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Abstract
Gaussian processes are powerful non-parametric probabilistic models for stochastic functions. However, the direct imple-
mentation entails a complexity that is computationally intractable when the number of observations is large, especially when
estimated with fully Bayesian methods such as Markov chain Monte Carlo. In this paper, we focus on a low-rank approximate
Bayesian Gaussian processes, based on a basis function approximation via Laplace eigenfunctions for stationary covariance
functions. The main contribution of this paper is a detailed analysis of the performance, and practical recommendations for
how to select the number of basis functions and the boundary factor. Intuitive visualizations and recommendations, make it
easier for users to improve approximation accuracy and computational performance.We also propose diagnostics for checking
that the number of basis functions and the boundary factor are adequate given the data. The approach is simple and exhibits
an attractive computational complexity due to its linear structure, and it is easy to implement in probabilistic programming
frameworks. Several illustrative examples of the performance and applicability of themethod in the probabilistic programming
language Stan are presented together with the underlying Stan model code.

Keywords Gaussian process · Low-rank Gaussian process · Hilbert space methods · Sparse Gaussian process · Bayesian
statistics · Stan

1 Introduction

Gaussian processes (GPs) are flexible statistical models for
specifying probability distributions over multi-dimensional
non-linear functions (Rasmussen and Williams 2006; Neal
1997). Their name stems from the fact that any finite set
of function values is jointly distributed as a multivariate
Gaussian distribution. GPs are defined by a mean and a
covariance function. The covariance function encodes our
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prior assumptions about the functional relationship, such as
continuity, smoothness, periodicity and scale properties. GPs
not only allow for non-linear effects but can also implic-
itly handle interactions between input variables (covariates).
Different types of covariance functions can be combined for
further increased flexibility. Due to their generality and flex-
ibility, GPs are of broad interest across machine learning
and statistics (Rasmussen and Williams 2006; Neal 1997).
Among others, they find application in the fields of spatial
epidemiology (Diggle 2013; Carlin et al. 2014), robotics and
control (Deisenroth et al. 2015), signal processing (Särkkä
et al. 2013), neuroimaging (Andersen et al. 2017) as well as
Bayesian optimization and probabilistic numerics (Roberts
2010; Briol et al. 2015; Hennig et al. 2015).

The key element of a GP is the covariance function that
defines the dependence structure between function values at
different inputs. However, computing the posterior distribu-
tion of a GP comes with a computational issue because of the
need to invert the covariance matrix. Given n observations in
the data, the computational complexity and memory require-
ments of computing the posterior distribution for a GP in
general scale as O(n3) and O(n2), respectively. This limits
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their application to rather small data sets of a few tens of
thousands observations at most. The problem becomes more
severewhen performing full Bayesian inference via sampling
methods, where in each sampling step we need O(n3) com-
putations when inverting the Gram matrix of the covariance
function, usually throughCholesky factorization. To alleviate
these computational demands, several approximate methods
have been proposed.

Sparse GPs are based on low-rank approximations of the
covariance matrix. The low-rank approximation with m �
n inducing points implies reduced memory requirements
of O(nm) and corresponding computational complexity of
O(nm2). A unifying view on sparse GPs based on approxi-
mate generative methods is provided by Quiñonero-Candela
and Rasmussen (2005), while a general review is provided
by Rasmussen and Williams (2006). Burt et al. (2019)
show that for regression with normally distributed covari-
ates in D dimensions and using the squared exponential
covariance function, M = O(logD N ) is sufficient for an
accurate approximation. An alternative class of low-rank
approximations is based on forming a basis function approx-
imation with m � n basis functions. The basis functions
are usually presented explicitly, but can also be used to
form a low-rank covariance matrix approximation. Common
basis function approximations rest on the spectral analy-
sis and series expansions of GPs (Loève 1977; Van Trees
1968; Adler 1981; Cramér and Leadbetter 2013). Sparse
spectrum GPs are based on a sparse approximation to the
frequency domain representation of a GP (Lázaro Gredilla
2010; Quiñonero-Candela et al. 2010; Gal and Turner 2015).
Recently, Hensman et al. (2017) presented a variational
Fourier feature approximation for GPs that was derived for
the Matérn class of kernels. Another related method for
approximating kernels relies on random Fourier features
(Rahimi and Recht 2008, 2009). Certain spline smoothing
basis functions are equivalent to GPs with certain covariance
functions (Wahba 1990; Furrer and Nychka 2007). Recent
related work based on a spectral representation of GPs as an
infinite series expansion with the Karhunen-Loève represen-
tation (see, e.g., Grenander 1981) is presented by Jo et al.
(2019). Yet another approach is to present Gaussian process
using precision matrix, which is the inverse of the covariance
matrix. If the precision matrix is sparse, computation taking
the benefit of that sparsity can scale much better than O(n3).
See, for example, review by Lindgren et al. (2022).

In this paper, we focus on a recent framework for fast
and accurate inference for fully Bayesian GPs using basis
function approximations basedon approximationviaLaplace
eigenfunctions for stationary covariance functions proposed
by Solin and Särkkä (2020). Using a basis function expan-
sion, a GP is approximated with a linear model which makes
inference considerably faster. The linear model structure
makes GPs easy to implement as building blocks in more

complicated models in modular probabilistic programming
frameworks, where there is a big benefit if the approximation
specific computation is simple. Furthermore, a linear repre-
sentation of a GPmakes it easier to be used as latent function
in non-Gaussian observational models allowing for more
modelling flexibility. The basis function approximation via
Laplace eigenfunctions can be made arbitrary accurate and
the trade-off between computational complexity and approx-
imation accuracy can easily be controlled.

The Laplace eigenfunctions can be computed analytically
and they are independent of the particular choice of the
covariance function including the hyperparameters. While
the pre-computation cost of the basis functions is O(m2n),
the computational cost of learning the covariance function
parameters is O(mn + m) in every step of the optimizer or
sampler. This is a big advantage in terms of speed for itera-
tive algorithms such asMarkov chainMonte Carlo (MCMC).
Another advantage is the reduced memory requirements of
automatic differentiationmethods used inmodern probabilis-
tic programming frameworks, such as Stan (Carpenter et al.
2017) and others. This is because the memory requirements
of automatic differentiation scale with the size of the autodiff
expression treewhich in direct implementations is simpler for
basis function than covariancematrix-based approaches. The
basis function approach also provides an easy way to apply
a non-centered parameterization of GPs, which reduces the
posterior dependency between parameters representing the
estimated function and the hyperparameters of the covari-
ance function, which further improves MCMC efficiency.

While Solin and Särkkä (2020) have fully developed the
mathematical theory behind this specific approximation of
GPs, further work is needed for its practical implementation
in probabilistic programming frameworks. In this paper, the
interactions among the key factors of the method such as the
number of basis functions, domain of the prediction space,
and properties of the true functional relationship between
covariates and response variable, are investigated and ana-
lyzed in detail in relation to the computational performance
and accuracy of the method. Practical recommendations
are given for the values of the key factors based on sim-
ple diagnostic values and intuitive graphical summaries that
encode the recognized relationships. Our recommendations
help users to choose valid and optimized values for these
factors, improving computational performance without sac-
rificing modeling accuracy. The proposed diagnostic can be
used to check whether the chosen values for the number
of basis functions and the domain of the prediction space
are adequate to model the data well. On that basis, we also
develop an iterative procedure to achieve accuracte approxi-
mation performance with minimal computational costs.

We have implemented the approach in the probabilis-
tic programming language Stan (Carpenter et al. 2017) as
well as subsequently in the brms package (Bürkner 2017)
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of the R software (R Core Team 2019). Several illustra-
tive examples of the performance and applicability of the
method are shown using both simulated and real datasets.
All examples are accompanied by the corresponding Stan
code. Although there are several GP specific software pack-
ages available to date, for example, GPML (Rasmussen and
Nickisch 2010), GPstuff (Vanhatalo et al. 2013), GPy (GPy
2012), and GPflow (Matthews et al. 2017), each provide effi-
cient implementations only for a restricted range ofGP-based
models. In this paper, we do not focus on the fastest possible
inference for a small set of specific GP models, but instead
we are interested in how GPs can be easily used as modular
components in probabilistic programming frameworks.

The remainder of the paper is structured as follows. In
Sect. 2, we introduce GPs, covariance functions and spectral
density functions. In Sect. 3, the reduced-rank approxi-
mation to GPs proposed by Solin and Särkkä (2020) is
described. In Sect. 4, the accuracy of these approximations
under several conditions is studied using both analytical
and numerical methods. Practical diagnostics are devel-
oped there as well. Several case studies in which we fit
exact and approximate GPs to real and simulated data
are provided in Sect. 5. A brief conclusion of the work
is made in Sect. 6. Appendix A includes a brief pre-
sentation of the mathematical details behind the Hilbert
space approximation of a stationary covariance function,
and Appendix B presents a low-rank representation of a
GP for the particular case of a periodic covariance func-
tion. Online supplemental material with more case studies
illustrating the performance and applicability of the method
can be found online at https://github.com/gabriuma/basis_
functions_approach_to_GP/tree/master/Paper in the sub-
folder online_supplemental_material.

2 Gaussian process as a prior

A GP is a stochastic process which defines the distri-
bution of a collection of random variables indexed by
a continuous variable, that is, { f (t) : t ∈ T } for some
index set T . GPs have the defining property that the
marginal distribution of any finite subset of random vari-
ables, { f (t1), f (t2), . . . , f (tN )}, is a multivariate Gaussian
distribution.

In this work, GPs will take the role of a prior distribution
over function spaces for non-parametric latent functions in
a Bayesian setting. Consider a data set D = {(xn, yn)}Nn=1,
where yn is modelled conditionally as p(yn | f (xn), φ),
where p is some parametric distribution with parameters φ,
and f is an unknown functionwith aGPprior, which depends
on an input xn ∈ IRD . This generalizes readily to more com-
plex models depending on several unknown functions, for
example such as p(yn | f (xn), g(xn)) or multilevel models.

Our goal is to obtain the posterior distribution for the value
of the function f̃ = f (x̃) evaluated at a new input point x̃.

We assumeaGPprior for f ∼ GP(μ(x), k(x, x′)), where
μ : IRD → IR and k : IRD × IRD → IR are the mean and
covariance functions, respectively,

μ(x) = E[ f (x)] ,

k(x, x′) = E
[
( f (x) − μ(x))

(
f (x′) − μ(x′)

)]
.

The mean and covariance functions completely character-
ize the GP prior, and control the a priori behavior of the
function f . Let f = { f (xn)}Nn=1, then the resulting prior
distribution for f is a multivariate Gaussian distribution
f ∼ Normal(μ, K ), where μ = {μ(xn)}Nn=1 is the mean
and K the covariance matrix, where Ki, j = k(xi , x j ). In
the following, we focus on zero-mean Gaussian processes,
that is set μ(x) = 0. The covariance function k(x, x′) might
depend on a set of hyperparameters, θ , but we will not write
this dependency explicitly to ease the notation. The joint dis-
tribution of f and a new f̃ is also a multivariate Gaussian
as,

p( f , f̃ ) = Normal

([
f
f ∗
] ∣∣∣∣ 0,

[
K f , f k f , f̃
k f̃ , f k f̃ , f̃

])

,

where k f , f̃ is the covariance between f and f̃ , and k f̃ , f̃ is

the prior variance of f̃ .
If p(yn | f (xn), φ) = Normal(yn | f (xn), σ ) then f

can be integrated out analytically (with a computational cost
of O(n3) for exact GPs and O(nm2) for sparse GPs). If
p(yn | f (xn), g(xn)) = Normal(yn | f (xn), g(xn)) or
p(yn | f (xn), φ) is non-Gaussian, the marginalization does
not have a closed-form solution. Furthermore, if a prior dis-
tribution is imposed onφ and θ to form a joint posterior forφ,
θ and f , approximate inference such asMarkov chainMonte
Carlo (MCMC; Brooks et al. 2011), Laplace approximation
(Williams and Barber 1998; Rasmussen andWilliams 2006),
expectation propagation (Minka 2001), or variational infer-
ence methods (Gibbs and MacKay 2000; Csató et al. 2000)
are required. In this paper, we focus on the use of MCMC
for integrating over the joint posterior. MCMC is usually not
the fastest approach, but it is flexible and allows accurate
inference and uncertainty estimates for general models in
probabilistic programming settings. We consider the compu-
tational costs of GPs specifically from this point of view.

2.1 Covariance functions and spectral density

The covariance function is the crucial ingredient in a GP
as it encodes our prior assumptions about the function, and
characterizes the correlations between function values at dif-
ferent locations in the input space. A covariance function
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needs to be symmetric and positive semi-definite (Rasmussen
and Williams 2006). A stationary covariance function is a
function of τ = x − x′ ∈ IRD , such that it can be written
k(x, x′) = k(τ ), which means that the covariance is invari-
ant to translations. Isotropic covariance functions depend
only on the input points through the norm of the difference,
k(x, x′) = k(|x − x′|) = k(r), r ∈ IR, which means that
the covariance is both translation and rotation invariant. The
most commonly used distance between observations is the
L2-norm (|x − x′|L2), also known as Euclidean distance,
although other types of distances can be considered.

TheMatérn class of isotropic covariance functions is given
by,

kν(r) = α
21−ν

Γ (ν)

(√
2νr

�

)ν

Kν

(√
2νr

�

)

,

where ν > 0 is the order the kernel, Kν the modified Bessel
function of the second kind, and the � > 0 and α > 0 are
the length-scale and magnitude (marginal variance), respec-
tively, of the kernel. The particular case where ν = ∞,
ν = 3/2 and ν = 5/2 are probably the most commonly
used kernels (Rasmussen and Williams 2006),

k∞(r) = α exp

(
−1

2

r2

�2

)
,

k 3
2
(r) = α

(

1 +
√
3r

�

)

exp

(

−
√
3r

�

)

,

k 5
2
(r) = α

(

1 +
√
5r

�
+ 5r2

3�2

)

exp

(

−
√
5r

�

)

.

The former is commonly knownas the squared exponential or
exponentiated quadratic covariance function. As an example,
assuming the Euclidean distance between observations, r =
|x−x′|L2 =

√∑D
i=1(xi − x ′

i )
2, the kernel k∞ written above

takes the form

k∞(r) = α exp

(

−1

2

D∑

i=1

(xi − x ′
i )
2

�2i

)

.

Notice that the previous expressions k∞(r) has been eas-
ily generalized to using a multidimensional length-scale
� ∈ IRD . Using individual length-scales for each dimension
turns an isotropic covariance function into a non-isotropic
covariance function. That is, for a non-isotropic covariance
function, the smoothness may vary across different input
dimensions.

Stationary covariance functions can be represented in
terms of their spectral densities (see, e.g., Rasmussen and
Williams 2006). In this sense, the covariance function of a

stationary process can be represented as the Fourier trans-
form of a positive finite measure (Bochner’s theorem; see,
e.g., Akhiezer and Glazman 1993). If this measure has a
density, it is known as the spectral density of the covariance
function, and the covariance function and the spectral density
are Fourier duals, known as the Wiener-Khintchine theorem
(Rasmussen and Williams 2006). The spectral density func-
tions associatedwith theMatérn class of covariance functions
are given by

sν(ω) = α
2DπD/2Γ (ν + D/2)(2ν)ν

Γ (ν) �2ν

(
2ν

�2
+ 4π2ωᵀω

)−(ν+D/2)

in D dimensions, where vector ω ∈ IRD is in the frequency
domain, and � and α are the length-scale and magnitude
(marginal variance), respectively, of the kernel. The particu-
lar cases, where ν = ∞, ν = 1/2, ν = 3/2 and ν = 5/2,
take the form

s∞(ω) = α (
√
2π)D�D exp(−1

2
�2ωᵀω), (1)

s 3
2
(ω) = α

2DπD/2Γ ( D+3
2 )33/2

1
2

√
π�3

(
3

�2
+ ωᵀω

)− D+3
2

, (2)

s 5
2
(ω) = α

2DπD/2Γ ( D+5
2 )55/2

3
4

√
π�5

(
5

�2
+ ωᵀω

)− D+5
2

. (3)

For instance, with input dimensionality D = 3 and ω =
(ω1, ω2, ω3)

ᵀ, the spectral densities written above take the
form

s∞(ω) = α (2π)3/2
3∏

i=1

�i exp

(

−1

2

3∑

i=1

�2i ω
2
i

)

,

s 3
2
(ω) = α 32π33/2

3∏

i=1

�i

(

3 +
3∑

i=1

�2i ω
2
i

)−3

,

s 5
2
(ω) = α

64

3
π55/2

3∏

i=1

�i

(

5 +
3∑

i=1

�2i ω
2
i

)−4

.

where individual length-scales �i for each frequency dimen-
sion ωi have been used.

3 Hilbert space approximate Gaussian
process model

The approximate GPmethod, developed by Solin and Särkkä
(2020) and further analysed in this paper, is based on con-
sidering the covariance operator of a stationary covariance
function as a pseudo-differential operator constructed as a
series of Laplace operators. Then, the pseudo-differential
operator is approximated with Hilbert space methods on a
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compact subset Ω ⊂ IRD subject to boundary conditions.
For brevity, we will refer to these approximate Gaussian pro-
cesses as HSGPs. Below, we will present the main results
around HSGPs relevant for practical applications. More
details on the theoretical background are provided by Solin
and Särkkä (2020). Our starting point for presenting the
method is the definition of the covariance function as a series
expansion of eigenvalues and eigenfunctions of theLaplacian
operator. The mathematical details of this approximation are
briefly presented in Appendix A.

3.1 Unidimensional GPs

We begin by focusing on the case of a unidimensional input
space (i.e., on GPs with just a single covariate) such that
Ω ∈ [−L, L] ⊂ IR, where L is some positive real number to
which we also refer as boundary condition. As Ω describes
the interval in which the approximations are valid, L plays
a critical role in the accuracy of HSGPs. We will come back
to this issue in Sect. 4.

WithinΩ , we canwrite any stationary covariance function
with input values x, x ′ ∈ Ω as

k(x, x ′) =
∞∑

j=1

sθ (
√

λ j )φ j (x)φ j (x
′), (4)

where sθ is the spectral density of the stationary covariance
function k (see Sect. 2.1) and θ is the set of hyperparameters
of k (Rasmussen and Williams 2006). The terms {λ j }∞j=1
and {φ j (x)}∞j=1 are the sets of eigenvalues and eigenvectors,
respectively, of the Laplacian operator in the given domain
Ω . Namely, they satisfy the following eigenvalue problem
in Ω when applying the Dirichlet boundary condition (other
boundary conditions could be used as well)

−∇2φ j (x) = λ jφ j (x), x ∈ Ω

φ j (x) = 0, x /∈ Ω.
(5)

The eigenvalues λ j > 0 are real and positive because the
Laplacian is a positive definite Hermitian operator, and the
eigenfunctions φ j for the eigenvalue problem in Eq. (5) are
sinusoidal functions. The solution to the eigenvalue problem
is independent of the specific choice of covariance function
and is given by

λ j =
(
jπ

2L

)2
, (6)

φ j (x) =
√

1

L
sin
(√

λ j (x + L)
)
. (7)

If we truncate the sum in Eq. (4) to the first m terms, the
approximate covariance function becomes

k(x, x ′) ≈
m∑

j=1

sθ (
√

λ j )φ j (x)φ j (x
′) = φ(x)ᵀΔφ(x ′),

where φ(x) = {φ j (x)}mj=1 ∈ IRm is the column vector of
basis functions, and Δ ∈ IRm×m is a diagonal matrix of the
spectral density evaluated at the square root of the eigenval-
ues, that is, sθ (

√
λ j ),

Δ =
⎡

⎢
⎣

sθ (
√

λ1)

. . .

sθ (
√

λm)

⎤

⎥
⎦ .

Thus, the Grammatrix K for the covariance function k for
a set of observations i = 1, . . . , n and corresponding input
values {xi }ni=1 can be represented as

K = ΦΔΦᵀ,

where Φ ∈ IRn×m is the matrix of eigenfunctions φ j (xi )

Φ =
⎡

⎢
⎣

φ1(x1) · · · φm(x1)
...

. . .
...

φ1(xn) · · · φm(xn)

⎤

⎥
⎦ .

As a result, the model for f can be written as

f ∼ Normal(μ, ΦΔΦᵀ).

This equivalently leads to a linear representation of f via

f (x) ≈
m∑

j=1

(
sθ (

√
λ j )

) 1
2 φ j (x)β j , (8)

where β j ∼ Normal(0, 1). Thus, the function f is approx-
imated with a finite basis function expansion (using the
eigenfunctions φ j of the Laplace operator), scaled by the
square root of spectral density values. A key property of this
approximation is that the eigenfunctions φ j do not depend
on the hyperparameters of the covariance function θ . Instead,
the only dependence of themodel on θ is through the spectral
density sθ . The eigenvalues λ j are monotonically increasing
with j and sθ goes rapidly to zero for bounded covariance
functions. Therefore, Eq. (8) can be expected to be a good
approximation for a finite number of m terms in the series as
long as the inputs values xi are not too close to the boundaries
−L and L ofΩ . The computational cost of evaluating the log
posterior density of univariate HSGPs scales as O(nm+m),
where n is the number of observations and m the number of
basis functions.
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The parameterization in Eq. (8) is naturally in the non-
centered parameterization form with independent prior dis-
tribution onβ j , which canmake the posterior inference easier
(see, e.g., Betancourt and Girolami 2019). Furthermore, all
dependencies on the covariance function and the hyperpa-
rameters is through the prior distribution of the regression
weights β j . The posterior distribution of the parameters
p(β| y) is a distribution over a m-dimensional space, where
m is much smaller than the number of observations n. There-
fore, the parameter space is greatly reduced and this makes
inference faster, especially when samplingmethods are used.

3.2 Generalization tomultidimensional GPs

The results from the previous section can be generalized
to a multidimensional input space with compact support,
Ω = [−L1, L1]× · · ·× [−LD, LD] and Dirichlet boundary
conditions. In a D-dimensional input space, the total number
of eigenfunctions and eigenvalues in the approximation is
equal to the number of D-tuples, that is, possible combina-
tions of univariate eigenfunctions over all dimensions. The
number of D-tuples is given by

m∗ =
D∏

d=1

md , (9)

where md is the number of basis function for the dimen-
sion d. Let S ∈ INm∗×D be the matrix of all those D-tuples.
For example, suppose we have D = 3 dimensions and use
m1 = 2,m2 = 2 andm3 = 3 eigenfunctions and eigenvalues
for the first, second and third dimension, respectively. Then,
the number of multivariate eigenfunctions and eigenvalues is
m∗ = m1 ·m2 ·m3 = 12 and the matrix S ∈ IN12×3 is given
by

S =
[
1 1 1 1 1 1 2 2 2 2 2 2
1 1 1 2 2 2 1 1 1 2 2 2
1 2 3 1 2 3 1 2 3 1 2 3

]ᵀ
. (10)

Each multivariate eigenfunction φ∗
j : Ω → IR cor-

responds to the product of the univariate eigenfunctions
whose indices corresponds to the elements of the D-tuple
S j ·p, and each multivariate eigenvalue λ∗

j is a D-vector with
elements that are the univariate eigenvalues whose indices
correspond to the elements of the D-tuple S j· p. Thus, for
x = {xd}Dd=1 ∈ Ω and j = 1, 2, . . . ,m∗, we have

λ∗
j = {

λS jd

}D
d=1

=
{(

πS jd

2Ld

)2}D

d=1

, (11)

φ∗
j (x) =

D∏

d=1

φS jd (xd) =
D∏

d=1

√
1

Ld
sin

(√
λS jd (xd + Ld)

)
.

(12)

The approximate covariance function is then represented as

k(x, x′) ≈
m∗∑

j=1

s∗
θ

(√
λ∗
j

)
φ∗
j (x)φ∗

j (x
′), (13)

where s∗
θ is the spectral density of the D-dimensional covari-

ance function (see Sect. 2.1) as a function of
√

λ∗
j that denotes

the element-wise square root of the vector λ∗
j . We can now

write the approximate series expansion of the multivariate
function f as

f (x) ≈
m∗∑

j=1

(
s∗
θ

(√
λ∗
j

))1
2
φ∗
j (x)β j , (14)

where, again, β j ∼ Normal(0, 1). The computational cost of
evaluating the log posterior density of multivariate HSGPs
scales as O(nm∗ + m∗), where n is the number of observa-
tions and m∗ is the number of multivariate basis functions.
Although this still implies linear scaling in n, the approxi-
mation is more costly than in the univariate case, as m∗ is
the product of the number of univariate basis functions over
the input dimensions and grows exponentially with respect
to the number of dimensions.

3.3 Linear representation of a periodic squared
exponential covariance function

A GP model with a periodic covariance function does no
fit in the framework of the HSGP approximation covered in
this study as a periodic covariance function has not a spec-
tral representation, but it has also a low-rank representation.
In Appendix B, we briefly present the approximate linear
representation of a periodic squared exponential covariance
function as developed by Solin and Särkkä (2014), analyze
the accuracy of this approximation and, finally, derive the
GP model with this approximate periodic squared exponen-
tial covariance function.

4 The accuracy of the approximation

The accuracy and speed of the HSGP model depends on
several interrelated factors, most notably on the number of
basis functions and on the boundary condition of the Laplace
eigenfunctions. Furthermore, appropriate values for these
factors will depend on the degree of non-linearity (wiggly-
ness/smoothness) of the function to be estimated, which is in
turn characterized by the length-scale of the covariance func-
tion. In this section, we analyze the effects of the number of
basis functions and the boundary condition on the approxi-
mation accuracy. We present recommendations on how they
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should be chosen and diagnostics to check the accuracy of
the obtained approximation.

Ultimately, these recommendations are based on the rela-
tionships among the number of basis functions m, the
boundary condition L , and the length-scale �, which depend
on the particular choice of the kernel function. In this work
we investigate these relationships for the squared exponential
and the Matérn (ν = 3/2 and ν = 5/2) covariance functions
in the present section, and for the periodic squared exponen-
tial covariance function in Appendix B. For other kernels,
the relationships will be slightly different depending on the
smoothness or wigglyness of the non-linear effects generated
from the covariance function.

4.1 Dependency on the number of basis functions
and the boundary condition

As explained in Sect. 3, the approximation of the covariance
function is a series expansion of eigenfunctions and eigenval-
ues of the Laplace operator in a given domainΩ , for instance
in a one-dimensional input space Ω = [−L, L] ⊂ IR

k(τ ) =
∞∑

j=1

sθ (
√

λ j )φ j (τ )φ j (0),

where L describes the boundary condition, j is the index for
the eigenfunctions and eigenvalues, and τ = x − x ′ is the
difference between two covariate values x and x ′ in Ω . The
eigenvalues λ j and eigenfunctions φ j are given in Eqs. (6)
and (7) for the unidimensional case and in Eqs. (11) and (12)
for themultidimensional case. The number of basis functions
can be truncated at some finite positive valuem such that the
total variation difference between the exact and approximate
covariance functions is less than a predefined threshold ε >

0:

∫
|k(τ ) −

m∑

j=1

sθ (
√

λ j )φ j (τ )φ j (0)| dτ < ε. (15)

This inequality can be satisfied for arbritrary small ε pro-
vided that L and m are sufficiently large (Solin and Särkkä
2020, Theorem 1 and 4). The specific number of basis func-
tions m needed depends on the degree of non-linearity of
the function to be estimated, that is on its length-scale �,
which constitutes a hyperparameter of the GP. The approx-
imation also depends on the boundary L (see Eqs. (6), (7),
(11) and (12)), which will affect its accuracy especially near
the boundaries. As we will see later on, L will also influence
the number of basis functions required in the approximation.

In this work, we choose L such that the domain Ω =
[−L, L] contains all the inputs points xi , and the set {xi }ni=1

Fig. 1 Mean posterior predictive functions (top), posterior standard
deviations (center), and covariance functions (bottom) of both the exact
GP model (red line) and the HSGP model for (1) different number of
basis functionsm, with the boundary factor fixed to a large enough value
(left column) and (2) different values of the boundary factor c, with a
large enough fixed number of basis functions (right column)

of input points is centered around zero. Let

S = max
i

|xi |, (16)

then it follows that xi ∈ [−S, S] for all i . We now define L
as

L = c · S, (17)

where S > 0 represents the maximum absolute value of the
input space, and c ≥ 1 is the proportional extension factor. In
the following, we will refer to c as the boundary factor of the
approximation. The boundary factor can also be regarded as
the boundary L normalized by the boundary S. Notice that x
need not be symmetric around zero, but need to be contained
in [−S, S] (although it is recommended that x fits tightly the
interval [−S, S] to optimize computation and the iterative
diagnostic presented in Sect. 4.5).

We start by illustrating how the number of basis func-
tions m and boundary factor c influence the accuracy of the
HSGP approximations individually. For this purpose, a set
of noisy observations are drawn from an exact GP model
with a squared exponential covariance function of length-
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Fig. 2 Posterior mean predictive functions (top), posterior standard deviations (center) and covariance functions (bottom) of both the exact GP
model and the HSGP model for different number of basis functions m and for different values of the boundary factor c (columns)

scale � = 0.3 and marginal variance α = 1, using input
values within the interval [−1, 1] that leads to a boundary S
of S = 1 as per Eq. (16). In this case the domain of input
points xi matches exactly the interval [−S, S]. Several HSGP
models with varying m and c are fitted to this data. In this
example, the length-scale and marginal variance parameters
used in the HSGPs are fixed to the true values of the data-
generating model. Figures 1 and 1 illustrate the individual
effects of m and c, respectively, on the posterior predictive
mean and standard deviation of the estimated function as
well as on the covariance function itself. For a sufficiently
large fixed value of c, Fig. 1 shows clearly how m affects the
accuracy on the approximation for both the posterior mean
or uncertainty. It is seen that if the number of basis func-
tions m is too small, the estimated function tend to be overly
smooth because the necessary high frequency components
are missing. In general, the higher the degree of wigglyness
of the function to be estimated, the larger number of basis
functions will be required. Ifm is fixed to a sufficiently large
value, Fig. 1 shows that c affects the approximation of the
mean mainly near the boundaries, while the approximation
of the standard deviation is affected across thewhole domain.
The approximation error tends to be bigger for the standard
deviation than for the mean.

Next, we analyze how the interaction between m and c
affects the quality of the approximation. The length-scale and
marginal variance of the covariance function will no longer
be fixed but instead we compute the joint posterior distribu-
tion of the function values and the hyperparameters using the
dynamic HMC (Betancourt 2017) algorithm implemented in
Stan (Stan Development Team 2021) for both the exact GP
and the HSGP models. Figure 2 shows the posterior predic-
tive mean and standard deviation of the function as well as
the covariance function obtained after fitting the model for
varying m and c. Figure 3 shows the root mean square error
(RMSE) of the HSGP models computed against the exact
GP model. Figure 4 shows the estimated length-scale and
marginal variance for the exact GP model and the HSGP
models. Looking at the RMSEs in Fig. 3, we can conclude
that the optimal choice in terms of precision and computation
time for this example would be m = 15 basis functions and
a boundary factor between c = 1.5 and c = 2.5. Further, the
less conservative choice of m = 10 and c = 1.5 could also
produce a sufficiently accurately approximation depending
on the application. We may also come to the same conclu-
sion by looking at the posterior predictions and covariance
function plots in Fig. 2. From these results, some general
conclusions may be drawn:
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Fig. 3 Root mean square error (RMSE) of the proposed HSGP models
computed against the exact GP model. RMSE versus the number of
basis functions m and for different values of the boundary factor c
(left). RMSE versus the boundary factor c and for different values of
the number of basis functions m (right)

Fig. 4 Estimated length-scale (left) and marginal variance (right)
parameters of both exact GP and HSGP models, plotted versus the
number of basis functions m and for different values of the boundary
factor c

– As c increases,m has to increase as well (and vice versa).
This is consistent with the expression for the eigenvalues
in Eq. (6), where L appears in the denominator.

– There exists a minimum c below which an accurate
approximation will never be achieved regardless of the
number of basis functions m.

4.2 Near linear proportionality betweenm, c and �

Apriori, the terms in the series expansion (14)with very small
spectral density are unlikely to contribute to the approxima-
tion. Given the boundary factor c and the length-scale �, we
can compute the cumulative sum of the spectral densities and
find out how many basis functions are, a priori, explaining
almost 100% of the variation. Thus, given c and �, we can
estimate a good choice for the number of basis functions m
for any covariance function.

Whenconsidering squared exponential andMatérn covari-
ance functions, we can showwith simple algebra that when c
is larger than the minimal value recommendation, the num-
ber of m first terms needed to explain almost 100% of the
variation has a near linear relationship with � and c. With
decreasing �, the m should grow near linearly with 1/�, and
with increasing c, the m should grow near linearly with c.
This is natural as with decreasing �, more higher frequency
basis functions are needed. With increasing c, as a smaller
range of the basis functions are used in the approximation,
the expected number of zero up-crossings goes down lin-
early with c, and thus more higher frequency basis functions
are needed to compensate this. When c is below our rec-
ommendations given � (recommendations that we give later
throughout the paper and specifically in the next Sects. 4.3
and 4.3.1), the effect of � and c to the recommended m is
more non-linear, but as long as we stay in the recommended
range the linearity assumption is useful thumb rule for how
to change m, if � or c are changed.

4.3 Empirical discovering of the functional form of
the relationships betweenm, c and �

Empirical simulations are carried out to analyze the relation-
ships between m, c and �. Figure 5 depicts how m, c and
�
S (lengthscale � normalized by the input space boundary
S) interact and affect the accuracy of the HSGP approxi-
mation for a GP with squared exponential, Matérn (ν=3/2),
and Matérn (ν=5/2) covariance functions and a single input
dimension.More precisely, for a given GPmodel (with a par-
ticular covariance function) with length-scale � and given a
input space boundary S and a boundary factor c, Fig. 5 shows
the minimum number of basis functionsm required to obtain
an accurate approximation in the sense of satisfying Eq. (15).
We considered an approximation to be a sufficiently accurate
when the total variation difference between the approximate
and exact covariance functions, ε in Eq. (15), is below 1% of
the total area under the curve of the exact covariance function
k such that

∫
|k(τ ) − k̃m(τ )| dτ < 0.01

∫
k(τ ) dτ, (18)
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Fig. 5 Relation among the minimum number of basis functions m, the boundary factor c (c = L
S ) and the length-scale � normalized by the input

space boundary S ( �
S ), for the squared exponential, Matérn (ν=3/2) and Matérn (ν=5/2) covariance functions

where k̃m is the approximate covariance functionwithm basis
functions. Alternatively, these figures can be understood as
providing the minimum c that we should use for given �

S and
m. Of course, we may also read it as providing the minimum
�
S that can be approximated with high accuracy given m and
c. We obtain the following main conclusions:

– As � increases, m required for an accurate approxima-
tion decreases. (Notice that the larger � the smoother the
functions generated from a covariance function, and vice
versa; see covariance functions equations in Sect. 2.1.)

– The lower c, the smaller m can and � must be to achieve
an accurate approximation.

– For a given � there exist a minimum c under which an
accurate approximation is never going to be achieved
regardless of m. This fact can be seen in Fig. 5 as the
contour lines which represent c have an end in function
of � (Valid c are restricted in function of �).As � increases,
the minimum valid c also increases.

4.3.1 Numerical equations

As explained in Sect. 4.2, when c is large enough, there is
a near linear proportionality between m, � and c. To obtain
practical numerical functions that can be used to guide the
selection of these parameters, we have empirically checked
this linear relationship and derived the practically useful con-
stant terms. We require a lower bound for c of c ≥ 1.2 such
that the equations below are precise enough for practical
application.
Squared exponential:

m = 1.75
c

�/S
⇔ �/S = 1.75

c

m
, (19)

with

c ≥ 3.2 �/S & c ≥ 1.2 (20)

Matérn (ν=5/2):

m = 2.65
c

�/S
⇔ �/S = 2.65

c

m
, (21)

with

c ≥ 4.1 �/S & c ≥ 1.2 (22)

Matérn (ν=3/2):

m = 3.42
c

�/S
⇔ �/S = 3.42

c

m
, (23)

with

c ≥ 4.5 �/S & c ≥ 1.2 (24)

These constants vary monotonically with respect to ν

(squared exponential corresponding toMatérnwithν → ∞).
Using the formula for Matérn (ν=3/2) provides the largest m
and c, and thus this formula alone could beused as a conserva-
tive choice for all Matérn covariance functions with ν ≥ 3/2
and likely as a good initial guess for many other covariance
functions. If the aim is to find minimal m to speedup the
computation, a further refined formula can be obtained for
new covariance functions.

Figure 5 and previous Eqs. (19)–(22) were obtained for a
GP with a unidimensional covariance function, which result
in a surfaces depending on three variables, m, c and �

S .
Equivalent results for a GP model with a two-dimensional
covariance function would result in a surface depending on
four variables, m, c, �1

S and �2
S . More precisely, in the multi-

dimensional case,whether the approximation is close enough
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might depend only on the ratio between wigglyness in every
dimensions. For instance, in the two-dimensional case, it
would depend on the ratio between �1

S and �2
S . Future research

will focus on building useful graphs or analytical models that
provide these relations inmulti-dimensional cases. However,
as an approximation, we can use the unidimensional GP con-
clusions in Fig. 5 or Eqs. (19)–(22) to check the accuracy by
analyzing individually the different dimensions of a multidi-
mensional GP model.

4.4 Relationships betweenm and � for a periodic
squared exponential covariance function

As commented in Sect. 3.3, in Appendix B we present an
approximate linear representation of a periodic squared expo-
nential covariance function. In Appendix B, we also analyze
the accuracy of this linear representation and derive the min-
imum number of terms m in the approximation required to
achieve a close approximation to the exact periodic squared
exponential kernel as a function of the length-scale � of the
kernel. Since this is a series expansion of sinusoidal func-
tions, the approximation does not depend on any boundary
condition, nor is there a need for a normalized length-scale,
since the length-scale refers to the period of a sinusoidal func-
tion. This relationship betweenm and � for a periodic squared
exponential covariance function is gathered in Fig. 17 and
the numerical equation was estimated in Eq. (B.6) which is
depicted next:

m ≥ 3.72

�
⇔ � ≥ 3.72

m
.

4.5 Diagnostics of the approximation

Equations (19), (21), (23) and (B.6) (depending on which
kernel is used) provide the minimum length-scale that can be
accurately inferred given m and c. This information serves
as a powerful diagnostic tool in determining if the obtained
accuracy is acceptable.As the length-scale � controls thewig-
glyness of the function, it strongly influences the difficulty of
estimating the latent function from the data. Basically, if the
length-scale estimate is accurate, we can expect the HSGP
approximation to be accurate as well.

Having obtained an estimate �̂ for a HSGP model with
prespecified m and c, we can check whether �̂ exceeds the
smallest length-scale that can be accurately inferred, pro-
vided as a function of m and c by Eqs. (19), (21), (23) and
(B.6) (depending on which kernel is used). If �̂ exceeds this
value, the approximation is assumed to be good. If �̂ does not
exceed this value, the approximation may be inaccurate, and
m and/or c need to be increased. In Figs. 3 and 4,m = 10 and
c = 1.5 were sufficient for an accurate modeling of function

with � = 0.3 and S = 1, which matches the diagnostic based
on Eqs. (19) and (20).

Equations in Sect. 4.3.1 to update m and c imply:

– c must be big enough for a given �, and
– m must be big enough for given � and c.

If larger than minimal c and m (for a given �) are used in the
initialHSGPmodel, it is likely that the results are already suf-
ficiently accurate. As � is initially unknown, we recommend
using this diagnostic in an iterative procedure by startingwith
c and m based on some initial guess about �, and if the esti-
mated �̂ is below the diagnostic threshold, select new c and
m using �̂. This can be repeated until

– the estimated �̂ is larger than the diagnostic threshold
given c and m, and

– the predictive accuracy measures, for example, root
mean square error (RMSE), coefficient of determination
(R2), or expected log predicitve density (ELPD) do not
improve.

As commented above, the estimated �̂ being larger than
diagnostic threshold does not guarantee that the approximate
is sufficiently accurate, and thus we recommend to look at
the predicitve accuracy measures, too.

Apart from providing a powerful diagnostic tool in deter-
mining if the approxiamtion is sufficiently accurate, the
equations in the previous Sect. 4.3.1 also provide the opti-
mal values for m (the minimum m required for an accurate
approximation) and c (the minimum c that allows for the
minimumm) that can be used to minimize the computational
cost in repeated computations (e.g., in cross-validation and
simulation based calibration). This is even more useful in
multi-dimensional cases (2 ≤ D ≤ 4), where knowing the
smallest useful value ofm for each dimension has even bigger
effect on the total computational cost.

4.5.1 A step-by-step user-guide to apply the diagnostics

Based on the above proposed diagnostics, we obtain a simple,
iterative step-by-step procedure that users can follow in order
to obtain an accurate HSGP approximation. The procedure
is split into two phases, Phase A and B, which have to be
completed consecutively.

Phase A:

A0. Compute the boundary S of the input values by using
Eq. (16).

A1. Set the iteration index to k = 1. Make an initial guess
on the length-scale �(k). If there is no useful information
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available, we recommend to start with a large length-
scale, such as the normalized length-scale being in the

interval �(k)

S ∈ [0.5, 1].
A2. Obtain the minimum valid boundary factor c(k) deter-

mined by � = �(k) for the given kernel and boundary S
as per Sect. 4.3.1.

A3. Obtain the mimimum valid number of basis functions
m(k) determined by � = �(k) and c = c(k) for the given
kernel and boundary S as per Sect. 4.3.1.

A4. Fit an HSGP model using m(k) and c(k) and ensure
convergence of the MCMC chains.

A5. Perform the length-scale diagnostic by checking if
�̂(k) + 0.01 ≥ �(k).
If the diagnostic is FALSE, the HSGP approximation is
not yet sufficiently accurate. Set �(k+1) = �̂(k), increase
the iteration index k = k + 1, and go back to A2.
If the diagnostic is TRUE, the HSGP approximation
is close to be sufficiently accurate. Continue with
Phase B.

Phase B:

B1. For the current HSGP model, compute measures of
predictive accuracy, for example, RMSE, R2, or ELPD.

B2. Set m(k+1) = m(k) + 5 and increase the iteration index
k = k + 1.

B3. Obtain the minimum valid boundary factor c(k) deter-
mined by � = �̂(k−1) for the given kernel and boundary
S as per Sect. 4.3.1.

B4. Obtain the minimum valid length-scale �(k) that can be
accurately estimated by m = m(k) and c = c(k) for the
given kernel and boundary S as per Sect. 4.3.1.

B5. Fit an HSGP model using m(k) and c(k) and ensure
convergence of the MCMC chains.

B6. Perform the length-scale diagnostic by checking if
�̂(k) + 0.01 ≥ �(k).
Check the stability of both �̂(k) and the measures of
predictive accuracy relative to the previous iteration.
If all the stability checks succeed, the HSGP approx-
imation of the latest model should be sufficiently
accurate and the procedure ends here.
Otherwise, go back to B1.

In our experiments this procedure converges quickly after
only few iterations in all the cases (see Fig. 7, Table 1, and
Sect. 5). That said, we cannot rule out that there may be
cases where convergence is much slower (in terms of number
of required diagnostic iterations) to a degree where HSGPs
become impractical and an early stopping of the procedure
would be advisable. Importantly though, this scenario should
not be confused with the scaling of computational cost due
to higher dimensional input spaces, an issue discussed in

detail in Sect. 4.8. In a nutshell, according to our experiments,
increasing the dimensionality of the input space does not
increase the number of required diagnostic iterations to a
relevant degree but only the computational cost per iteration.

4.6 Performance analysis of the diagnostics

In this section, we first illustrate that accurate estimates of
the length-scale implies accurate approximations viaHSGPs.
Figure 6 left shows a comparison of the length-scale esti-
mates obtained from the exact GP and HSGP models with
a squared exponential kernel, from various noisy datasets
drawn from underlying functions with varying smoothness.
Different values for the number of basis functionsm are used
when estimating the HSGP models, and the boundary factor
c is set to a valid and optimum value in every case by using
Eq. (20). Figure 6 (right) shows the RMSE of the HSGP
models with the exact GP model as the reference. It can be
seen that accurate estimates of the length-scale imply small
RMSEs.

Table 1 shows the iterative steps of applying the diagnostic
procedure explained in Sect. 4.5.1 over some of the data sets
also used in the analysis in Fig. 6. It is clearly visible that by
following our recommendations, an optimum solution with
minimum computational requirements is achieved in these
cases. Figure 7 graphically compares the exact GP length-
scale and the estimated HSGP length-scale in every iteration
and data set. Between two and four iterations, depending on
wigglyness of the function to be learned and the distance
between the initial guess of the length scale and the true
length scale, are sufficient to reach the optimal values of m
and c.

As concrete examples, the iterative steps applied to per-
form diagnostic on two of the data sets in Table 1 are
described in Appendix C.

4.7 Other covariance functions

Above, we thoroughly studied the relationship between the
number of basis functions in the approximation and the
approximation accuracy across different configurations. We
specifically focused on the Matérn and squared exponential
families of covariance functions, yet there exists other fam-
ilies of stationary covariance functions. The basis function
approximation can easily be implemented for any stationary
covariance function, where the spectral density function is
available. The assess the accuracy of a basis function approx-
imation for a kernel, where the diagnostic plots like Fig. 5 or
Eqs. (19)–(22) are not available, we suggest to use the rel-
ative total variational distance between the true covariance
function and the approximate covariance function as given
in Eq. (18). Ensuring that the relative distance is bounded by
a small constant for the relevant lengthscale implies a high
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Fig. 6 Exact GP length-scale (�GP ) and approximate HSGP length-
scale (�̂) for various datasets with varying smoothness (left) and their
corresponding root mean squared errors (RMSE) computed with the
exact GP model as the reference

Fig. 7 Comparison of the true and estimated length-scales in every
iteration for the different data sets varying the length-scale

quality approximation. Another possibility to asses the accu-
racy of the approximation is to look at the cumulative sum
of the spectral densities terms used in the series expansion
and find out howmuch of the total variation they are actually
explaining, as already mentioned in Sect. 4.2.

To select c for many other covariance functions, users can
beguidedbyEqs. (20), (22) and (24), as pointed inSect. 4.3.1.

4.8 The computational cost in themulti-dimensional
setting

TheHSGPmodel is computationally superior to the exact GP
in 1D and 2D even for highly wiggly functions, except when
the number of data points is so small (n � 300, i.e., n smaller

than some value around 300) that exact GPs are already rea-
sonably fast themselves. However, the computation time of
the HSGP model increases rapidly with the number of input
dimensions (D) since the number of multivariate basis func-
tions m∗ = m1 × · · · × mD in the approximation increases
exponentially with D (see Eq. (9)). Yet, the HSGP method
can still be computationally faster than the exactGP for larger
datasets due the latter’s cubic scaling in n.

In our experiments of multivariate problems (see
Sect. 5.3.1), the computation time for the HSGP model was
faster than for the exact GP for most of the non-linear 2D
functions or moderate-to-large sized 3D datasets (n � 1000,
i.e., n greater than some value around 1000), even for highly
wiggly 3D functions (e.g., �1

S , �2
S , �3

S ≈ 0.1).
For small sized datasets (n � 1000), HSGPs are likely

to be slower than exact GPs already for highly to moderated
wiggly 3D functions (e.g., �1

S � 0.1, and �2
S , �3

S � 0.3)

and for overall smooth 4D functions (e.g., �1
S � 0.1, and

�2
S , �3

S , �4
S � 0.4).

As it has been shown in case study III (Sect. 5.3), the
proposed diagnostic tool can be very useful for multivariate
problems as it allows one to reducem∗ to the minimum suffi-
cient value, reducing computational time drastically, and still
getting an accurate approximation. For example, assuming a
squared exponential covariance function, choosing the opti-
mal value for c allows one to use few basis functions in every
single dimension (i.e., m � 10 for �

S � 0.3; 20 � m � 10
for 0.3 � �

S � 0.1; and m � 20 for �
S � 0.1), which, from

results presented in Fig. 14, implies that the HSGPmodel can
be, in general terms, useful for highly wiggly 3D functions
and smooth 4D functions.

Whether HSGP or exact GP is faster will also depend
on the specific implementation details, which can have
big effects on the scaling constants. Thus, more detailed
recommendations would depend on the specific software
implementation.

5 Case studies

In this section, we will present several simulated and real
case studies in which we apply the developed HSGP models
and the recommended steps to fit them. More case studies
are presented in the online supplemental materials.

5.1 Simulated data for a univariate function

In this experiment, we analyze a synthetic dataset with n =
250 observations, where the true data generating process is
a Gaussian process with additive noise. The data points are
simulated from the model yi = f (xi ) + εi , where f is a
sample from a Gaussian process f (x) ∼ GP(0, k(x, x ′, θ))
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Table 1 Diagnostic on various data sets with varying smoothness

�GP iter. � c m �̂ �̂ + 0.01 ≥ � RMSE R2 ELPD RMSE*

0.08 1 0.50 1.60 6 0.17 FALSE 0.45 0.61 −0.40 0.36
2 0.17 1.20 13 0.07 FALSE 0.36 0.74 −0.18 0.24

3 0.07 1.20 31 0.08 TRUE 0.24 0.87 0.20 0.01

4 0.06 1.20 36 0.08 TRUE 0.24 0.87 0.21 0.01

0.13 1 0.50 1.60 6 0.25 FALSE 0.46 0.63 −0.49 0.33
2 0.25 1.20 9 0.15 FALSE 0.35 0.78 −0.14 0.15

3 0.15 1.20 15 0.15 TRUE 0.32 0.81 −0.07 0.08

4 0.11 1.20 20 0.12 TRUE 0.30 0.83 −0.01 0.01

0.25 1 0.50 1.60 6 0.24 FALSE 0.37 0.40 −0.15 0.21

2 0.24 1.20 9 0.26 TRUE 0.30 0.60 −0.09 0.02

3 0.25 1.20 14 0.26 TRUE 0.29 0.62 −0.05 0.01

0.54 1 0.50 1.60 6 0.38 FALSE 0.27 0.86 0.03 0.01

2 0.38 1.20 6 0.47 TRUE 0.28 0.86 0.03 0.05

3 0.24 1.50 11 0.53 TRUE 0.27 0.86 0.04 0.01

0.80 1 1.00 3.20 6 0.52 FALSE 0.29 0.92 0.13 0.03

2 0.52 1.65 6 0.98 TRUE 0.29 0.92 0.11 0.03

3 0.50 3.12 11 0.77 TRUE 0.28 0.92 0.11 0.01

1.40 1 1.00 3.20 6 1.02 TRUE 0.28 0.56 0.14 0.01

2 0.52 3.27 11 1.23 TRUE 0.28 0.57 0.14 0.00

2.94 1 0.50 1.60 6 1.19 TRUE 0.34 0.45 −0.10 0.06

2 0.61 3.81 11 2.58 TRUE 0.34 0.45 −0.07 0.01

�GP refers to the exact GP length-scale estimate. � refers to the minimum valid length-scale that can be accurately estimated determined by m and
c as per Sect. 4.3.1, except for the first iteration which is the initial guess of the length-scale. �̂ refers to the HSGP length-scale estimate. RMSE*
refers to the root mean squared error computed with the exact GP model as the reference
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Table 2 Diagnostic on various data sets with varying smoothness

iter. � c m �̂ �̂ + 0.01 ≥ � RMSE RMSE*

1 0.50 2.25 16 0.12 FALSE 0.26 0.17

2 0.12 1.20 35 0.32 TRUE 0.18 0.01

3 0.02 1.20 40 0.28 TRUE 0.18 0.01

� refers to the minimum valid length-scale that can be accurately esti-
mated determined by m and c, except for the first iteration which is the
initial guess of the length-scale. RMSE* refers to the root mean squared
error computed with the exact GP model as the reference

with a Matérn (ν=3/2) covariance function k with marginal
variance α = 1 and length-scale � = 0.2 at inputs values
x = (x1, x2, . . . , xn) with xi ∈ [−1, 1] that lead to an input
space boundary S of S = 1 as per Eq. (16). εi is additive
Gaussian noise with standard deviation σ = 0.2.

In the HSGP model, the latent function values f (x) are
approximated as in Eq. (8), with the Matérn (ν=3/2) spectral
density s as in Eq. (2), and eigenvalues λ j and eigenfunctions
φ j as in Eqs. (6) and (7), respectively.

The joint posterior parameter distributions are estimated
by samplingusing the dynamicHMCalgorithm implemented
in Stan (Stan Development Team 2021). Normal(0, 1),
Normal(0, 3) and Gamma(1.2, 0.2) prior distributions has
been used for the observation noise σ , covariance function
marginal variance α, and length-scale �, respectively. We use
the same prior distributions to fit the exact GP model.

The HSGP model is fitted following the recommended
iterative steps as in Sect. 4.5.1. A initial value for the mini-
mum lengthscale � to use at the first iteration is guessed to
be 0.5. While diagnostic �̂ + 0.01 ≥ � is false, c and m are
updated byEqs. (24) and (23), respectively, and theminimum
� is updated with the estimated �̂. After the diagnostic gen-
erated the first true, m is updated by increasing the m of the
previous iteration by 5 additional basis functions, c is updated
by Eq. (24) as a function of the estimated �̂ at previous iter-
ation, and the minimum � is set by Eq. (23) as function of c
andm. Table 2 contains the values for the parameters �, c,m,
the estimated �̂, the diagnostic �̂ + 0.01 ≥ � and the RMSE
compute with both the data and the GP as the reference for
every iterative steps of the fitting process.

Figure 8 shows the posteriors predictive distributions of
the exactGP and theHSGPmodels, the later using the param-
eter values as the third iterative step, c = 1.2 (L = c·S = 1.2;
see Eq. (17)) and m = 40 basis functions.

Figure 9 shows both the standardized root mean squared
error (SRMSE) of the models for the sample data and the
computational times in seconds per iteration (iteration of the
HMC samplingmethod), as a function of the number of basis
functions m. The HSGP model is on average roughly 400
times faster than the exact GP for this particular model and

Fig. 8 Posterior predictive means of the proposed HSGP model and
the exact GP model. 95% credible intervals are plotted as dashed lines

Fig. 9 Computational time (y-axis), in seconds per iteration (iteration
of the HMC sampling method), as a function of the number of basis
functionsm. The y-axis is on a logarithmic scale. The standard deviation
of the computational time is plotted as dashed lines

data. Also, it is seen that the computation time increases
slowly as a function of m.

TheStanmodel code for the exactGPmodel and theHSGP
model, and R-code to reproduce this case study can be found
online at https://github.com/gabriuma/basis_functions_approach_to_

GP/tree/master/Paper/Case-study_1D-Simulated-data .

5.2 Birthday data

This example is an analysis of patterns in birthday fre-
quencies in a dataset containing records of all births in the
United States on each day during the period 1969–1988.
The model decomposes the number of births along all the
period in longer-term trend effects, patterns during the year,
day-of-week effects, and special days effects. The special
days effects cover patterns such as possible fewer births on
Halloween, Christmas or new year, and excess of births on
Valentine’s Day or the days after Christmas (due, presum-
ably, to choices involved in scheduled deliveries, along with
decisions of whether to induce a birth for health reasons).
Gelman et al. (2013) presented an analysis using exact GP
and maximum a posteriori inference. As the total number of
days within the period is T = 7305 (t = 1, 2, . . . , T ), a
full Bayesian inference with MCMC for a exact GP model is
memory and time consuming.We will use the HSGPmethod
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as well as the low-rank GP model with a periodic covariance
function described in Appendix B which is based on expand-
ing the periodic covariance function into a series of stochastic
resonators (Solin and Särkkä 2014).

Let yt denote the number of births on the t’th day. The
observation model is a normal distribution with mean func-
tion μ(t) and noise variance σ 2,

yt ∼ Normal(μ(t), σ 2).

The mean function μ(t) will be defined as an additive model
in the form

μ(t) = f1(t) + f2(t) + f3(t) + f4(t). (25)

The component f1(t) represents the long-term trends
modeled by a GP with squared exponential covariance func-
tion,

f1(t) ∼ GP(0, k1), k1(t, t
′) = α1 exp

(

−1

2

(t − t ′)2

�21

)

,

which means the function values f 1 = { f1(t)}Tt=1 are mul-
tivariate Gaussian distributed with covariance matrix K 1,
where K1t,s = k1(t, s), with t, s = 1, . . . , T . α1 and �1 rep-
resent the marginal variance and length-scale, respectively,
of this GP prior component. The component f2(t) represents
the yearly smooth seasonal pattern, using a periodic squared
exponential covariance function (with period365.25 tomatch
the average length of the year) in a GP model,

f2(t) ∼ GP(0, k2),

k2(t, t
′) = α2 exp

(

−2 sin2(π(t − t ′)/365.25
�22

)

.

The component f3(t) represents the weekly smooth pat-
tern using a periodic squared exponential covariance function
(with period 7 of length of the week) in a GP model,

f3(t) ∼ GP(0, k3),

k3(t, t
′) = α3 exp

(

−2 sin2(π(t − t ′)/7
�23

)

.

The component f4(t) represents the special days effects,
modeled as aStudent’s t priormodelwith 1degree of freedom
and variance τ 2:

f4(t) ∼ t(1, 0, τ 2).

The component f1 will be approximated using the HSGP
model and the function values f1 are approximated as in
Eq. (8), with the squared exponential spectral density s as

in Eq. (1), and eigenvalues λ j and eigenfunctions φ j as in
Eqs. (6) and (7). The year effects f2 andweek effects f3 use a
periodic covariance function and thus do nofit under themain
framework of theHSGP approximation covered in this paper.
However, they do have a representation based on expanding
periodic covariance functions into a series of stochastic res-
onators (Appendix B). Thus, the functions f2 and f3 are
approximated as in Eq. (B.8), with variance coefficients q̃2j
as in Eq. (B.5). The input variable t = {1, 2, . . . , 7305} is
previously standardized to have zero mean and unit vari-

ance
(
t−mean(t)

sd(t)

)
, and then it follows a input space boundary

S = 1.732.
The joint posterior parameter distributions are estimated

by samplingusing the dynamicHMCalgorithm implemented
in Stan (Stan Development Team 2021). Normal(0, 1),
Normal(0, 10) and Normal(0, 2) prior distributions has
been used for the observation noise σ , covariance func-
tion marginal variances α = {α1, α2, α3}, and length-scales
� = {�1, �2, �3}, respectively. A Normal(0, 0.1) prior dis-
tribution has been used for the standard deviation τ of the
Student’s t distribution with 1 degree of freedom used to
model f4 (i.e., the special days effects).

The HSGP model is fitted following the recommended
iterative steps as in Sect. 4.5.1, where in each iteration the
diagnosis is applied on f1, f2 and f3, where for each one
these functions the parameters c, m, minimum �, estimated
�̂ and diagnostic �̂ + 0.01 ≥ � are updated. For functions f2
and f3 there are not boundary factor c as they use periodic
covariance functions, and m and minimum � are updated by
Eq. (B.6). A initial value for the minimum lengthscale �1 of
f1 is guessed to correspond to around 3 years (i.e., �1 = 3
years = 3 · 365 = 1095 days) in the original scale or around
0.52 (i.e., �1 = 1095/sd(t) = 0.52) in the standardized scale
used as input in the model. Initial values for the minimum
lengthscales �2 and �3 of f2 and f3, respectively, are guessed
to correspond to half of the period (i.e., �2 = �3 = 0.5).
After the diagnostic generated the first true, m is updated by
increasing them of the previous iteration by5 additional basis
functions and c and the minimum � updated accordingly as
explained in Sect. 4.5.1. The full diagnosis process is applied
until two trues are achieved for each function. Table 3 con-
tains the values for the parameters �, c, m, the estimated �̂,
the diagnostic �̂+0.01 ≥ � for each function, and the RMSE
compute with the data as the reference for every iterative
steps of the fitting process.

Figure 10 shows the posteriormeans of the long-term trend
f1 and yearly pattern f2 for the whole period, jointly with the
observed data. Figure 11 shows the model for 1 year (1972)
only. In this figure, the special days effects f4 in the year
can be clearly represented. The posterior means of the the
function μ and the components f1 (long-term trend) and f2
(year pattern) are also plotted in this Fig. 11. Figure 12 show
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Table 3 Iterative steps in HSGP model fitting of Birthday data case
study

Iter. f � c m �̂ �̂ + 0.01 ≥ � RMSE ELPD

1 f1 0.52 1.20 7 0.53 FALSE

f2 0.50 – 8 0.34 FALSE 0.32 0.05

f3 0.50 – 8 1.62 TRUE

2 f1 0.50 1.20 8 0.54 TRUE

f2 0.34 – 11 0.29 FALSE 0.32 0.06

f3 0.29 – 13 1.53 TRUE

3 f1 0.28 1.20 13 0.33 TRUE

f2 0.29 – 13 0.24 FALSE 0.30 0.12

f3 0.29 – 13 1.64 TRUE

4 f1 0.28 1.20 18 0.23 TRUE

f2 0.24 – 16 0.23 TRUE 0.30 0.15

f3 0.29 – 13 1.68 TRUE

5 f1 0.16 1.20 23 0.20 TRUE

f2 0.24 – 16 0.23 TRUE 0.29 0.18

f3 0.29 – 13 1.63 TRUE

The diagnosis procedure updating the parameters minimum �, c, m,
estimated �̂ and diagnostic �̂+0.01 ≥ � is applied on the three underly-
ing functions f1, f2 and f3. Notice that f2 and f3 do not have boundary
factor c as they use periodic covariance functions. RMSE and ELPD
are evaluated for the model underlying function μ = f1 + f2 + f3 + f4
and sample data. The full diagnosis process is applied until two trues
are achieved for each function

Fig. 10 Posterior means of the long-term trend f1 and year effects
pattern ( f2) for the whole series

the process in the month of January of 1972 only, where the
week pattern f3 can be clearly represented. The mean of the
the functionμ and components f1 (long-term trend), f2 (year
pattern) and f4 (special-days effects) are also plotted in this
Fig. 12.

The Stan model code for the HSGP model and R-code to
reproduce this case study can be found online at https://github.
com/gabriuma/basis_functions_approach_to_GP/tree/master/Paper/

Case-study_Birthday-data.

Fig. 11 Posteriormeans of the functionμ for the year 1972 of the series.
The special days effects pattern f4 in the year is also represented, as
well as the long-term trend f1 and year effects pattern f2

Fig. 12 Posterior means of the function μ for the month of January of
1972. The week effects pattern f3 in the month is also represented, as
well as the long-term trend f1, year effects pattern f2 and special days
effects pattern f4

5.3 Case study: simulated data for 2D and 3D
functions

In this case study, we apply the diagnostic tool to fit and
diagnose two different data sets, one data set simulated from
a bivariate (D = 2) function and another data set simu-
lated from a 3-dimensinal (D = 3) function. Furthermore,
in Sect. 5.3.1 we present results of the computational time
required to fit the HSGP model in 2D, 3D and 4D input
spaces, with different sized data sets and as a function of the
number of multivariate basis functionsm∗ = m1 ×· · ·×mD

used in the approximation.
2D and 3D synthetic functions were drawn from 2D

and 3D GP priors, with input values xi ∈ [−1, 1]2 and
xi ∈ [−1, 1]3, respectively, and the input space boundary
is S = 1 for both the 2D and 3D functions. Squared expo-
nential covariance functions with marginal variance α = 1
and length-scales �1 = 0.10, �2 = 0.3, and �3 = 0.4, where
�i is the length scale for the i’th dimension, were used in the
GP priors. 200 and 1000 data points were sampled from the
2D and 3D drawn functions, respectively, and independent
Gaussian noise with standard deviation σ = 0.2 was added
to the data points to form the final noisy sets of observations.
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In the HSGP models with 2 and 3 input dimensions, the
underlying functions f (x) are approximated as in eq. (13),
with the D-dimensional squared exponential spectral densi-
ties s as in Eq. (1), and the D-vectors of eigenvalues λ j and
the multivariate eigenfunctions φ j as in Eqs. (12) and (11),
respectively.

The joint posterior parameter distributions are estimated
via the dynamic HMC sampling algorithm implemented
in Stan (Stan Development Team 2021). Normal(0, 1),
Normal(0, 3), and InverseGamma(2, 0.5) priors were used
for the observation noise σ , marginal variance α, and length-
scales �, respectively. We used the same priors to fit the exact
GP model serving as benchmark.

The HSGP models are fitted following the recommended
iterative procedure detailed in Sect. 4.5.1, where the diag-
nostic is applied on every dimension, separately. For each
dimension, the parameters c,m, minimum �, estimated �̂, and
the diagnostic �̂ + 0.01 ≥ � are updated using the equations
in Sect. 4.3.1. The values 0.5, 1, and 1 are set as initial values
for the minimum lengthscales �1, �2 and �3, respectively. In
order to be as efficient as possible, after the diagnostic gener-
ated the first true for a certain dimension, its corresponding
m is updated by increasing them of the previous iteration by
only 2 additional basis functions and, after the second true,m
is no longer increased. The full diagnostic process is applied
until two trues are achieved for each dimension.

Tables 4 and 5 contain the iterative steps to fit and diagnose
the 2D and 3D data sets, respectively. Theminimum require-
ments to fit the models were easily achieved by performing
4 iterations: from a 1st iteration that uses few multivariate
basis functions m∗ (m∗ = m1(= 6) × m2(= 6) = 36
and m∗ = m1(= 6) × m2(= 6) × m3(= 6) = 216
for the 2D and 3D data sets, respectively) to the 4th iter-
ation that uses the minimum multivariate basis functions
(m∗ = m1(= 22) × m2(= 11) = 242 and m∗ = m1(=
21)×m2(= 10)×m3(= 12) = 2520 for the 2D and 3D data
sets, respectively) required to accurately approximate these
notably wiggly functions. Without using our recommended
guidelines and diagnostics, it would likely have taken the user
several more trials to get the optimal solution and to spend a
significant amount of time, as using a larger number of basis
functions inmultivariate cases increases time of computation
drastically.

Figure 13 shows the difference between the true underly-
ing data-generating function and the posterior means of GP
and HSGP models for the 2D data set. For the 3D data set,
posterior functions are not plotted because it is difficult to
plot functions in a 3D input space. Figure 13-left shows the
root mean squared error (RMSE), computed against the data-
generating function, as a function of the boundary factor c
and number of univariate basis functions m.

The Stan model codes for the exact GP model and the
HSGPmodel, and R-code to reproduce this case study can be

found online at https://github.com/gabriuma/basis_functions_app

roach\_to\_GP/tree/master/Paper/Case-study\_2D\%263D-Simulated-

data . In the online supplementary material there are two
other case studies of real data with multidimensional and
spatio-temporal (3D) input spaces, for which the Stan model
codes can be found at https://github.com/gabriuma/basis_
functions_approach_to_GP/tree/master/Paper and subfold-
ers Case-study_Land-use-classification and Case-study_
Salinity, respectively.

5.3.1 Computation requirements in 2D, 3D, and 4D input
spaces

Figure 14 shows the computation time for dynamic HMC
(in seconds per iteration) in 2D, 3D and 4D input spaces
and different sized data sets, n = 300, n = 500, n = 1000,
and n = 3000, as a function of the number of multivariate
basis functions m∗ = m1 × · · · × mD used in the approxi-
mation. Both the time of computation and m∗ are plotted in
the logarithmic scale.

Looking back at Fig. 5, or Eqs. (19), (23), and (21),
and assuming squared exponential covariance function, any
univariate function (or single dimensions of a multivari-
ate function) with true lengthscales bigger than 0.3 can be
accurately fitted using only 10 − 12 basis functions. For
lengthscales between 0.1 and 0.3, 10 − 22 basis functions
are sufficient.

For a very wiggly 2D function (say, with �1 = 0.1 and
�2 = 0.1), the approximate number of multivariate basis
functions needed is m∗ = 22 × 22 = 484, which results
in significantly faster computation than the exact GP, even
with small data sets (i.e., n � 300) (see Fig. 14). For a
very wiggly 3D function (say, with �1 = 0.1, �2 = 0.1
and �3 = 0.1), the approximate number of multivariate basis
functions needed is m∗ = 22 × 22 × 22 = 10648, which,
unless for small data sets (i.e., n � 1000), the method is
still significantly faster than the regular GP. A 3D function
where each dimension has a lengthscale around 0.1 is not
that common in statistical analysis, and thus in many cases
the approximation will be significantly faster than excat GP.
For 4D data sets, the method can still be more efficient than
the exact GP for moderate-to-large data sets (i.e., n � 1000).

Finally, for D > 5 themethod starts to be impractical even
for smooth univariate functions. However, in these cases, the
method may still be used for lower dimensional components
in an additive modeling scheme.

The Stan model codes for the exact GP model and the
HSGP model for these 2D, 3D, and 4D cases can be found
online at https://github.com/gabriuma/basis_functions_approach_to_

GP/tree/master/Paper/Stan_code_2D_3D_4D .
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Table 4 Iterative steps in HSGP
model fitting on the 2D data Iter. Dim. � c m �̂ �̂ + 0.01 ≥ � RMSE RMSE*

1 1 0.50 1.6 6 0.19 FALSE 0.75 0.72

2 1.00 3.2 6 0.25 FALSE

2 1 0.19 1.2 12 0.11 FALSE 0.18 0.12

2 0.25 1.2 9 0.25 TRUE

3 1 0.11 1.2 20 0.11 TRUE 0.11 0.03

2 0.19 1.2 11 0.27 TRUE

4 1 0.10 1.2 22 0.11 TRUE 0.10 0.02

2 0.19 1.2 11 0.27 TRUE

The diagnostic procedure updating the parameters minimum �, c,m, estimated �̂, and diagnostic �̂+0.01 ≥ �

is applied on the two input dimensions. The full diagnostic process is applied until two consecutive trues in
the diagnostic are achieved for each dimension. RMSE and RMSE* refer to the root mean squared error of
the HSGP computed against the true function and the exact GP, respectively
Exact GP length-scales: �1GP = 0.10, �2GP = 0.29

Table 5 Iterative steps in HSGP
model fitting on the 3D data Iter. Dim. � c m �̂ �̂ + 0.01 ≥ � RMSE RMSE*

1 1 0.50 1.6 6 0.14 FALSE 0.63 0.58

2 0.50 1.6 6 0.27 FALSE

3 1.00 3.2 6 0.23 FALSE

2 1 0.13 1.2 16 0.11 FALSE 0.13 0.07

2 0.27 1.2 8 0.29 TRUE

3 0.23 1.2 19 0.40 TRUE

3 1 0.11 1.2 19 0.12 TRUE 0.11 0.04

2 0.21 1.2 10 0.29 TRUE

3 0.19 1.3 12 0.43 TRUE

4 1 0.10 1.2 21 0.12 TRUE 0.11 0.03

2 0.21 1.2 10 0.29 TRUE

3 0.19 1.3 12 0.43 TRUE

The diagnostic procedure updating the parameters minimum �, c, m, estimated �̂ and diagnostic �̂+ 0.01 ≥ �

is applied on the three input dimensions. The full diagnostic process is applied until two consecutive trues in
the diagnostic are achieved for each dimension. RMSE and RMSE* refer to the root mean squared error of
the HSGP computed against the true function and the exact GP, respectively
Exact GP length-scales: �1GP = 0.11, �2GP = 0.32, �3GP = 0.43

(a) (b)

Fig. 13 Error between the 2D data-generating function and posterior
mean functions of the GP (a) and HSGP (b) models. Sample points
are plotted as circles. The right side plot shows the root mean square
error (RMSE) of the different methods, and plotted as a function of the

boundary factor c and number of univariate basis functionsm (the same
m is used per dimension, resulting in a total number ofmD multivariate
basis functions)
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Fig. 14 Computational time in seconds per iteration (iteration of the HMC sampling method) for different datasets with different dimensionalties
and data points, and plotted as a function of the number of multivariate basis functions m∗ = m1 × · · · × mD

5.4 Leukemia data

The next example presents a survival analysis in acute
myeloid leukemia (AML) in adults, with data recorded
between 1982 and 1998 in theNorthWest Leukemia Register
in the United Kingdom. The data set consists of survival and
censoring times ti and censoring indicator zi (0 for observed
and 1 for censored) for n = 1043 cases (i = 1, . . . , n). About
16%of cases were censored. Predictors are age (x1), sex (x2),

white blood cell (WBC) (x3) count at diagnostic with 1 unit =
50× 109/L , and the Townsend deprivation index (TDI) (x4)
which is a measure of deprivation for district of residence.
We denote xi = (xi1, xi2, xi3, xi4) ∈ IR4 as the vector of
predictor values for observation i .

As the WBC predictor values were strictly positive and
highly skewed, a logarithm transformation is used. Con-
tinuous predictors were normalized to have zero mean and
unit standard deviation.We assume a log-normal observation
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model for the observed survival time, ti , with a function of
the predictors, f (xi ) : IR4 → IR, as the location parameter,
and σ as the Gaussian noise:

p(ti | fi ) = LogNormal(ti | f (xi ), σ 2).

We do not have a full observation model, as we do not
have a model for the censoring process. We use the comple-
mentary cumulative log-normal probability distribution for
the censored data conditionally on the censoring time ti :

p(yi > ti | f ) =
∫ ∞

ti
LogNormal(yi | f (xi ), σ 2) dyi

= 1 − Φ

(
log(ti ) − f (xi )

σ

)
,

where yi > ti denotes the unobserved survival time and Φ

is the standard normal cumulative distribution function. The
latent function f (·) is modeled as a Gaussian process, cen-
tered around a linear model of the predictors x, and with a
squared exponential covariance function k. Due to the pre-
dictor sex (x2) being a categorical variable (‘1’ for female
and ‘2’ for male), we apply indicator variable coding for the
GP functions, in a similar way such coding is applied in lin-
ear models (Gelman et al. 2020). The latent function f (x),
besides of being centered around a linearmodel, is composed
of a general mean GP function, h(x), defined for all obser-
vations, plus a second GP function, g(x), that only applies
to one of the predictor levels (’male’ in this case) and is set
to zero otherwise:

h(x) ∼ GP
(
0, k(x, x′, θ0)

)
,

g(x) ∼ GP
(
0, k(x, x′, θ1)

)
,

f (x) = c + βx + h(x) + I[x2 = 2] g(x),

where I [·] is an indicator function. Above, c and β are the
intercept and vector of coefficients, respectively, of the linear
model. θ0 contains the hyperparameters α0 and �0 which are
the marginal variance and length-scale of the general mean
GP function, and θ1 contains the hyperparameters α1 and
�1 which are the marginal variance and length-scale, respec-
tively, of a GP function specific to the male sex (x2 = 2).
Scalar length-scales, �0 and �1, are used in both multivariate
covariance functions, assuming isotropic functions.

Using the HSGP approximation, the functions h(x) and
g(x) are approximated as inEq. (14),with the D-dimensional
(with a scalar length-scale) squared exponential spectral den-
sity s as in Eq. (1), and the multivariate eigenfunctions φ j

and the D-vector of eigenvalues λ j as in Eqs. (12) and (11),
respectively.

Figure 15 shows estimated conditional functions of each
predictorwith all others fixed to theirmeanvalues. These pos-
terior estimates correspond to the HSGPmodel withm = 10

basis functions and c = 3 boundary factor. There are clear
non-linear patterns and the right bottom subplot also shows
that the conditional function associated with WBC has an
interaction with TDI. Figure 16 shows the expected log pre-
dictive density (ELPD; Vehtari and Ojanen 2012; Vehtari
et al. 2017) and time of computation as function of the num-
ber of univariate basis functions m (m∗ = mD in Eq. (14))
and boundary factor c. As the functions are smooth, a few
number of basis functions and a large boundary factor are
required to obtain a good approximation (Fig. 16-left); Small
boundary factors are not appropriate for models for large
length-scales, as can be seen in Fig. 5. Increasing the bound-
ary factor also significantly increases the time of computation
(Fig. 16-right). With a moderate number of univariate basis
functions (m = 15), the HSGP model becomes slower than
the exact GP model, in this specific application with 3 input
variables, as the total number of multivariate basis functions
becomes 153 = 3375 and is therefore quite high.

The Stanmodel code for the exact GP and the HSGPmod-
els of this case study can be found online at https://github.com/

gabriuma/basis_functions_approach_to_GP/tree/master/Paper/Case-

study_Leukemia-data .

6 Conclusion

Modeling unknown functions using exact GPs is compu-
tationally intractable in many applications. This problem
becomes especially severe when performing full Bayesian
inference using sampling-based methods. In this paper, a
recent approach for a low-rank representation of station-
ary GPs, originally proposed by Solin and Särkkä (2020),
has been analyzed in detail. The method is based on a
basis function approximation via Laplace eigenfunctions.
The method has an attractive computational cost as it effec-
tively approximates GPs by linear models, which is also
an attractive property in modular probabilistic program-
ming programming frameworks. The dominating cost per
log density evaluation (during sampling) is O(nm + m),
which is a big benefit in comparison to O(n3) of an exact
GP model. The obtained design matrix is independent of
hyperparameters and therefore only needs to be constructed
once, at cost O(nm). All dependencies on the kernel and
the hyperparameters are through the prior distribution of the
regression weights. The parameters’ posterior distribution is
m-dimensional, where m is usually much smaller than the
number of observations n.

As one of themain contributions of this paper,we provided
an in-depth analysis of the approximation’s performance and
accuracy in relation to the key factors of the method, that
is, the number of basis functions, the boundary condition
of the Laplace eigenfunctions, and the non-linearity of the
function to be learned. On that basis, as our second main
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Fig. 15 Expected lifetime
conditional comparison for each
predictor with other predictors
fixed to their mean values. The
thick line in each graph is the
posterior mean estimated using
a HSGP model, and the thin
lines represent pointwise 95%
credible intervals

Fig. 16 Expected log predictive density (ELPD; left) and time of computation in seconds per iteration (iteration of the HMC sampling method;
right) as a function of the number of basis functions m and boundary factor c
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contribution, we developed practical diagnostics to assess
the approximation’s performance as well as an iterative pro-
cedure to obtain an accurate approximation with minimal
computational costs.

The developed approximate GPs can be easily applied as
modular components in probabilistic programming frame-
works such as Stan in bothGaussian and non-Gaussian obser-
vation models. Using several simulated and real datasets, we
have demonstrated the practical applicability and improved
sampling efficiency, as compared to exact GPs, of the devel-
oped method. The main drawback of the approach is that
its computational complexity scales exponentially with the
number of input dimensions. Hence, choosing optimal values
for the number of basis functions and the boundary fac-
tor, using the recommendations and diagnostics provided in
Fig. 5, is essential to avoid a excessive computational time
especially in multivariate input spaces. However, in practice,
input dimensionalities larger than three start to be compu-
tationally demanding even for moderately wiggly functions
and few basis functions per input dimension. In these high
dimensional cases, the proposed approximate GP methods
may still be used for low-dimensional components in an
additive modeling scheme but without modeling very high
dimensional interactions, as complexity is linear with the
number of additive components.

In this paper, the obtained functional relationships between
the key factors influencing the approximation and corre-
sponding diagnostics were studied primarily for univariate
inputs. Accordingly, investigating the functional relation-
shipsmore thoroughly formultivariate inputs remains a topic
for future research.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-022-10167-
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A Approximation of the covariance function
using Hilbert spacemethods

In this section, we briefly present a summary of the mathe-
matical details of the approximation of a stationary covari-
ance function as a series expansion of eigenvalues and
eigenfunctions of the Laplacian operator. This statement
is based on the work by Solin and Särkkä (2020), who
developed the mathematical theory behind the Hilbert Space
approximation for stationary covariance functions.

Associated to each covariance function k(x, x′) we can
also define a covariance operator K over a function f (x) as
follows:

K f (x) =
∫

k(x, x′) f (x′) dx′.

From the Bochner’s and Wiener-Khintchine theorems,
the spectral density of a stationary covariance function
k(x, x′) = k(τ ), τ = (x − x′), is the Fourier transform
of the covariance function,

s(w) =
∫

k(τ )e−2π iwτ dτ ,

where w is in the frequency domain. The operator K will be
translation invariant if the covariance function is stationary.
This allows for a Fourier representation of the operator K
as a transfer function which is the spectral density of the
Gaussian process. Thus, the spectral density s(w) also gives
the approximate eigenvalues of the operator K.

In the isotropic case s(w) = s(||w||) and assuming that
the spectral density function s(·) is regular enough, then it
can be represented as a polynomial expansion:

s(||w||) = a0 + a1||w||2 + a2(||w||2)2
+ a3(||w||2)3 + · · · . (A.1)

The Fourier transform of the Laplace operator ∇2 is −||w||,
thus the Fourier transform of s(||w||) is

K = a0 + a1(−∇2) + a2(−∇2)2 + a3(−∇2)3 + · · · , (A.2)
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defining a pseudo-differential operator as a series of Laplace
operators.

If the negative Laplace operator −∇2 is defined as the
covariance operator of the formal kernel l,

−∇2 f (x) =
∫

l(x, x′) f (x′) dx′,

then the formal kernel can be represented as

l(x, x′) =
∑

j

λ jφ j (x)φ j (x′),

where {λ j }∞j=1 and {φ j (x)}∞j=1 are the set of eigenvalues
and eigenvectors, respectively, of the Laplacian operator.
Namely, they satisfy the following eigenvalue problem in the
compact subset x ∈ Ω ⊂ IRD and with the Dirichlet bound-
ary condition (other boundary conditions could be used as
well):

−∇2φ j (x) = λφ j (x), x ∈ Ω

φ j (x) = 0, x /∈ Ω.

Because −∇2 is a positive definite Hermitian operator, the
set of eigenfunctions φ j (·) are orthonormal with respect to
the inner product

〈 f , g〉 =
∫

Ω

f (x)g(x) d(x)

that is,

∫

Ω

φi (x)φ j (x) d(x) = δi j ,

and all the eigenvalues λ j are real and positive.
Due to normality of the basis of the representation of the

formal kernel l(x, x′), its formal powers s = 1, 2, . . . can
be written as

l(x, x′)s =
∑

j

λsjφ j (x)φ j (x′), (A.3)

which are again to be interpreted to mean that

(−∇2)s f (x) =
∫

ls(x, x′) f (x′) dx′.

This implies that we also have

[a0 + a1(−∇2) + a2(−∇2)2 + · · · ] f (x) =
∫

[a0 + a1l
1(x, x′) + a2l

2(x, x′) + · · · ] f (x′) dx′.

Then, looking at Eqs. (A.2) and (A.3), it can be concluded

k(x, x′) =
∑

j

[a0 + a1λ
1
j + a2λ

2
j + · · · ]φ j (x)φ j (x′).(A.4)

By letting ||w||2 = λ j the spectral density in Eq. (A.1)
becomes

s(
√

λ j ) = a0 + a1λ j + a2λ
2
j + a3λ

3
j + · · · ,

and substituting in Eq. (A.4) then leads to the final form

k(x, x′) =
∑

j

s(
√

λ j )φ j (x)φ j (x′), (A.5)

where s(·) is the spectral density of the covariance function,
λ j is the j th eigenvalue and φ j (·) the eigenfunction of the
Laplace operator in a given domain.

B Low-rank Gaussian process with a periodic
covariance function

A GP model with a periodic covariance function does no
fit in the framework of the HSGP approximation covered in
this study, but it has also a low-rank representation. In this
section, we first give a brief presentation of the results by
Solin and Särkkä (2014), who obtain an approximate linear
representation of a periodic squared exponential covariance
function basedon expanding the periodic covariance function
into a series of stochastic resonators. Secondly, we analyze
the accuracy of this approximation and, finally, we derive the
GP model with this approximate periodic squared exponen-
tial covariance function.

The periodic squared exponential covariance function
takes the form

k(τ ) = α exp

(

−2 sin2(ω0
τ
2 )

�2

)

, (B.1)

where α is the magnitude scale of the covariance, � is the
characteristic length-scale of the covariance, and ω0 is the
angular frequency defining the periodicity.

Solin and Särkkä (2014) derive a cosine series expansion
for the periodic covariance function (B.1) as follows,

k(τ ) = α

J∑

j=0

q̃2j cos( jω0τ), (B.2)
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Fig. 17 Relation among the minimum number of terms J in the approximation and the length-scale (�) of the periodic squared exponential
covariance function. The right-side plot is a zoom in of the left-side plot

which comes basically from a Taylor series representation of
the periodic covariance function. The coefficients q̃2j

q̃2j = 2

exp( 1
�2

)

� J− j
2 �∑

j=0

(2�2)− j−2

( j + i)!i ! , (B.3)

where j = 1, 2, . . . , J , and �·� denotes the floor round-off
operator. For the index j = 0, the coefficient is

q̃20 = 1

2

2

exp( 1
�2

)

� J− j
2 �∑

j=0

(2�2)− j−2

( j + i)!i ! . (B.4)

The covariance in Eq. (B.2) is a J th order truncation of a
Taylor series representation. This approximation converges
to Eq. (B.1) when J → ∞.

An upper bounded approximation to the coefficients q̃2j
and q̃20 can be obtained by taking the limit J → ∞ in the
sub-sums in the corresponding Eqs. (B.3) and (B.4), and thus
leading to the following variance coefficients:

q̃2j =2I j (�−2)

exp( 1
�2

)
,

q̃20 = I0(�−2)

exp( 1
�2

)
,

(B.5)

for j = 1, 2, . . . , J , and where the I j (z) is the modified
Bessel function (Abramowitz and Stegun 1970) of the first
kind. This approximation implies that the requirement of

a valid covariance function is relaxed and only an optimal
series approximation is required. A more detailed expla-
nation and mathematical proofs of this approximation of
a periodic covariance function are provided by Solin and
Särkkä (2014).

In order to assess the accuracy of this representation as
a function of the number of cosine terms J considered in
the approximation, an empirical evaluation is carried out in
a similar way than that in Sect. 4 of this work. Thus, Fig. 17
shows the minimum number of terms J required to achieve
a close approximation to the exact periodic squared expo-
nential kernel as a function of the length-scale of the kernel.
We have considered an approximation to be close enough
in terms of satisfying Eq. (15) with ε = 0.005

∫
k(τ ) dτ

(0.5% of the total area under the curve of the exact covari-
ance function k). Since this is a series expansion of sinusoidal
functions, the approximation does not depend on any bound-
ary condition.

From the empirical observations, a numerical equation
governing the relationships between J and � were estimated
in Eq. (B.6), which show linear proportionality between J
and �:

J ≥ 3.72

�
⇔ � ≥ 3.72

J
. (B.6)

The function values of a GPmodel with this low-rank rep-
resentation of the periodic exponential covariance function
can be easily derived. Considering the identity

cos( jω0(x − x ′)) = cos( jω0x) cos( jω0x
′) + sin( jω0x)
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sin( jω0x
′),

the covariance k(τ ) in Eq. (B.2) can be written as

k(x, x ′) ≈ α

( J∑

j=0

q̃2j cos( jω0x) cos( jω0x
′)

+
J∑

j=1

q̃2j sin( jω0x) sin( jω0x
′)
)

. (B.7)

With this approximation for the periodic squared exponen-
tial covariance function k(x, x ′), the approximate GP model
f (x) ∼ GP

(
0, k(x, x ′)

)
equivalently leads to a linear rep-

resentation of f (·) via

f (x) ≈ α1/2
( J∑

j=0

q̃ j cos( jω0x)β j

+
J∑

j=1

q̃ j sin( jω0x)βJ+1+ j

)
, (B.8)

where β j ∼ Normal(0, 1), with j = 1, . . . , 2J + 1. The
cosine cos( jω0x) and sinus sin( jω0x) terms do not depend
on the covariance hyperparameters �. The only dependence
on the hyperparameter � is through the coefficients q̃ j , which
are J -dimensional. The computational cost of this approxi-
mation scales as O

(
n(2J + 1) + (2J + 1)

)
, where n is the

number of observations and J the number of cosine terms.
The parameterization in Eq. (B.8) is naturally in the non-
centered form with independent prior distributions on β j ,
which makes posterior inference easier.

CDescription of the iterative steps applied to
perform diagnostic on two of the data sets in
Fig. 1

As concrete examples, the iterative steps applied to perform
diagnostic on two of the data sets in Table 1 are described
next:
Data set with the squared exponential kernel and true length-
scale �GP = 0.08:

Iteration 1:

1. Compute the boundary S of the input values by using
Eq. (16) → S = 1.

2. Make an initial guess for the length-scale � → �1 =
0.5.

3. Compute the optimal c1 as a function of �1 and S by
using Eq. (20) → c1 = 1.60.

4. Compute the minimum m1 as a function of c1, �1,
and S by using Eq. (19) → m1 = 6.

5. Fit the HSGP model and obtain the estimated �̂1 →
mean(�̂1) = 0.17.

6. The diagnostic �̂1 + 0.01 ≥ �1 gives FALSE.

Iteration 2:

1. As the diagnostic in iteration 1 was FALSE, set �2 =
�̂1.

2. Compute the optimal c2 as a function of �2 and S by
using Eq. (20) → c2 = 1.20.

3. Compute the minimum m2 as a function of c2, �2,
and S by using Eq. (19) → m2 = 13.

4. Fit the HSGP model using c2 and m2 and obtain the
estimated �̂2 → �̂2 = 0.07.

5. The diagnostic �̂2 + 0.01 ≥ �2 gives FALSE.

Iteration 3:

1. As the diagnostic in previous iteration 2 was FALSE,
updating �3 with �̂2 and repeat the process as in iter-
ation 2.

2. The diagnostic �̂3 + 0.01 ≥ �3 gives TRUE.

Iteration 4:

1. As the diagnostic in step 4 in previous iteration 3 was
TRUE, set m4 = m3 + 5.

2. Compute the optimal c4 as a function of �3 and S by
using Eq. (20) to c4 = 1.20.

3. Fit the HSGP model using c4 and m4 and obtain the
estimated �̂4 to �̂4 = 0.08.

4. The diagnostic �̂4 + 0.01 ≥ �4 gives TRUE.
5. As RMSE, R2, and ELPD are stable relative to pre-

vious iteration 4, the HSGP approximation is likely
sufficiently accurate and the procedure ends here.

Data set with the squared exponential kernel and true length-
scale �GP = 1.4:

Iteration 1:

1. Compute the boundary S of the input values by using
Eq. (16) → S = 1.

2. Make an initial guess for the length-scale �→ �1 = 1.
3. Compute the optimal c1 as a function of �1 and S by

using Eq. (20) → c1 = 3.20.
4. Compute the minimum m1 as a function of c1, �1,

and S by using Eq. (19) → m1 = 6.
5. Fit the HSGP model and obtain the estimated �̂1 →

�̂1 = 1.02.
6. The diagnostic �̂1 + 0.01 ≥ �1 gives TRUE.

Iteration 2:
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1. As the diagnostic in previous iteration 1 was TRUE,
set m2 = m1 + 5.

2. Compute the optimal c2 as a function of �2 and S by
using Eq. (20) → c2 = 3.27.

3. Fit the HSGP model using c2 and m2 and obtain the
estimated �̂2 → �̂2 = 1.23.

4. The diagnostic �̂2 + 0.01 ≥ �2 gives TRUE.
5. As RMSE, R2, and ELPD are stable relative to pre-

vious iteration 2, the HSGP approximation is likely
sufficiently accurate and the procedure ends here.
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