (Bürkner 2017), which provides a high-level interface to the probabilistic
programming language Stan (Carpenter et al. 2017). TPS estimation was per-
formed via the mgcv package (Wood 2003). For parallelization, we used the
packages parallel, part of base R, foreach (Weston 2020), and doParallel
(Microsoft Corporation and Weston 2019). We also used several tidyverse
packages (Wickham et al. 2019) for data processing and visualization.
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4. SIMULATION RESULTS

The purpose of the models is to estimate average levels of the latent attitude in
each year, so our analysis focuses on these estimates only. Within each data
scenario, the crucial comparisons are between the performance of TPS, GP,
AR, and RW models, but we also discuss differences in overall performance
between data scenarios. We report the results in terms of RMSE of latent trend
estimates compared to the true values (square root of the average of squared
differences between parameter values from each posterior draw and the true
value), posterior standard deviation, and absolute bias (absolute value of the
difference between the posterior mean and the true value), as well as coverage
by 66 percent and 90 percent posterior credible intervals. It is worth noting
that, in examining posterior credible intervals, we are interested in frequentist
properties of Bayesian credible intervals, although we acknowledge that these
credible intervals are not necessarily designed to include the true value in the
nominally indicated percentage of cases.

We analyze the results both descriptively, by examining the distributions of
the performance metrics across 100 simulations per scenario, as well as by fit-
ting Bayesian regression models to obtain (a) estimates and uncertainties of
average performance per scenario and (b) estimates and uncertainties of aver-
age performance depending on the number of available surveys within each
sparse scenario. Details are provided in the appendix in the supplementary data
online, which also includes results for additional performance metrics.

First of all, we notice that across all datasets in all scenarios and for all latent
trend models, RMSE remains below 0.6. The average RMSE per scenario
barely exceeds 0.2 for only one of them (sparse data, presence of between-
person variation, and the low-frequency trend) and remains below 0.2 for the
others. Given the scale of the latent trend (z-values), these values indicate good
performance of all models.

Comparing model performance across scenarios, models estimated on data
without between-person variation perform better compared to models esti-
mated on data with between-person variation in terms of RMSE, posterior
standard deviation, and absolute bias (compare facets in the first and second
column of figure 3, and those in the third and fourth column). Furthermore,
models estimated on full data perform better than models estimated on sparse
data (compare facets in the first and third column of figure 3, and those in the
second and fourth column). In sum, the difficulty of the scenario has direct
implications for model performance. At the same time, differences between the
shapes of the true trends are in most cases relatively small and depend on the
latent trend model.

We now turn to comparisons of latent trend models within each of the 12
data scenarios presented in figures 3 and 4. AR and RW models perform quite
similarly and tend to have the highest RMSE (with the exception of the sce-
nario with full data, no between-person variation, and high-frequency trend;
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see facets in the top row of figure 3). The difference between AR and RW
models and the other two is the biggest for the low-frequency trend, smaller in
the medium-frequency scenario, and the smallest in the high-frequency sce-
nario. RMSE for TPS and GP models is generally very similar.

The differences in RMSE between AR and RW models, and GP and TPS
models are largely due to higher posterior standard deviations, and to a lesser
extent due to absolute bias (figure 3). In terms of absolute bias, AR and RW
models also perform worst with the exception of high-frequency trends. In the
high-frequency scenarios, TPS models have the highest absolute bias.

Figure 3. Estimated Average Levels of Root Mean Squared Error, Posterior
Standard Deviation, and Absolute Bias by Scenario. Each point represents the esti-
mated mean of the given performance metric across 100 models in each simulation sce-
nario. Error bars indicate 95 percent posterior credible intervals of the mean estimates.
Gray horizontal lines indicate no error. AR, autoregressive; BPV, between-person var-
iation; GP, Gaussian process; high frequency, high-frequency trend; low frequency,
low-frequency trend; medium frequency, medium-frequency trend; RW, random walk;
TPS, thin-plate spline.
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In most cases, coverage is very close to what is expected based on the nomi-
nal width of the credible interval, with two main exceptions (cf. figure 4). First,
TPS models exhibit lower coverage in models estimated on data with the high-
frequency trend. The differences are substantial, with an average coverage of
the 66 percent credible interval not exceeding 50 percent, and as low as under
20 percent in the scenario with full data and no between-person variation.
Similar gaps are observed for other credible intervals. Second, coverage for
AR and RW models tends to be higher than expected in the scenarios with
sparse data. In scenarios with the low-frequency trend and sparse data, cover-
age by the 66 percent credible interval for AR and RW models reaches 80 per-
cent. More generally, coverage by credible intervals for AR and RW models in
scenarios with sparse data tends to exceed the credible intervals’ nominal
values.

We also examined the role of data availability on model performance in the
sparse scenarios. Data availability is measured as the number of surveys avail-
able in the given and adjacent years and ranges from 1 in years 3, 9, and 11 to
7 in year 20 (cf. figure 2). In all scenarios having more surveys translates into
lower RMSE, posterior standard deviation, and absolute bias (figure 5). More
data also reduces over-coverage in AR and RW models, at least in the low-
frequency scenarios. Perhaps more importantly, a higher number of available

Figure 4. Estimated Average Levels of Coverage by Scenario. Each point repre-
sents the estimated mean level of coverage by the given posterior credible interval
across 100 models in each simulation scenario. Error bars indicate 95 percent posterior
credible intervals of the mean estimates. Gray horizontal lines indicate the reference
value corresponding to the nominal width of the credible interval. AR, autoregressive;
BPV, between-person variation; GP, Gaussian process; high frequency, high-fre-
quency trend; low frequency, low-frequency trend; medium frequency, medium-fre-
quency trend; RW, random walk; TPS, thin-plate spline.
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surveys substantially improves coverage in the high-frequency scenario in
models with TPS, which on average suffer from under-coverage (figure 6).

From all these comparisons, GPs emerged as the option with the most reli-
able performance across metrics and data scenarios. Under conditions of our
simulation study, from the performance point of view, GPs could be consid-
ered advisable if data coverage is incomplete and the shape of the latent trend
is not known a priori. The results for the Periodic þ Linear trends were similar
to those of the Periodic trends. The zero trends exhibited substantially better
performance, with RMSE, posterior standard deviation, and absolute bias

Figure 5. Estimated Values of Root Mean Squared Error, Posterior Standard
Deviation, and Absolute Bias by the Number of Available Surveys in the Given and
Adjacent Years for Each Sparse Data Simulation Scenario. Gray horizontal lines
indicate the reference value of 0. Uncertainty is indicated as 95 percent posterior credible
intervals. AR, autoregressive; BPV, between-person variation; GP, Gaussian process;
high frequency, high-frequency trend; low frequency, low-frequency trend; medium fre-
quency, medium-frequency trend; RW, random walk; TPS, thin-plate spline.
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reaching about half of the respective levels in among models estimated on data
in the Periodic scenarios. At the same time, in the zero trend scenarios, all
models have a tendency for over-coverage, which is the largest in the case of
AR models and the smallest in the case of TPS. In the sparse scenarios, this
tendency is somewhat reduced in cases of higher data availability, especially
for TPS models. Detailed results are presented in the appendix in the supple-
mentary data online.

5. ILLUSTRATION: TRENDS IN POLITICAL TRUST

As a real-data application, we use the example of political trust measured with
data from European cross-national survey projects: Candidate Countries

Figure 6. Estimated Values of Coverage by the 66 and 90 Percent Posterior
Credible Interval by the Number of Available Surveys in the Given and Adjacent
Years for Each Sparse Data Simulation Scenario. Gray horizontal lines indicate the
reference value corresponding to the nominal width of the credible interval.
Uncertainty is indicated as 95 percent posterior credible intervals. AR, autoregressive;
BPV, between-person variation; GP, Gaussian process; high frequency, high-
frequency trend; low frequency, low-frequency trend; medium frequency, medium-
frequency trend; RW, random walk; TPS, thin-plate spline.
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Eurobarometer (CCEB), Eurobarometer (EB), European Social Survey (ESS),
European Values Study (EVS), Life in Transition Survey (LITS), New Europe
Barometer (NEB), and World Values Survey (WVS). From these projects, we
selected surveys that include items on trust in the parliament, political parties,
and the justice system, from three countries: Hungary, Poland, and Spain
between 1995 and 2019. References to the data files, links to project websites
with survey documentation, and the wording of survey items are provided in
the appendix in the supplementary data online. Figure 7 illustrates the avail-
ability of survey data per project and country. In all three cases, there were
fewer surveys in the 1990s compared to the later period, a pattern characteristic
of most European countries, which will have consequences for model
estimates.

For each country, we pooled the data from all projects, and on the resulting
datasets, we estimated four models where time was modeled as a TPS, GP, and
AR and RW processes. The models accounted for between-person variation,

Figure 7. Data availability per project and year for Hungary, Poland, and Spain.
CCEB, Candidate Countries Eurobarometer; EB, Eurobarometer; ESS, European
Social Survey; EVS, European Values Study; LITS, Life in Transition Surveys; NEB,
New Europe Barometer; WVS, World Values Survey.

18 Kołczy�nska and Bürkner

D
ow

nloaded from
 https://academ

ic.oup.com
/jssam

/advance-article/doi/10.1093/jssam
/sm

ad024/7221047 by U
niversitaetsbibliothek der TU

 D
ortm

und user on 12 Septem
ber 2023

https://academic.oup.com/jssam/article-lookup/doi/10.1093/jssam/smad024#supplementary-data


as well as project and item bias, similar to the models used in the simulation
analysis. An evaluation of model fit, using leave-one-out cross-validation
(LOO) as developed by Vehtari et al. (2016) and implemented in the loo pack-
age (Vehtari et al. 2020), indicates that RW models exhibit better fit than the
remaining types, while TPS models consistently perform the worst. Details are
provided in the appendix in the supplementary data online.

Estimated average levels of political trust as well as 95 percent posterior
credible intervals of these estimates are presented in figure 8. These estimates
show substantial agreement in the overall trajectories across models. At the
same time, they reveal important differences in the degree of smoothing, as
well as in the variation in the amount of uncertainty depending on data
availability.

Trajectories estimated with TPS are the least volatile and capture only the
long-term tendencies in political trust. The estimated uncertainty is rather
small, with the average width of 95 percent posterior credible intervals of
around 0.03 (on the probit scale) in all three countries. In periods with no data,
the intervals are about three times as wide as in periods with data. Based on the
simulation results, it is likely that the uncertainty is underestimated, especially
when there is little data available.

Estimates from GP models are much more volatile and include short-term
changes that are absent in the trajectories estimated with TPS. For periods
without data, the estimated uncertainty is about 10 times as high as in periods

Figure 8. Estimated Trajectories of Political Trust in Hungary, Poland, and
Spain, with Three Types of Time Trend Models: Thin-Plate Splines (TPS),
Gaussian Processes (GP), Random Walk (RW), and Autoregressive (AR) Models.
Shaded regions indicate 95 percent posterior credible intervals.
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with the most data. For example, in 1996–1997 and 1998–1999 in Hungary,
two 2-year periods without any data, the width of posterior credible intervals
was estimated at around 1.4 on the probit scale, which exceeds the range of the
mean estimates of trust in this country.

The distinctive feature of AR and RW models is their discrete character.
Estimates of these models are similar to those of the GPs with regard to the
presence of short-term volatility and the sensitivity of uncertainty estimates to
data availability. In periods with high data availability, the width of the credi-
ble intervals in AR and RW models is slightly smaller but overall similar to the
GP models. In years with no data, credible intervals in AR and RW models are
about two-thirds of those in the GP models. AR and RW models also estimate
somewhat less volatility in political trust, based on the range of posterior
means, compared to GP models.

Comparing model estimates with raw means of political trust rescaled to a
common 0–10 range in figure 9 shows how GP and RW models reflect the
local ups and downs in the survey data, while TPS smooth over much of that
local variation. For example, the peak in Hungary in the year 2002, visible in
the GP, AR, and RW models, reflects a single CCEB survey, in which average
political trust was higher than in CCEB in adjacent years.

When comparing estimated trajectories from the four latent trend models, it
is worth keeping in mind that their correspondence to the unknown true trajec-
tory depends on the extent to which the model captures important features of
the data-generating process. In the present analysis, the model accounts for
project bias that is assumed to be constant across all project waves and does
not allow for possible additional wave- or survey-specific bias. The sensitivity
of the GP, AR, and RW models to single surveys is desirable when the goal is

Figure 9. Averages of Trust in Parliament, Political Parties, and Justice System,
Rescaled to 0–10 Range in Hungary, Poland, and Spain. Average political trust was
calculated by rescaling the three trust variables to the 0–10 range, calculating mean
levels of each trust type within country-year-projects, and averaging across the three
trust means. CCEB, Candidate Countries Eurobarometer; EB, Eurobarometer; ESS,
European Social Survey; EVS, European Values Study; LITS, Life in Transition
Surveys; NEB, New Europe Barometer; WVS, World Values Survey.
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to estimate fine short-term fluctuations with data characterized by uniformly
high quality of sample representation and measurement across all data sources.
If this was true in the case of our survey data, we would, for example, expect
agreement between projects in the trends of political trust. The projects pre-
sented in figure 9 exhibit broadly similar trends in political trust in the three
countries, but also some differences. For example, in Spain, political trust
according to EB increased between 2006 and 2008 but declined according to
ESS. In Poland, EB data suggest the stability of political trust between 2010
and 2015, whereas ESS points to a decrease. Given these disagreements
between data sources, the reliance of GP, AR, and RW models on single sur-
veys to locally determine the trend may constitute over-fitting to data idiosyn-
crasies. This can also be viewed as a limitation of our measurement model,
which did not allow for additional wave- or survey-specific bias, thus pushing
some of the related signals onto the latent trend.

6. CONCLUSION

We introduced a framework to jointly model individual-level responses across
items, surveys, projects, and time by combining ordinal measurement models
with additive multilevel models on the latent scale. Within this framework, we
compared four approaches to modeling latent trends that can be used in analy-
ses of public opinion: TPS, GPs, AR, and RW models. Our simulation scenar-
ios vary the shape of the true latent trend, the complexity of the model, and
data availability. Overall, our results show that all four types of latent trend
models perform well even in the most difficult scenarios with between-person
variation, sparse data, and a trend with frequent small fluctuations.

Across our simulation scenarios, GP models (with squared exponential ker-
nel) exhibited the most reliably high performance. TPS performed equally
well, except for cases when the true trend was weak with frequent small fluctu-
ations. In that latter case, TPS underestimates the uncertainty unless sufficient
data were available; with enough data the under-coverage by TPS models was
small. The comparably small uncertainty regions of the TPS may be the result
of the underlying function not being wiggly enough, presumably due to
(implicitly) fixing the length-scale parameter, which is common among spline
approaches (Wood 2003; Kammann and Wand 2003). Viewed from a different
perspective, the TPS represents a deterministic function of time, which may
lead to auto-correlated residuals that cannot be fully captured by the model,
again leading to a potential underestimation of uncertainty, depending on the
nature of the true latent trend. Relatedly, extrapolation of a deterministic, data-
driven trend model beyond the time range of the data is problematic, which is
a drawback of this approach. AR and RW models tended to overestimate
uncertainty, presumably because the AR and RW assume a discrete trend
while, in our simulations, the true trend was a smooth function. Furthermore,
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AR and RW models on average had the highest RMSE of all latent model
types. In the future, it could be interesting to study extensions of the RW prior
to the residuals, such as AR-integrated-moving average priors (Kitagawa and
Gersch 1984; Harvey 1989; Box et al. 2015), or special cases thereof, to
increase the flexibility of the discrete time-series process, and perhaps improve
accuracy and uncertainty calibration. Furthermore, it might be interesting to
study combinations of splines and AR priors on the residuals to capture both
the smooth latent trend and potentially remaining temporal dependencies.

The real-data illustration consisting in the estimation of political trust trajec-
tories in three European countries based on data from cross-national surveys
indicated superior predictive performance of RW models and inferior perform-
ance of TPS models. The analysis also reveals other differences between the
four latent trend models: compared to TPS, the remaining three model types
are much more sensitive to short-term fluctuations implied by the survey data,
even if stemming from single surveys. The uncertainty estimates in GP, AR,
and RW models were also substantially more sensitive to data gaps. The wide
posterior credible intervals in years without any survey data, similar in width
to the overall variation of the estimated trend in the given time series, in prac-
tice convey minimal information about the estimated quantity in these years.
These results suggest that TPS may be more suitable for estimating trends of
characteristics that—at least on the societal level—are known to change
slowly, especially if the available survey data are noisy and have incomplete
coverage. GP, AR, and RW models may be better suited when modeling more
volatile attitudes but require higher quality data and time series without data
gaps. That said, as already mentioned earlier, improving the measurement
model to capture additional sources of variation could prevent the related sig-
nal to be absorbed into the latent GP, AR, and RW trend and thus reduce their
sensitivity to local data idiosyncrasies. In other words, one cannot separate the
latent model from the measurement model due to their complex interactions,
and potential misspecifications in one of the two models are likely to affect
both of them.

In addition to considering these differences, the ultimate choice of the latent
trend model would likely depend on other factors as well, including the mod-
el’s ability to incorporate individual-level predictors, avoiding possible prob-
lems with model specification or estimation, and on the number of
observations and time points due to the latent models’ different scaling.
Regardless of which model is chosen, we emphasize the need to account for
the uncertainty associated with estimates of the latent trends in explanatory
models.

The framework for analyzing public opinion trends with data from different
survey projects conceptually connects to individual data meta-analysis per-
formed in particular in medical or psychological research, where individual
participants’ data from different studies are pooled and analyzed jointly (e.g.,
Riley et al. 2010; Riley 2010; Ioannidis 2017). In social survey research,
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methods for combining existing survey datasets are studied under the label
“ex-post survey data harmonization” (Wolf et al. 2016). Despite the differences
in the types of data and analyses, both lines of research emphasize the need to
take into account the clustering of participants within studies as well as to
include study- and participant-level characteristics.

6.1 Limitations

The simulations we designed take into account some of the issues that
researchers of aggregate public opinion encounter, most notably related to data
availability. Others have remained unexamined, which limits the generalizabil-
ity of our results. Such unexamined conditions include possible problems with
data quality, such as representation errors, added complexity of the measure-
ment model, such as varying discrimination parameters across items and/or
projects, and other true latent trends than the ones we considered, in particular
trends that result from random processes such as GPs or discrete AR models.
All these aspects will influence the performance of the estimated latent trend
models, and their suitability for a particular application.

We also examined just one sparsity pattern, due to space limitations, and
one that is rather optimistic in the light of survey data availability on the issues
that are of interest to social scientists (cf. Claassen 2020). When including item
and project bias, what will matter is not only the number of surveys overall,
but the number of surveys per project and how the surveys from different proj-
ects are spread over the period of interest. In applications with real data, the
combination of the sparsity pattern and the true latent trend will likely deter-
mine the difficulty of the modeling task, because detecting smaller fluctuations
requires more and better data. Overall, when dealing with sparse data
coverage—which is the reality in modeling public opinion over time—caution
is advised when drawing conclusions about fluctuations smaller and more fre-
quent than the ones in our high-frequency scenario.
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