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Summary
Modern Bayesian inference involves a mixture of computational techniques for estimating,
validating, and drawing conclusions from probabilistic models as part of principled workflows for
data analysis (Bürkner et al., 2022; Gelman et al., 2020; Schad et al., 2021). Typical problems
in Bayesian workflows are the approximation of intractable posterior distributions for diverse
model types and the comparison of competing models of the same process in terms of their
complexity and predictive performance. However, despite their theoretical appeal and utility,
the practical execution of Bayesian workflows is often limited by computational bottlenecks:
Obtaining even a single posterior may already take a long time, such that repeated estimation
for the purpose of model validation or calibration becomes completely infeasible.

BayesFlow provides a framework for simulation-based training of established neural network
architectures, such as transformers (Vaswani et al., 2017) and normalizing flows (Papamakarios
et al., 2021), for amortized data compression and inference. Amortized Bayesian inference
(ABI), as implemented in BayesFlow, enables users to train custom neural networks on model
simulations and re-use these networks for any subsequent application of the models. Since
the trained networks can perform inference almost instantaneously (typically well below one
second), the upfront neural network training is quickly amortized. For instance, amortized
inference allows us to test a model’s ability to recover its parameters (Schad et al., 2021) or
assess its simulation-based calibration (Säilynoja et al., 2022; Talts et al., 2018) for different
data set sizes in a matter of seconds, even though this may require the estimation of thousands
of posterior distributions. BayesFlow offers a user-friendly API, which encapsulates the details
of neural network architectures and training procedures that are less relevant for the practitioner
and provides robust default implementations that work well across many applications. At the
same time, BayesFlow implements a modular software architecture, allowing machine learning
scientists to modify every component of the pipeline for custom applications as well as research
at the frontier of Bayesian inference.
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Figure 1: BayesFlow defines a formal workflow for data generation, neural approximation, and model
criticism.

Statement of Need
BayesFlow embodies functionality that is specifically designed for building and validating
amortized Bayesian workflows with the help of neural networks. Figure 1 outlines a typical
workflow in the context of amortized posterior and likelihood estimation. A simulator coupled
with a prior defines a generative Bayesian model. The generative model may depend on various
(optional) context variates like varying numbers of observations, design matrices, or positional
encodings. The generative scope of the model and the range of context variables determine the
scope of amortization, that is, over which types of data the neural approximator can be applied
without re-training. The neural approximators interact with model outputs (parameters, data)
and context variates through a configurator. The configurator is responsible for carrying out
transformations (e.g., input normalization, double-to-float conversion, etc.) that are not part
of the model but may facilitate neural network training and convergence.

Figure 1 also illustrates an example configuration of four neural networks: 1) a summary
network to compress simulation outcomes (individual data points, sets, or time series) into
informative embeddings; 2) a posterior network to learn an amortized approximate posterior;
and 3) another summary network to compress simulation inputs (parameters) into informative
embeddings; and 4) a likelihood network to learn an amortized approximate likelihood. Figure 1
depicts the standalone and joint capabilities of the networks when applied in isolation or in
tandem. The input conditions for the posterior and likelihood networks are partitioned by
the configurator: Complex (“summary”) conditions are processed by the respective summary
network into embeddings, while very simple (“direct”) conditions can bypass the summary
network and flow straight into the neural approximator.

Currently, the software features four key capabilities for enhancing Bayesian workflows, which
have been described in the referenced works:

1. Amortized posterior estimation: Train a generative network to efficiently infer full
posteriors (i.e., solve the inverse problem) for all existing and future data compatible
with a simulation model (Radev, Mertens, et al., 2020).

2. Amortized likelihood estimation: Train a generative network to efficiently emulate a
simulation model (i.e., solve the forward problem) for all possible parameter configurations
or interact with external probabilistic programs (Boelts et al., 2022; Radev et al., 2023).

3. Amortized model comparison: Train a neural classifier to recognize the “best” model
in a set of competing candidates (Elsemüller et al., 2023; Radev, D’Alessandro, et al.,
2020; Schmitt et al., 2022) or combine amortized posterior and likelihood estimation
to compute Bayesian evidence and out-of-sample predictive performance (Radev et al.,
2023).
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4. Model misspecification detection: Ensure that the resulting posteriors are faithful
approximations of the otherwise intractable target posterior, even when simulations do
not perfectly represent reality (Radev et al., 2023; Schmitt et al., 2023).

BayesFlow has been used for amortized Bayesian inference in various areas of applied research,
such as epidemiology (Radev et al., 2021), cognitive modeling (Krause et al., 2022; Schu-
macher et al., 2023; Sokratous et al., 2023; Wieschen et al., 2020), computational psychiatry
(D’Alessandro et al., 2020), neuroscience (Ghaderi-Kangavari et al., 2022), particle physics
(Bieringer et al., 2021), agent-based econometrics models (Shiono, 2021), seismic imaging
(Siahkoohi et al., 2023), user behavior (Moon et al., 2023), structural health monitoring (Zeng
et al., 2023), aerospace (Tsilifis et al., 2022) and wind turbine design (Noever-Castelos et
al., 2022), micro-electro-mechanical systems testing (Heringhaus et al., 2022), and fractional
Brownian motion (Verdier et al., 2022).

The software is built on top of TensorFlow (Abadi et al., 2016) and thereby enables off-the-
shelf support for GPU and TPU acceleration. Furthermore, it can seamlessly interact with
TensorFlow Probability (Dillon et al., 2017) for flexible latent distributions and a variety of
joint priors.

Related Software
When a non-amortized inference procedure does not create a computational bottleneck,
approximate Bayesian computation (ABC) might be an appropriate tool. This is the case if
a single data set needs to be analyzed, if an infrastructure for parallel computing is readily
available, or if repeated re-fits of a model (e.g., cross-validation) are not desired. A variety of
mature Python packages for ABC exist, such as PyMC (Salvatier et al., 2016), pyABC (Schälte
et al., 2022), ABCpy (Dutta et al., 2021), or ELFI (Lintusaari et al., 2018). In contrast to
these packages, BayesFlow focuses on amortized inference, but can also interact with ABC
samplers (e.g., use BayesFlow to learn informative summary statistics for an ABC analysis).

When it comes to simulation-based inference with neural networks, the sbi toolkit enables
both likelihood and posterior estimation using different inference algorithms, such as Neural
Posterior Estimation (Papamakarios et al., 2021), Sequential Neural Posterior Estimation
(Greenberg et al., 2019) and Sequential Neural Likelihood Estimation (Papamakarios et al.,
2019). BayesFlow and sbi can be viewed as complementary toolkits, where sbi implements a
variety of different approximators for standard modeling scenarios, while BayesFlow focuses
on amortized workflows with user-friendly default settings and optional customization. The
Swyft library focuses on Bayesian parameter inference in physics and astronomy. Swyft uses
a specific type of simulation-based neural inference technique, namely, Truncated Marginal
Neural Ratio Estimation (Miller et al., 2021). This method improves on standard Markov
chain Monte Carlo (MCMC) methods for ABC by learning the likelihood-to-evidence ratio with
neural density estimators. Finally, the Lampe library provides implementations for a subset of
the methods for posterior estimation in the sbi library, aiming to expose all components (e.g.,
network architectures, optimizers) in order to provide a customizable interface for creating
neural approximators. All of these libraries are built on top of PyTorch.

Availability, Development, and Documentation
BayesFlow is available through PyPI via pip install bayesflow, the development version is
available via GitHub. GitHub Actions manage continuous integration through automated code
testing and documentation. The documentation is hosted at www.bayesflow.org. Currently,
BayesFlow features seven tutorial notebooks. These notebooks showcase different aspects of
the software, ranging from toy examples to applied modeling scenarios, and illustrating both
posterior estimation and model comparison workflows.
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