
Br J Math Stat Psychol. 2023;00:1–32. © 2023 British Psychological Society.wileyonlinelibrary.com/journal/bmsp 1

1University of  California, Davis, California, USA
2NWEA, Portland, Oregon, USA
3Cluster of  Excellence SimTech, University of  
Stuttgart, Stuttgart, Germany

Correspondence
Josue E. Rodriguez, University of  California, Davis, 
Davis, CA, USA.
Email: jerrodriguez@ucdavis.edu

Funding information
Deutsche Forschungsgemeinschaft, Grant/Award 
Number: EXC 2075 - 39074001; National Science 
Foundation, Grant/Award Number: 1650042

Abstract
Categorical moderators are often included in mixed-effects 
meta-analysis to explain heterogeneity in effect sizes. An 
assumption in tests of  categorical moderator effects is that 
of  a constant between-study variance across all levels of  the 
moderator. Although it rarely receives serious thought, there 
can be statistical ramifications to upholding this assump-
tion. We propose that researchers should instead default to 
assuming unequal between-study variances when analysing 
categorical moderators. To achieve this, we suggest using 
a mixed-effects location-scale model (MELSM) to allow 
group-specific estimates for the between-study variance. In 
two extensive simulation studies, we show that in terms of  
Type I error and statistical power, little is lost by using the 
MELSM for moderator tests, but there can be serious costs 
when an equal variance mixed-effects model (MEM) is used. 
Most notably, in scenarios with balanced sample sizes or equal 
between-study variance, the Type I error and power rates are 
nearly identical between the MEM and the MELSM. On the 
other hand, with imbalanced sample sizes and unequal vari-
ances, the Type I error rate under the MEM can be grossly 
inflated or overly conservative, whereas the MELSM does 
comparatively well in controlling the Type I error across the 
majority of  cases. A notable exception where the MELSM 
did not clearly outperform the MEM was in the case of  few 
studies (e.g., 5). With respect to power, the MELSM had simi-
lar or higher power than the MEM in conditions where the 
latter produced non-inflated Type 1 error rates. Together, our 
results support the idea that assuming unequal between-study 
variances is preferred as a default strategy when testing cate-
gorical moderators.
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RODRIGUEZ et al.2

1  |  INTRODUCTION

Meta-analysis is an indispensable technique for synthesizing results from various comparable studies. 
Key goals include determining the average effect size (Hedges & Pigott, 2001), quantifying the extent 
of  heterogeneity in effects (Higgins & Thompson, 2002; Ioannidis et al., 2007), and evaluating whether 
study characteristics moderate the effect size (Hedges & Pigott, 2005). The study of  statistical methods 
for meta-analysis is important because systematic reviews using meta-analytic techniques tend to be influ-
ential (DeGeest & Schmidt, 2010). For example, in psychological science, meta-analysis has been used to 
critically evaluate prominent theories (Hagger et al., 2016), provide nuanced perspectives on phenomena 
of  interest (van Agteren et al., 2021), and suggest potential reasons for why replication studies fail (Klein 
et al., 2018). It is thus of  paramount importance to use methods that provide accurate estimates and 
high-quality inferences.

Moderator variables are often included in meta-analytic models to investigate whether particular 
study characteristics (e.g., measurement instrument) explain differences in effect sizes and are typically 
viewed as a means to explain between-study heterogeneity (Thompson & Sharp, 1999). In a standard 
random-effects framework, the leftover, unexplained between-study variance is then captured by a heter-
ogeneity parameter, τ 2. Note that the term mixed-effects model (MEM) is often used in reference to a 
random-effects model with moderators, and we use both terms interchangeably throughout this paper. 
An implicit assumption in moderator analyses that has yet to be thoroughly examined is that τ 2 is fixed 
across all subgroups for a categorical moderator, or across all values for a continuous moderator. That is, 
researchers commonly assume that, say, both subgroups of  a dichotomous moderator will have the same 
value for τ 2. This is analogous to the assumption of  homoscedasticity in analysis of  variance (ANOVA) 
designs. When this assumption does not hold true in the population and the subgroups of  the moderator 
have unbalanced sample sizes, this can result in increased Type I error rates, conservative Type I error 
rates, and a loss in statistical power for moderator effects (Rubio-Aparicio et al., 2017).

One way of  dealing with heterogeneous between-study variances with categorical moderators is by 
subgroup analysis (Borenstein & Higgins, 2013; Schoemann, 2016), wherein a separate random-effects 
model is fit to each level in the moderator and separate estimates of  τ 2 for each subgroup are obtained. 
Owing to their flexibility to examine multiple predictors within a single modelling framework, a popular 
alternative to subgroup analyses are mixed-effects meta-regression models (Thompson & Sharp, 1999). 
Standard mixed-effects meta-regressions, or MEMs, do not permit heterogeneous variances between 
subgroups, but Viechtbauer and López-López  (2022) recently described a mixed-effects location-scale 
model (MELSM) in order to overcome this limitation, while Williams et al. (2021) introduced this model 
under a Bayesian framework. Using a MELSM, separate estimates of  τ 2 can be obtained for each level of  
the moderator (scale), which in turn yield modified estimates of  so-called moderator effects (location). 
As we will show, allowing for separate heterogeneity estimates curbs the loss of  power and distorted 
error rates when there are unequal between-study variances and unequal sample sizes in subgroups of  a 
moderator. Unlike previous work on MELSMs, the intent of  this work is not to introduce and describe 
the MELSM and its applications, but rather to understand whether it is preferable as a default strategy 
over a standard mixed-effects meta-regression.

1.1  |  Analogy to the two independent samples t-test

To understand why the MELSM may be suitable as a default meta-analytic model, it is informative to 
consider the t-test. There is a rich and storied literature examining the t-test when the population variances 

K E Y W O R D S
heterogeneity, location-scale modelling, meta-analysis, mixed effects, 
moderator, random effects
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HETEROGENEOUS HETEROGENEITY BY DEFAULT 3

of  the two groups are heterogeneous (Bartlett, 1936; Murphy, 1967; Welch, 1938, 1947). When the sample 
sizes of  the groups are balanced, inferences stemming from Student's t-test are generally unaffected by 
unequal group variances, save for extreme cases (Scheffé, 1959, Ch. 10). Conversely, when the variances 
of  the groups and their respective sample sizes are both heterogeneous, the resulting statistics can be 
drastically biased and lead to invalid inferences—the well-known Behrens-Fisher problem. To overcome 
these issues, Welch's t-test is commonly used and has even been recommended to be the default because 
it adjusts the degrees of  freedom according to group sample sizes and variances (Delacre et al., 2017).

In the same vein, Rubio-Aparicio et al. (2017); Rubio-Aparicio et al. (2020) found that in subgroup 
analysis, using a pooled estimate of  τ 2 (i.e., assuming equal between-study variances) yielded inferences 
similar to those yielded when using separate estimates (i.e., assuming unequal between-study variances) 
if  the subgroup sample sizes were at least roughly equal. They concluded that pooling estimates for τ 2 
was to be preferred in most scenarios—a sentiment that is echoed in the broader meta-analysis literature 
(e.g., Borenstein et al., 2009; Viechtbauer, 2010). We view this hesitation to assume unequal between-study 
variances as unwarranted because, as we will show, little is lost by simply assuming an unequal variance 
model, but there are potentially costly consequences to assuming equal variances.

1.2  |  Overview

The outline of  this paper is as follows. We first describe the standard MEM and the MELSM. We then 
describe two popular tests of  moderator effects and highlight the importance of  τ 2 in estimating the 
moderator coefficients and their respective standard errors. This section also clarifies how moderator tests 
are essentially weighted tests of  mean differences. Next we present extensive simulation studies compar-
ing the error rates and statistical power of  moderator tests using the MELSM to those of  obtained using 
a classical MEM. We conclude with an applied illustration of  the MELSM and a brief  discussion.

2  |  MIXED-EFFECTS MODELS

In meta-analysis, researchers are routinely faced with the choice of  using either a fixed-effects or 
random-effects model. The former provides inferences on the effect sizes of  the observed studies or a set 
of  identical studies (i.e., conditional inference). The latter yields inferences on the parameters of  a popu-
lation of  studies, of  which the observed set is assumed to be a random sample (i.e., unconditional infer-
ence; Hedges & Vevea, 1998). In addition to sampling variability, the random-effects model considers the 
possibility of  heterogeneous true effect sizes that arise as a result of  differences in study characteristics 
(e.g., design, population, environmental factors; DerSimonian & Laird, 1986; Hedges, 1992). The main 
consideration in deciding between these two models is the inferential goal. In practice, analysts often wish 
to generalize beyond the observed studies to the parent population of  studies, and thus random-effects 
models are more often employed.

2.1  |  Standard MEM

When a moderator is included in a random-effects model to explain part of  the variance in the observed 
effect sizes, it becomes a MEM. Additionally, for categorical moderators, the inferential goal is usually to 
contrast between two or more group average effects. In this case, the MEM can be understood as follows. 
Suppose we have observed 𝐴𝐴 𝐴𝐴 = 1,… , 𝑘𝑘𝑖𝑖 independent effect sizes in each of  𝐴𝐴 𝐴𝐴 = 1,… , 𝑝𝑝 groups, yij, and 
that the total number of  observed effect sizes is 𝐴𝐴 𝐴𝐴 =

∑
𝑖𝑖
𝑘𝑘𝑖𝑖 . For simplicity, suppose that p = 2 (i.e., two 

groups). Then the standard MEM is given by

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜃𝜃𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖,� (1)

 20448317, 0, D
ow

nloaded from
 https://bpspsychub.onlinelibrary.w

iley.com
/doi/10.1111/bm

sp.12299 by U
niversitatsbibliothek Stuttgart, W

iley O
nline L

ibrary on [03/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



RODRIGUEZ et al.4

𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖,� (2)

𝜇𝜇𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑖𝑖,� (3)

𝑢𝑢𝑖𝑖𝑖𝑖 ∼ 𝒩𝒩
(
0, 𝜏𝜏2

)
,� (4)

𝜀𝜀𝑖𝑖𝑖𝑖 ∼ 𝒩𝒩
(
0, 𝜎𝜎2

𝑖𝑖𝑖𝑖

)
,� (5)

where θij is the true effect size of  the jth study in the ith group, β0 is the average effect for the first group, β1 
captures the difference in average effect between the first and second groups, and xij is a dummy variable 
indexing the group to which each observed effect size belongs.

The terms εij and uij are the within- and between-study errors, respectively. The within-study errors are 
assumed to be normally distributed with zero mean and variance 𝐴𝐴 𝐴𝐴2

𝑖𝑖𝑖𝑖
 . Each 𝐴𝐴 𝐴𝐴2

𝑖𝑖𝑖𝑖
 is assumed to be known 

in advance and is calculated according to the type of  effect size index being investigated (Hedges & 
Olkin, 1985). The between-study errors are similarly assumed to be normally distributed with zero mean 
and variance τ 2. This parameter captures the variation in the true effect sizes, θij, that is not explained by 
the moderators and can be estimated in a number of  ways (see Langan et al., 2017, appendix C). In a 
frequentist framework, perhaps the most common estimator of  τ 2 is the restricted maximum likelihood 
(REML; Patterson & Thompson, 1971) estimator, although τ 2 is also often estimated using Bayesian tech-
niques (e.g., Higgins et al., 2009). Importantly, in the MEM, τ 2 does not carry a subscript, and hence the 
assumption of  equal variances among groups of  a categorical moderator is always made.

This assumption cannot be overlooked because the role of  τ 2 is crucial in calculating and testing 
moderator effects. The way in which the between-study variance affects the outcome of  moderator tests 
is evident in the estimating equations for β0 and β1 and their standard errors. These equations are solved 
using weighted least squares (Viechtbauer, 2010), where the weights are calculated based, in part, on the 
between-study variances. When there are two groups, the equations for testing a moderator effect (i.e., β1) 
bear a striking resemblance to those of  a weighted Student's t-test. For instance, the well-known Q statistic 
with two groups can be expressed as (Hedges & Pigott, 2005)

𝑄𝑄 =

(
𝑦𝑦1 − 𝑦𝑦2

)2

𝑤𝑤−1
1

+ 𝑤𝑤−1
2

,� (6)

where, just as for the t statistic in an independent two-sample t-test, the numerator reflects the observed 
mean difference in the outcome between groups and the denominator captures the pooled variance of  
the numerator (see Tests for Categorical Moderators for details). In the case of  more than two groups, 
testing a moderator effect corresponds to a weighted ANOVA (Borenstein et al., 2009). A key assumption 
of  standard ANOVA methods is that the within-group variances are equal, and this assumption is also 
commonly made in meta-analysis, but with respect to the between-study variance.1 However, recall that 
our aim is to understand whether this assumption is warranted.

2.2  |  Mixed-effects location-scale model

To accomplish the goal of  estimating and incorporating heterogeneous variances into tests of  moderator 
effects, we propose using a MELSM (Viechtbauer & López-López, 2022; Williams et al., 2021). This tech-
nique was first introduced outside of  meta-analysis2 (Hedeker et al., 2008, 2012), and has also been stud-
ied under the terms doubly hierarchical model (Lee & Nelder, 2006) and distributional regression (Bürkner, 2018). 

1 The within-study variances in a meta-analysis are heterogeneous by default and are typically considered to be known in advance.
2 Note the “location-scale” term arose because of  the inclusion of  a random effect for both the location and level-1 variance models in a 
non-meta-analytic MEM, but we use it here to refer to a mixed-effects meta-regression that allows moderators for the location and level-2 variance.
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HETEROGENEOUS HETEROGENEITY BY DEFAULT 5

This model is formulated similarly to the standard MEM in (1), but an additional component is stipulated 
to permit moderators to influence the between-study variance. When a categorical moderator is included, 
it results in group-specific estimates for the between-study variance, 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 . If  we continue with our simplify-

ing assumption that p = 2, then 𝐴𝐴 𝐴𝐴2
𝑖𝑖
 can be modelled through the log-linear equation

𝜏𝜏2
𝑖𝑖
= exp

(
𝛾𝛾0 + 𝛾𝛾1𝑥𝑥𝑖𝑖𝑖𝑖

)
,� (7)

where γ0 captures the between-study heterogeneity for the reference group 𝐴𝐴 𝐴𝐴2
1
 , γ1 captures the difference 

between 𝐴𝐴 𝐴𝐴2
1
 and 𝐴𝐴 𝐴𝐴2

2
 , and xij is the same group-indicator variable used in (3). The right hand side of  (7) is 

exponentiated to ensure only positive values are estimated for 𝐴𝐴 𝐴𝐴2
𝑖𝑖
 . If  only an intercept is included in predict-

ing between-study variance, then this results in an estimate of  the average heterogeneity across all k stud-
ies, or the usual estimate of  τ 2. In this sense, the MEM can be considered a special case of  the MELSM. 
Additionally, the coefficients γ0 and γ1 are typically estimated using either REML (Viechtbauer, 2021) or 
Bayesian methods (Williams et al., 2021).

Critically, because the MELSM allows each group to have its own value for 𝐴𝐴 𝐴𝐴2
𝑖𝑖
 , it follows that a differ-

ent set of  weights is used in estimating the coefficients β0 and β1 (see Hedges & Pigott, 2005, p. 442), as 
well as their respective standard errors. Thus, just as the moderator tests using MEMs are akin to weighted 
tests of  group means with equal variances, moderator tests using the MELSM can be likened to weighted 
tests of  group means with unequal variances.

2.3  |  Tests for categorical moderators

There are several popular methods in meta-regression for testing moderator effects. Of  these, perhaps 
the most widely used is the Wald-type z-test (Borenstein et al., 2009). This test, however, is known to 
not adequately control the Type I error rate because it ignores the uncertainty involved in estimating 
the between-study variance (Knapp & Hartung, 2003; Viechtbauer et al., 2015). As we will see, this in 
turn affects the estimates and standard errors of  the moderator effect. An alternative method originally 
proposed by Knapp and Hartung (2003) amends this deficiency by applying a correction factor to the 
variance of  the moderator effect (e.g., Rubio-Aparicio et al., 2020). For these reasons, we examine how 
the weights resulting from the MEM and the MELSM affect both the z-test and Knapp and Hartung 
(KH) method.

To crystallize our ongoing analogy between classical tests for mean differences and tests of  modera-
tor effects, the expressions we use are for the t-test and ANOVA-like counterparts of  the z-test and KH 
method, but they are equivalent to meta-regression equations when there are two groups under consider-
ation. That is, the omnibus Q-test is equivalent to the z-test for meta-regression coefficients when there 
are two levels in a categorical moderator (cf. Hedges & Pigott,  2005, pp. 434–435 and pp. 442–443). 
Similarly, the KH method for regression coefficients (Knapp & Hartung, 2003) is equivalent to the F-test 
described in Hartung et al. (2001) in the case of  two groups. Describing the tests in these forms will help 
us clearly show that, in fact, assuming unequal between-study variances in meta-analyses is no different 
than assuming unequal variances in classical tests of  mean differences. Importantly, the latter is already 
routine practice in psychological science.

2.3.1  |  Q statistic

In this section and the one following it, we focus on frequentist estimation of  moderator effects, but it 
should be mentioned that the same logic we use would similarly hold for Bayesian estimation (Williams 
et al., 2021). Testing a moderator effect entails computing a series of  weighted means. The first step is to 
calculate the weighted mean effect size for each group, where the weights are given by the inverse of  the 
total variance in yij. Under the standard MEM, we have the weights

 20448317, 0, D
ow

nloaded from
 https://bpspsychub.onlinelibrary.w

iley.com
/doi/10.1111/bm

sp.12299 by U
niversitatsbibliothek Stuttgart, W

iley O
nline L

ibrary on [03/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



RODRIGUEZ et al.6

𝑤𝑤∗
𝑖𝑖𝑖𝑖
=

1

𝜎𝜎2
𝑖𝑖𝑖𝑖
+ 𝜏𝜏2

.� (8)

Under the MELSM, the weights are given by Williams et al. (2021)

𝑤𝑤∗∗
𝑖𝑖𝑖𝑖
=

1

𝜎𝜎2
𝑖𝑖𝑖𝑖
+ 𝜏𝜏2

𝑖𝑖

.� (9)

As mentioned earlier, the key difference in the weights used by the MEM and the MELSM is that the 
former assumes a common τ 2 across all i groups, whereas the MELSM can incorporate group-specific 
heterogeneity parameters, 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 . Using these weights, the mean for each group can be calculated as

𝑦𝑦𝑖𝑖 =

∑𝑘𝑘𝑖𝑖
𝑗𝑗=1

𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖

∑𝑘𝑘𝑖𝑖
𝑗𝑗=1

𝑤𝑤𝑖𝑖𝑖𝑖

.� (10)

Note that here and in what follows, we use the term wij in a generic sense to indicate either 𝐴𝐴 𝐴𝐴∗
𝑖𝑖𝑖𝑖

 
or 𝐴𝐴 𝐴𝐴∗∗

𝑖𝑖𝑖𝑖
 , depending on whether equal or unequal variances are assumed. If  there are no differences in 

between-study variances (𝐴𝐴 𝐴𝐴2
1
= ⋯ = 𝜏𝜏2𝑝𝑝 = 𝜏𝜏2 ), then the weights in (9) are equal to those in (8). Addition-

ally, the 𝐴𝐴 𝐴𝐴2
𝑖𝑖
 are not usually known in practice and so are usually replaced with their estimates, 𝐴𝐴 𝜏̂𝜏2

𝑖𝑖
 .

The ith group mean is assumed normally distributed with mean μi and variance 𝐴𝐴 𝐴𝐴2
𝑖𝑖
=
(∑𝑘𝑘𝑖𝑖

𝑗𝑗=1
𝑤𝑤𝑖𝑖𝑖𝑖

)−1
 . 

These variances can in turn be used to obtain the weighted grand mean of  effect sizes across groups

𝑦𝑦 =

∑𝑝𝑝

𝑖𝑖=1
𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖

∑𝑝𝑝

𝑖𝑖=1
𝑤𝑤𝑖𝑖

,� (11)

𝑤𝑤𝑖𝑖 = 1∕𝜎𝜎2
𝑖𝑖
.� (12)

With 𝐴𝐴 𝑦𝑦𝑖𝑖 and 𝐴𝐴 𝑦𝑦 in hand, it is possible to test the hypothesis H0: μ1 − μ2 = 0 by taking the test statistic

𝑄𝑄 =

(
𝑦𝑦1 − 𝑦𝑦2

)2

𝑤𝑤−1
1

+ 𝑤𝑤−1
2

,� (13)

or, in the case of  testing p > 2 group means,

𝑄𝑄 =
𝑝𝑝∑

𝑖𝑖=1

𝑤𝑤𝑖𝑖
(
𝑦𝑦𝑖𝑖 − 𝑦𝑦

)2
,� (14)

and referring it to a χ 2 distribution with (p − 1) degrees of  freedom. If  the significance level of  the test is 
α and cα denotes the (1 − α) quantile of  the central χ 2 distribution, then H0 can be rejected if  Q > ca.

2.3.2  |  Knapp and Hartung method

The KH method builds on the omnibus Q-test by applying an adjustment that accounts for the uncer-
tainty in estimating the between-study variance. This adjustment has been found to ameliorate the Type 
I error rate of  the Q-test in MEMs (Rubio-Aparicio et al., 2020) and results in the F-statistic given by

𝐹𝐹 =
𝑄𝑄∕(𝑝𝑝 − 1)

𝑄𝑄w∕(𝑘𝑘 − 𝑝𝑝)
,� (15)
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HETEROGENEOUS HETEROGENEITY BY DEFAULT 7

where Qw is defined as

𝑄𝑄w =
𝑝𝑝∑

𝑖𝑖=1

𝑘𝑘𝑖𝑖∑

𝑗𝑗=1

𝑤𝑤𝑖𝑖𝑖𝑖
(
𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖

)2
.� (16)

The F-statistic can be used to test the hypothesis 𝐴𝐴 𝐴𝐴0 ∶ 𝜇𝜇1 =⋯ = 𝜇𝜇p by referring it to an F-distribution 
with (p − 1) and (k − p) degrees of  freedom. If  the significance level of  the test is α and cα denotes the 
(1 − α) quantile of  the central F-distribution, then H0 can be rejected if  F > cα.

There are two important details to observe here. First, the expressions used for the Q- and F-tests 
are in effect the same as those used in a t-test and ANOVA, but they use weighted forms of  the group 
and grand means; thus, assuming unequal 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 is equivalent to assuming unequal variances in a t-test or 

ANOVA. Second, and relatedly, the weights 𝐴𝐴 𝐴𝐴∗
𝑖𝑖𝑖𝑖

 and 𝐴𝐴 𝐴𝐴∗∗
𝑖𝑖𝑖𝑖

 are fundamentally tied to the between-study 

variances. It follows that if  groups in a moderator truly have different 𝐴𝐴 𝐴𝐴2
𝑖𝑖
 , then the weights using a pooled 

value will be incorrect, as will the test statistic. This holds implications for both the Type I error and power 
of  moderator tests, both of  which are investigated in the section Simulation Studies.

2.3.3  |  Motivating example

To highlight the impact of  the between-study variance on the resulting test statistic, we calculated the Q- 
and F-values for a hypothetical set of  k = 40 studies where each study belonged to one of  p = 2 groups. 
Following Williams et al. (2021), we assumed all 𝐴𝐴 𝐴𝐴2

𝑖𝑖𝑖𝑖
 and 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 were known, with the 𝐴𝐴 𝐴𝐴2

𝑖𝑖𝑖𝑖
 fixed at .04 (roughly 

the variance of  a standardized mean difference (SMD) with n = 50). The heterogeneity parameter for 
the first group 𝐴𝐴 𝐴𝐴2

1
 was held constant at .05 but varied for the second group from .05 to .25 in steps of  

.01. We further varied the proportion of  total studies belonging to each group such that the proportion 
of  the 40 studies in the first group ranged from .5 to .9 in .1 increments. Lastly, we calculated the Q- 
and F-statistics,3 using weights that used either the heterogeneous 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 -values or a pooled τ 2-value. The 

denominator for the F-statistic was set to Qw = .67(k − p), which corresponds to a “moderate” degree 
of  within-group heterogeneity (Hedges & Pigott, 2005). Pooled values of  τ 2 were obtained by taking the 
arithmetic mean of  the 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 across all studies. The main idea here is that if  the between-study variances 

influence the value of  the test statistics, then the values for the Q- and F-statistics should differ depending 
on whether equal or unequal 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 are assumed.

Figure 1 includes the results for this example. The y-axes denote the ratio of  the test statistic using the 
pooled value of  τ 2 (QEqual and FEqual) to the test statistic using the heterogeneous values for 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 (QUnequal and 

FUnequal). Thus, a ratio of  1 indicates that the test statistics are equal, and positive values indicate that the 
statistic using equal 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 is greater than the one using unequal 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 . The x-axes display the between-study vari-

ance for the second group, 𝐴𝐴 𝐴𝐴2
2
 , and colours differentiate the number of  studies in the second group. In line 

with the classical literature on the t-test and ANOVA, the resulting test statistics are invariant to heterogene-
ous between-study variances under balanced sample sizes. They are also invariant under imbalanced sample 
sizes when the between-study variances are equal and known, as in this example. The test statistics differed, 
however, when both the between-study variances and sample sizes were heterogeneous across the two 
groups. In our setup, greater disparities in either factor led to the statistics that used equal between-study 
variances being larger than those that used heterogeneous between-study variances. In the worst case with 
k2 = 4 and 𝐴𝐴 𝐴𝐴2

2
= .25 , the QEqual and FEqual statistics were 1.42 times larger than their unequal counterparts.

Despite the simplicity of  this example, it is clear that when heterogeneous variances and sample sizes 
go unaccounted for when testing moderators, the resulting test statistic can lead to overconfidence in the 
strength of  the effect. Parallel to how Welch's proposed versions of  the t-test and ANOVA deal with such 
scenarios, we too propose that unequal (between-study) variances should be assumed by default when 

3 To provide analytical results in this example we used the equations given in the section Statistical Power.
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RODRIGUEZ et al.8

testing categorical moderators. The motivation behind this is that assuming unequal between-study vari-
ances will result in the appropriate test statistics regardless of  whether or not they are indeed equal, but 
assuming them to be equal will be appropriate only if  the population between-study variances are truly 
equal. In the next section, we study the behaviour of  the MELSM when testing moderators under various 
realistic scenarios to ensure its suitability as a default method.

3  |  SIMULATION STUDIES

Because we are proposing that unequal between-study variances should be assumed by default when 
testing categorical moderators, it is of  interest to examine how the MELSM performs relative to the 
standard MEM in situations where the variances are equal and when they are not. Accordingly, we 
conducted two Monte Carlo simulation studies comparing the performance of  the two models in terms 
of  Type I error and statistical power. Specifically, we compared these two quantities with respect to the 
Q-statistic defined in (13) and the F-statistic defined in (15). Unlike the preceding example, the use of  
Monte Carlo simulations allows us to examine the empirical performance of  the Q- and F-tests in a more 
realistic setting because in practice the between- and within-study variances are not fixed and known in 
advance. We chose SMDs as the effect size measure and a two-level categorical variable as a moderator.

3.1  |  Method

Following standard procedure in psychology, we assumed that each simulated study compared an exper-
imental group to a control group on an arbitrary quantitative outcome (e.g., López-López et al., 2014; 

F I G U R E  1   Motivating example of  how the Q- and F-statistics vary according to whether equal or unequal between-study 
variances are assumed (see main text for details). As the imbalances grow between groups in between-study variances and sample 
sizes, so too does the ratio of  the test statistics.
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HETEROGENEOUS HETEROGENEITY BY DEFAULT 9

Sánchez-Meca & Marín-Martínez, 2008; Viechtbauer et al., 2015). Under a MEM, the population SMD 
for each study was defined as

𝜃𝜃𝑖𝑖𝑖𝑖 =
𝐸𝐸𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑖𝑖𝑖𝑖

𝑆𝑆𝑖𝑖𝑖𝑖
,� (17)

where Eij and Cij were the population means for the experimental and control groups, respectively, and 
Sij = 1 was the pooled within-study standard deviation. The population distribution for the θij was taken 
to be 𝐴𝐴 𝒩𝒩

(
𝜇𝜇𝑖𝑖, 𝜏𝜏

2
𝑖𝑖

)
 , where the subscript denotes the ith group. The specific values for μi and 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 were system-

atically varied in each simulation study and are given in what follows. For the experimental and control 
groups, we defined the population distributions as 𝐴𝐴 𝒩𝒩

(
𝜃𝜃𝑖𝑖𝑖𝑖, 1

)
 and 𝐴𝐴 𝒩𝒩(0, 1) , respectively. Using these defi-

nitions, a study was simulated by first drawing a θij and then drawing 𝐴𝐴 𝐴𝐴𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑛𝑛𝐶𝐶𝑖𝑖𝑖𝑖 variates from the latter 
two distributions and estimating the SMD in the usual way (Hedges & Olkin, 1985).

To be clear, the sample sizes 𝐴𝐴 𝐴𝐴𝐸𝐸𝑖𝑖𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝐶𝐶𝑖𝑖𝑖𝑖 respectively refer to the sample size of  the experimental and 
control groups within studies and are not to be confused with the number of  studies in each subgroup of  
a categorical moderator variable, ki. The within-study sample sizes were set to 𝐴𝐴 𝐴𝐴𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑛𝑛𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑔𝑔 , where g 
is a gamma variate divided by two and rounded to the nearest integer. Gamma variates were drawn from 
a gamma distribution with shape equal to .65 and scale equal to 165, truncated to values greater than or 
equal to thirty. Similar procedures were used to generate within-study sample sizes consistent with those 
commonly observed in social-behavioural studies (Brannick et al., 2019; Dahlke & Wiernik, 2020).

Using the described procedure, we generated a collection of  k = k1 + k2 studies for each simulation 
trial and conducted moderator tests using both the MEM and the MELSM. All models were fit using 
REML estimation. Both the study sample size (k1 = 20) and between-study variance (𝐴𝐴 𝐴𝐴2

1
= .2 ) were held 

constant for the first group but varied for the second group. The value of  𝐴𝐴 𝐴𝐴2
2
 varied from .05 to .4 in steps 

of  .05, and values of  5, 10, 20, 30, and 40 were examined for k2. These values were chosen because they 
represent empirical values of  τ 2 observed in psychological meta-analyses (van Erp et al., 2017). Addition-
ally, the classical literature examining tests with unequal group variances focuses not on the raw values of  
variances and sample sizes, but on their ratios (Bartlett, 1936; Murphy, 1967; Scheffé, 1959; Welch, 1938), 
and in line with this convention, the study sample sizes and variances we considered approximately corre-
sponded to the following ratios: (a) 𝐴𝐴 𝐴𝐴1∕𝑘𝑘2 =

(
1

4
,
1

2
, 1, 1.5, 2

)
 and (b) 𝐴𝐴 𝐴𝐴2

1
∕𝜏𝜏2

2
=
(
1

4
, … , 2

)
 . Using ratios 

rather than raw values further lends intuitive credibility regarding how the group variances and number 
of  studies affect Type I error and power in situations outside of  those considered here.

Our expectations for these simulation studies were as follows. As with traditional tests of  mean 
differences, we expected that for each moderator test, the Type I error rate and power rate would be 
approximately equivalent between the MEM and the MELSM when the sample sizes were balanced and/
or the between-study variances were equal. When the group sizes were imbalanced, we expected two 
general trends to emerge as a result of  assuming equal between-study variances: when the group with a 
larger sample size simultaneously had a smaller between-study variance, then assuming equal variances 
would lead to a higher Type I error rate, and conversely, when the larger group had a larger between-study 
variance, then assuming equal variances would result in a conservative Type I error rate. These scenarios 
were also expected to yield invalid power rates because the rejection rate would be too high or too low. 
We expected, however, that assuming unequal between-study variances in these scenarios would result 
in a nominal error rate and valid statistical power (i.e., no increased/decreased power at the cost of  an 
inflated/conservative rejection rate). In sum, we anticipated potentially serious costs in terms of  Type I 
error and power when using the MEM, but not the MELSM.

For each simulation study, the total number of  conditions was 2 (Q- or F-test) × 2 (MEM or 
MELSM) × 5 (k2) × 8 (𝐴𝐴 𝐴𝐴2

2
 ) = 160, each of  which was simulated 10,000 times. All simulations were conducted 

in the R environment (R Core Team, 2021) using the metafor package to fit the meta-regression models 
(Viechtbauer, 2010). All code used in this article is openly available on the Open Science Framework at 
https://osf.io/gs6uw/.
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RODRIGUEZ et al.10

3.2  |  Type I error

To examine how well the MELSM controls Type I error of  the Q- and F-tests relative to the MEM, we 
set β0 = β1 = 0, or, in terms of  group means, we set μ1 − μ2 = 0. For both moderator tests, the α level was 
set to .05. Further, we considered “stringent” and “liberal” criteria for assessing adequate control of  Type 
I error that respectively corresponded to the intervals [.046, .054] and [.043, .057]. These intervals were 
determined by computing the critical values of  a two-tailed test that a population proportion was equal 
to .05 under significance levels of  .05 and .001 and with a sample size of  10,000. In other words, for each 
condition, values outside of  the intervals would result in a rejection of  the null hypothesis that the Type 
I error rate was equal to .05 at the given significance level.

The results are presented in Figure 2. Type I error rates for both the Q- and F-tests are plotted as 
a function of  the between-study heterogeneity for the second group (𝐴𝐴 𝐴𝐴2

2
 ), whether the variances were 

treated as equal (MEM) or unequal (MELSM), and the number of  studies in the second group (k2). 
The dashed white line denotes the nominal error rate α = .05, the light grey area region represents the 
region between [.043, .057], and the dark grey shaded area represents the region in the range [.046, 
.054]. The colour of  the solid lines distinguishes between the number of  studies included in the second 
group.

The rejection rates were in line with our expectations and largely mirror those in the classical t-test and 
ANOVA literature. When the between-study variances were equal (𝐴𝐴 𝐴𝐴2

1
= 𝜏𝜏2

2
= .2 ), the Type I error was 

roughly the same between the MEM and MELSM, regardless of  study sample size. This was also the case 
across all values for 𝐴𝐴 𝐴𝐴2

2
 when the study sample sizes were equal (k1 = k2 = 20). The only time the MEM 

clearly controlled the Type I error rate better than the MELSM was when k2 = 5 and the between-study 

F I G U R E  2   Type I error rates for Q-test (panel a) and F-test (panel b) under MEM (equal τ 2 assumed) and MELSM 
(unequal 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 assumed). The white dashed line denotes .05, the light grey area spans [.043, .057], and the dark grey area spans [.046, 

.054]. For both moderator tests, the MEM only resulted in a well-controlled error rate when either the 𝐴𝐴 𝐴𝐴2
𝑖𝑖
 were truly equal or 

when the sample sizes were balanced. when there were unequal 𝐴𝐴 𝐴𝐴2
𝑖𝑖
 and unbalanced sample sizes, but the MEM was used, the error 

rate was inflated or excessively conservative. Using the MELSM, however, mostly resulted in a well-controlled type I error rate 
regardless of  whether the variances and sample sizes were equal (except when k2 = 5). Although both moderator tests had better 
overall type I error under the MELSM, only the F-test had error rates consistently inside of  the [.046, .054] bounds.

(a)

(b)
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HETEROGENEOUS HETEROGENEITY BY DEFAULT 11

variances were equal. In other words, in all but one case, the MELSM was on par with the MEM in 
adequately controlling the Type I error even when the assumption of  equal between-study variances was 
true in the population. The similar rejection rates between the MEM and the MELSM under balanced 
sample sizes and equal 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 lends strong support to our view that almost nothing is lost by assuming unequal 

between-study variances by default. On the other hand, there may be serious ramifications of  assuming 
equal between-study variances when they are unequal and are coupled with imbalanced sample sizes.

For both the Q- and F-test, when the between-study variances and sample sizes simultaneously 
differed between groups but equal 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 were assumed, the Type I error rate deviated from the nominal 

rate. In particular, when the larger group (e.g., k1 > k2) also had a smaller between-study variance (e.g., 
𝐴𝐴 𝐴𝐴2

1
< 𝜏𝜏2

2
 ), the error rate increased above the nominal level. In contrast, when the larger group had a larger 

between-study variance (e.g., 𝐴𝐴 𝐴𝐴2
1
> 𝜏𝜏2

2
 ), the error rate decreased below .05. In the most extreme cases, the 

MEM had a Type I error rate of  .02 (𝐴𝐴 𝐴𝐴2 = 5, 𝜏𝜏2
2
= .05 ) and .12 (𝐴𝐴 𝐴𝐴2 = 5, 𝜏𝜏2

2
= .4 ), well outside the bounds 

of  the wider [.043, .057] interval.
When unequal between-study variances with the MELSM were assumed, the Type I error rate was 

mostly well maintained across all conditions and regardless of  moderator test, relative to the MEM, which 
assumed equal between-study variances. Compared against the liberal and stringent intervals, however, 
the Q-test was expectedly worse than the F-test in controlling the Type I error. For the Q-test, the error 
rates in the majority of  the conditions fell outside of  the wider [.043, .057] bounds. Even so, the error 
rates were still predominantly closer to nominal than those of  the Q-test using the MEM. Meanwhile, the 
F-test achieved a much better Type I error rate, with most conditions achieving an error rate within the 
wide interval of  [.043, .057] and many falling between the stricter interval of  [.046, .054]. As mentioned 
earlier, the only cases where the moderator tests assuming unequal 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 clearly performed worse than their 

equal between-study variance counterparts occurred when k2 = 5, though it is worth pointing out that 
all methods did relatively poorly in such conditions. In all other conditions, the Type I error rates under 
the MELSM were as good as or better than those obtained using the MEM, with the F-test achieving the 
nominal error rate. These findings fortify the idea that the resulting inferences of  moderator tests can be 
seriously compromised when equal between-study variances are assumed, but inferential integrity can be 
preserved (at least in part) by assuming unequal 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 .

3.3  |  Statistical power

To assess the empirical statistical power rates of  the MEM and the MELSM with respect to the two 
moderator tests, we followed nearly the exact same procedure as in the previous simulation study, but we 
set β1 = .5, or μ2 − μ1 = .5.4 Such a moderator effect can be regarded as a representing a “medium” effect 
size for a SMD (Cohen, 1992).

Figure  3 displays the results for 𝐴𝐴 𝐴𝐴22 = (.05, .2, .4) , corresponding to ratios of  𝐴𝐴 𝐴𝐴2
1
∕𝜏𝜏2

2
=
(
1

4
, 1, 2

)
 . 

Power rates are plotted as a function of  studies in the second group (k2), heterogeneity in the second 
group (𝐴𝐴 𝐴𝐴2

2
 ), whether the variances were treated as equal, and the moderator test. The dashed horizontal 

grey line denotes a power rate of  .8. Additionally, we excluded conditions where the Type I error rate for 
the MEM was greater than the error rate for the MELSM because they could misleadingly be interpreted 
as achieving higher power. That is, we omitted conditions where the MEM produced higher power rates 
than the MELSM but only achieved higher power because they also had a higher Type I error rate. The 
complete set of  results are included in the Appendix (Table A2). Similar to the Type I error, the power 
rates between the MEM and the MELSM were nearly identical with balanced sample sizes and equal 
between-study variances, regardless of  the moderator test. The lack of  differences between the MEM and 

4 We additionally conducted simulations for β1 = .2 and β1 = .8, but the results were qualitatively the same as those presented in what follows. Thus, 
they are omitted here but can be found in the Appendix (Tables A3 and A4).
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RODRIGUEZ et al.12

the MELSM in this scenario again supports our claim that there are essentially no drawbacks to assuming 
unequal 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 by default.

With respect to situations where the sample sizes were unbalanced and the between-study variances 
were simultaneously unequal, power rates diverged between the MEM and the MELSM. Most notably, in 
conditions where the MELSM produced as good or better Type I error rates than the MEM, the MELSM 
also resulted in as good or better power rates, regardless of  moderator test. For example, for the F-test, 
when k2 < 20 and 𝐴𝐴 𝐴𝐴2

2
= .4 , the MEM produced an inflated Type I error rate and thus did not produce valid 

power rates. In contrast, when k2 ≥ 20, the MEM had valid power rates, but they were either equal to or 
lower than the power rates for the MELSM. Similar conclusions can be drawn when considering different 
values for k2 and 𝐴𝐴 𝐴𝐴2

2
 . Together, these findings add support to our argument that little is lost by assuming 

heterogeneous between-study variances when testing moderator effects with regard to statistical power, 
but there may be a lot to gain.

3.4  |  Analytical solution to power

Beyond simulation, the power rates of  these tests can be assessed analytically, albeit at the cost of  making 
a few more assumptions. Because simulation-based power analyses can be computationally demanding 
and time consuming, an analytic solution can be particularly useful if  researchers wish to conduct a 
power  analysis prior to carrying out a moderator test. To calculate statistical power for the omnibus 
Q-test, values must be assumed for k and p and for each μi, 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 , 𝐴𝐴 𝐴𝐴2

𝑖𝑖𝑖𝑖
 , and ki. Once these values have been 

chosen, power can be calculated as (Hedges & Pigott, 2005)

1 − 𝜒𝜒2(𝑐𝑐𝛼𝛼|𝑝𝑝 − 1; 𝜆𝜆),� (18)

F I G U R E  3   Empirical power rates for the Q-test (Panel a) and F-test (Panel b) for β1 = 0.5 and 𝐴𝐴 𝐴𝐴2
1
= 0.2 . Power rates for 

conditions that exceeded acceptable Type I error bounds are excluded. Solid lines denote the MEM with equal 𝐴𝐴 𝐴𝐴2
𝑖𝑖
 and dashed 

lines denote the MELSM with unequal 𝐴𝐴 𝐴𝐴2
𝑖𝑖
 . The power rates for both models were similar under balanced sample sizes and equal 

between-study variances, but there were differences otherwise. Particularly, the moderators tests under the MEM produced higher 
or lower power relative to the MELSM, but in conditions where the tests also had Type I error rates that were above or below the 
nominal 0.05. In contrast, the moderator tests under the MELSM produced valid power rates across more conditions insofar as 
they did not incur any costs in terms of  Type I error.

(a)

(b)
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HETEROGENEOUS HETEROGENEITY BY DEFAULT 13

where χ 2(|) denotes the cumulative distribution function (CDF) of  a χ 2 distribution with (p − 1) degrees 
of  freedom and noncentrality parameter λ. Recall that in our formulation, p refers to the number of  
groups in the categorical moderator. The term cα is the critical value for the central χ 2 distribution used for 
the Q-test in (13). The noncentrality parameter λ is given by

𝜆𝜆 =
𝑝𝑝∑

𝑖𝑖=1

𝑤𝑤𝑖𝑖(𝜇𝜇𝑖𝑖 − 𝜇𝜇)
2� (19)

𝜇𝜇 =

∑𝑝𝑝

𝑖𝑖=1
𝑤𝑤𝑖𝑖𝜇𝜇𝑖𝑖

∑𝑝𝑝

𝑖𝑖=1
𝑤𝑤𝑖𝑖

.� (20)

The expression to calculate power for the KH method is similar to that of  the Q-test and can be 
computed as (Hartung et al., 2001)

1 − 𝐹𝐹(𝑐𝑐𝛼𝛼 ∣ 𝑝𝑝 − 1, 𝑘𝑘 − 𝑝𝑝; 𝜆𝜆),� (21)

where F(|) denotes the CDF of  an F-distribution with (p − 1) and (k − p) degrees of  freedom and 
noncentrality parameter λ. The term cα is the critical value for the central F distribution used for the 
F-test in (15). The noncentrality parameter for the F-test is also similar to that of  the Q-test and is 
defined as

𝜆𝜆 =

∑𝑝𝑝

𝑖𝑖=1
𝑤𝑤𝑖𝑖(𝜇𝜇𝑖𝑖 − 𝜇𝜇)

2

∑𝑝𝑝

𝑖𝑖=1

∑𝑘𝑘𝑖𝑖
𝑗𝑗=1

𝑤𝑤𝑖𝑖𝑖𝑖
(
𝜃𝜃𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖

)2 ,� (22)

where θij is the population effect size for the ith study in the jth group. Here, along with the values that 
must be assumed for the Q-test, values must also be inserted for θij. Because choosing values for the θij 
can be particularly difficult, it has been suggested that values of  .33(k − p), .67(k − p), and (k − p) can be 
used for the denominator in (22), which correspond respectively to small, moderate, and large degrees of  
within-group heterogeneity (Hedges & Pigott, 2001).

To aid researchers in sample size planning, we provide the analytical solutions to power for a modera-
tor effect of  .5 under the same conditions as the power simulation but varied k2 in steps of  1 from 5 to 40. 
For both tests, we set the within-study variances 𝐴𝐴 𝐴𝐴2

𝑖𝑖𝑖𝑖
 to .2, which is approximately the sampling variance 

of  a SMD with n = 50. For the F-test, we computed power for various degrees of  within-group hetero-
geneity. In particular, F1, F2, and F3 coincide with the F-test under a small, moderate, and large degree of  
within-group heterogeneity, respectively.

The power rates for the MELSM are plotted in Figure 4. Here, power is plotted as a function of  studies 
in the second group (k2), the between-study heterogeneity in the second group (𝐴𝐴 𝐴𝐴2

2
 ), and moderator test. 

The pattern of  power rates between the MEM and the MELSM was similar to the one discussed earlier, and 
so power rates for the former are omitted. Regarding the between-study variance, 𝐴𝐴 𝐴𝐴2

2
 , power is higher across 

all conditions with smaller values. A similar statement can be made for the degree of  within-group heter-
ogeneity with respect to the F-test. Perhaps intuitively, the F-tests with small and moderate within-group 
heterogeneity (i.e., F1 and F2) were more powerful than the Q- and F3-tests across all conditions.

3.4.1  |  Mean squared error and standard error

We conducted two supplementary comparisons between the MEM and the MELSM. In the foregoing 
empirical power simulation, we further collected (1) the mean squared error (MSE) for the moderator 
effect (β1) in each condition and (2) the average standard error of  the moderator effect in each condition. 
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RODRIGUEZ et al.14

This was done to investigate discrepancies in the quality of  the estimates for the effect itself  and the 
respective standard error between the MEM and the MELSM.

The results can be viewed in Figure 5. Panel a presents the MSE in each condition, and Panel b displays 
the corresponding (average) standard errors. The grey lines denote 𝐴𝐴 𝐴𝐴2

2
 values spanning from .05 to .4 in 

increments of  .05 (dark to light). Solid and dashed lines differentiate between the MEM and the MELSM, 
respectively. Although the standard errors differ depending on whether the Q-test or F-test5 is used for 
the moderator effect, their results were so similar that they are only shown for the former. The MSE was 
practically identical regardless of  which model was used to estimate the moderator effect. Point estimates 
of  the moderator effect were evidently unaffected by whether equal or unequal 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 were assumed, whereas 

this choice affected the average standard error. When the number of  studies, and thus the between-study 
variances, was unequal, the standard errors were either too large or too small, depending on the condition. 
Although the between-study variances indeed play a role in estimating the moderator effect, it seems that 
it is their effect on the standard errors that is responsible for the discrepancies between the MEM and the 
MELSM observed in the aforementioned simulation studies.

3.5  |  Extension to three groups

Naturally, one may wonder whether the previously described simulation study results generalize to cases 
where there are more than two levels (groups) in a categorical moderator. To probe this idea, we included 
a third level in the categorical moderator and repeated the simulation studies examining the Type I error 
rate and statistical power. The results were qualitatively the same as those with two groups. In cases where 
the population had equal 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 and had equal study sample sizes, the Type I error rate was relatively well 

controlled regardless of  whether a MEM or MELSM was used. Again, the exceptions to this were cases 
where the groups had few studies. When there were imbalances in either 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 or study sample sizes, then 

using a standard MEM led to inflated or conservative Type I error rates. Further, the power rates for 

5 Technically, the standard errors are for the corresponding z-test (Hedges & Pigott, 2005) and KH method (Knapp & Hartung, 2003), but this does 
not affect our arguments here given their equivalence with two groups (Section Tests for Categorical Moderators).

F I G U R E  4   Analytical power for a moderator effect of  .5 for the Q-test and F-test under fixed assumptions (see main text 
for details) for the MELSM. The lines corresponding to F1, F2, and F3 denote the F-test with small, moderate, and large amounts 
of  within-group heterogeneity, respectively. The Q-test and F3-test most closely matched the observed power rates.
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HETEROGENEOUS HETEROGENEITY BY DEFAULT 15

the MELSM were as good as or better than the MEM in all conditions where the latter had a valid (i.e., 
noninflated) Type I error rate. The complete results for these simulations can be found in the appendix. 
Note that, although not directly studied here, our simulation results for three groups qualitatively extend 
to testing multiple categorical moderators simultaneously (i.e., >3 groups). This is because tests of  moder-
ator effects directly depend, not on the number of  moderator variables, but rather the number of  studies 
k and number of  groups p (Equations 13–16). The number of  groups p will of  course increase with a 
higher number of  moderators, thereby reducing power if  p becomes large relative to k.

4  |  ILLUSTRATIVE EXAMPLE

In this section we use an empirical data set to demonstrate the MELSM and contrast it against the stand-
ard MEM in an applied setting. The data set was first used to synthesize the findings of  k = 46 studies 
investigating the relationship between depression and specificity of  future thinking (Gamble et al., 2019) 
and is available in the psymetadata R package (Rodriguez & Williams, 2022), that is, whether higher 
levels of  depression are correlated with vagueness in future thoughts. The original data set contained 
89 effect sizes (Pearson's or biserial correlations), but because some of  these effect sizes were collected 
from the same study, they did not conform with the standard assumption of  independent effect sizes in 
meta-regression. This issue was resolved by averaging all effect sizes within a study,6 a procedure that is 
routinely applied in meta-analyses to alleviate the nonindependence of  effect sizes (Tipton et al., 2019).

6 Although a three-level MELSM would accommodate dependent effect sizes, such models are not yet available in standard meta-analytic software.

F I G U R E  5   Panel a presents the MSE for the moderator effect (β1) under the MEM and the MELSM, and panel b shows 
the corresponding average standard error. The grey lines denote 𝐴𝐴 𝐴𝐴2

2
 values spanning from .05 to .4 in increments of  .05 (dark to 

light). As can be clearly seen by the overlap of  lines, there is no difference in estimation accuracy by assuming equal or unequal 
between-study variances. There are discrepancies in standard errors, however. Under imbalanced group sizes and unequal 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 , the 

estimated standard errors obtained with the MEM were either too large or too small, depending on the condition. Consequently, 
the standard errors were responsible for too high and too low type I error rates and power rates.

(a)

(b)
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RODRIGUEZ et al.16

One of  the variables coded as a (trichotomous) moderator was the type of  cue each study used to 
elicit participants' thoughts about a future event: a single word (e.g., “laughing”), event cues (e.g., “New 
Year's Eve”), or open (e.g., “I can imagine that, shortly, I…”). We thus fitted a MEM with cue type as a 
moderator for the location in addition to a MELSM with cue type as a moderator for both location and 
scale. The top of  Figure 6 shows a forest plot (Lewis & Clarke, 2001) of  the individual effect sizes, and 
the bottom displays the resulting moderator effect estimates from the MELSM.

Table 1 further shows, for the standard MEM and the MELSM, the estimates of  the regression coef-
ficients, their standard errors, and the resulting p-values. The KH method (equivalent to the F-test) was 
used to test the location coefficients in both models because it better maintains the nominal Type I error 
rate and valid power rates relative to the z-test (equivalent to the Q-test). Because the type of  cue had 
three categories, it was coded as two dummy variables. Accordingly, the intercept β0 captures the effect 
for the event cue type, β1 captures the difference between the event cue type and the open cue type, and 
β2 captures the difference between the event cue type and the single word cue type. As in the simulation 

F I G U R E  6   Forest plot of  effect sizes in Gamble et al. (2019) and results from MELSM with cue type as a moderator in 
location and scale.
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HETEROGENEOUS HETEROGENEITY BY DEFAULT 17

studies, the location estimates were similar between the two models, but the MELSM had smaller stand-
ard errors for all three coefficients. Consequently, all p-values for the moderator effects were smaller 
under the MELSM, and, of  particular note, β2 was not statistically significant for the MEM at the α = .05 
level, whereas it was for the MELSM. The discrepancy in p-values between the two models reinforces 
the simulation study findings that inferences drawn about the location coefficients may differ depending 
on whether a MEM or a MELSM is fit to the data. The differences in standard errors were due to the 
differences in the heterogeneity estimates between the models. The (pooled) estimate for heterogeneity 
under the MEM was 𝐴𝐴 𝜏̂𝜏2 = .06 but varied across groups for the MELSM. For the event, open, and single 
cue types, the heterogeneity estimates were 𝐴𝐴 𝜏̂𝜏2𝐸𝐸 = .006 , 𝐴𝐴 𝜏̂𝜏2

𝑂𝑂
= .09 , and 𝐴𝐴 𝜏̂𝜏2

𝑆𝑆
= .067 , respectively. That is, 

under  the MELSM, the groups were estimated to have .1, 1.5, and 1.1 as much heterogeneity as they 
would have been estimated to have under the MEM.

In applied settings, a commonly estimated metric in mixed-effects meta-regressions is pseudo-R 2—a 
measure of  how much heterogeneity is explained by the moderators (López-López et  al.,  2014; 
Raudenbush, 1994). Under the standard MEM, this metric is calculated as

𝑅𝑅2 = 1 −
𝜏̂𝜏2
full

𝜏̂𝜏2
null

,� (23)

where 𝐴𝐴 𝜏̂𝜏2
null

 corresponds to the heterogeneity parameter obtained via a null model (i.e., one without predic-
tors) and 𝐴𝐴 𝜏̂𝜏2

full
 corresponds to the heterogeneity parameter obtained via the model containing moderators. 

Because the MELSM instead yields 𝐴𝐴 𝐴𝐴2
𝑖𝑖
 , a separate R 2 can be calculated for each group

𝑅𝑅2
𝑖𝑖
= 1 −

𝜏̂𝜏2
𝑖𝑖,full

𝜏̂𝜏2
𝑖𝑖,null

,� (24)

where 𝐴𝐴 𝜏̂𝜏2
𝑖𝑖,null

 is the heterogeneity parameter estimate for the ith group under a null location submodel. 

That is, the 𝐴𝐴 𝜏̂𝜏2
𝑖𝑖,null

 estimates are obtained by fitting a MELSM with the categorical moderator in the scale 

component, but not the location. Further, 𝐴𝐴 𝜏̂𝜏2
𝑖𝑖,full

 is obtained by fitting the MELSM with the moderator in 

both the location and scale components of  the model. Having separate 𝐴𝐴 𝐴𝐴2
𝑖𝑖
 's enables researchers to assess 

the differential explanatory power of  a moderator.
In this example, pseudo-R 2 was estimated to be 0 under the MEM, indicating that cue type had no 

explanatory power for the heterogeneity in effect sizes. Under the MELSM, the pseudo-𝐴𝐴 𝐴𝐴2
𝑖𝑖
 metrics were 

found to be 𝐴𝐴 𝐴𝐴2
E
= .29 , 𝐴𝐴 𝐴𝐴2

O
= 0 , and 𝐴𝐴 𝐴𝐴2

S
= .22 for the event, open, and single cue types, respectively. In 

other words, the results under the MELSM indicate that the event and single cue types explain more than 
20% of  the heterogeneity in their respective groups. Thus, one might conclude that the heterogeneity in 
the correlation between depression and the specificity of  future thought may be well explained by event 
and single cue types, but not in the open cue type. We refer interested readers to Williams et al. (2021) for 
more information on computing and interpreting pseudo-𝐴𝐴 𝐴𝐴2

𝑖𝑖
 in MELSMs.

T A B L E  1   Regression estimates for example data

MEM MELSM

Est. SE p Est. SE p

β0 −.05 .07 .52 −.04 .04 .32

β1 −.05 .09 .57 −.06 .08 .43

β2 −.19 .11 .09 −.20 .09 .03

Note: Estimates of  location coefficients under the standard MEM and the MELSM.
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RODRIGUEZ et al.18

Lastly, because the MEM was nested within the MELSM, we compared the two models using a like-
lihood ratio test. Recall that the MEM can be recast as a MELSM with only an intercept included in the 
scale component. Because the models did not differ in terms of  their location coefficients, they did not 
need to be refit using maximum likelihood instead of  REML. The likelihood ratio test indicated that the 
MELSM provided an improved fit over the MEM χ 2(2) = 7.8, p = .02.

5  |  DISCUSSION

In this work we set out to establish that in testing moderator effects with a mixed-effects meta-regression, 
researchers should assume unequal between-study variances by default. We illustrated how meta-analytic 
moderator tests were analogous to the t-test and ANOVA, so assuming unequal variances in moderator 
tests is no different than assuming unequal variances in a classical test of  mean differences—the latter of  
which is already common practice in many disciplines.

As evidenced by two simulation studies, there are few costs in terms of  Type I error (or statistical 
power) by assuming unequal between-study variances and potentially serious drawbacks to assuming them 
equal. When the population between-study variances differ between groups in a categorical moderator, 
statistical tests of  moderator effects using the standard MEM can result in either grossly inflated or overly 
conservative Type I error rates. In turn, these error rates result in power rates that are too low or mislead-
ingly high. Meanwhile, when moderator tests are carried out using the MELSM, the Type I error is well 
controlled regardless of  equal variances or balanced sample sizes (except when there are few studies) and 
maintains valid power rates. These results substantiate the notion that researchers should assume unequal 
between-study variances as a default strategy.

As demonstrated in the illustrative example, MELSMs can be used to differentially assess the explan-
atory power of  a categorical moderator. This is possible because the pseudo-𝐴𝐴 𝐴𝐴2

𝑖𝑖
 statistic is based on the 

group-specific heterogeneity estimates, 𝐴𝐴 𝐴𝐴2
𝑖𝑖
 . Consistent with this idea, other statistics that are traditionally 

based on τ 2 can be obtained at the group level by instead using 𝐴𝐴 𝐴𝐴2
𝑖𝑖
 . For instance, Williams et al. (2021) 

used a MELSM to compute country-specific I 2 (Higgins & Thompson, 2002) values in a meta-analysis.

5.1  |  Future directions and limitations

This work focused on categorical moderators owing to their popularity in meta-analysis. However, a bene-
fit of  meta-regression techniques is the ability to accommodate both categorical and continuous predic-
tors. Accordingly, it is possible to include a continuous variable as a moderator for the between-study 
variance in a MELSM. Indeed, it has been suggested that effect size heterogeneity may be inversely 
proportional to study sample size (Bowater & Escarela, 2013). Given that there is currently a dearth of  
studies on continuous moderators of  between-study heterogeneity, investigating the extent to which a 
MELSM can be considered by default with a continuous moderator constitutes an interesting avenue for 
future exploration.

We demonstrated that the MELSM generally does well in controlling the Type I error rate, but we 
did so based on the implicit assumption that the included moderator was fixed in advance (e.g., through 
preregistration of  hypotheses). That is, the observed error rates hold only when the moderator being 
tested is chosen a priori and not as a result of  a data-driven process (see e.g., Berk et al., 2013). When 
the final meta-analytic model is chosen as a result of  which moderators are (non-)significant, a potential 
consequence is an inflated Type I error rate. Although model selection techniques are relatively common 
in practice (Tipton et al., 2019), their use may contribute to recent concerns on the reproducibility of  
meta-analyses (Lakens et al., 2016).
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HETEROGENEOUS HETEROGENEITY BY DEFAULT 19

In recent years, meta-analytic recommendations have demonstrated a preference for methods that 
reflect complex dependencies among effect sizes (e.g., multiple effect sizes nested within a study). To 
deal with such complexities in the variance structure, researchers can employ multivariate meta-analysis 
(Kalaian & Raudenbush,  1996; Raudenbush et  al.,  1988), robust variance estimation techniques 
(Hedges et  al.,  2010; Tipton,  2015), or three-level random-effects models (Konstantopoulos,  2011; 
Van den Noortgate et al., 2013). The MELSM described in this work is a two-level model and allows 
only a single effect size per study. It is thus limited in reflecting the dependencies among effect sizes. 
However, we note that averaging effect sizes within studies or randomly selecting a single effect size per 
study remains the dominant form of  eliminating within-study dependencies (Tipton et al., 2019). In these 
cases, the MELSM can still be fruitfully applied. Future research should aim to understand whether the 
arguments made throughout this paper similarly apply to three-level MELSMs.

Finally, it has been recommended that at least five studies should be included per group when testing 
a categorical moderator in order to obtain trustworthy estimates of  𝐴𝐴 𝐴𝐴2

𝑖𝑖
 (Borenstein et al., 2009). Others 

have recommended that when the total number of  studies is less than 20, the 𝐴𝐴 𝜏̂𝜏2
𝑖𝑖
 should be pooled in 

order to more accurately estimate the between-study heterogeneity (Rubio-Aparicio et  al.,  2020). We 
agree with this suggestion when the focal interest lies in quantifying the between-study heterogeneity, 
but, as suggested by our simulation studies, when the focal interest is in testing the effect of  a moderator, 
assuming equal 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 when they are truly unequal and when there is an imbalance in study sample size may 

still lead to inadequate error rates.

5.2  |  Conclusion

Presently, MELSMs can be easily fit in the R statistical computing environment with the R packages 
metafor (Viechtbauer, 2021) and blsmeta (Williams et al., 2021). Our hope is that this work will serve as 
an impetus for the wide-scale adoption of  location-scale models in meta-analytic software and by applied 
researchers for testing categorical moderators.
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APPENDIX A

A.1  |  COMPLETE SIMULATION RESULTS (TWO GROUPS)

Power for β1 = .5 (Table A1)

T A B L E  A 1   Power for β1 = .5

𝑨𝑨 𝑨𝑨𝟐𝟐
𝟐𝟐
  k2

Q-test F-test

MEM MELSM MEM MELSM

.05 5 .614 .813 .544 .782

10 .867 .926 .839 .908

20 .970 .969 .964 .964

30 .989 .980 .986 .976

40 .993 .982 .992 .98

.10 5 .576 .701 .527 .664

10 .828 .864 .794 .842

20 .945 .944 .939 .939

30 .978 .971 .972 .962

40 .984 .976 .983 .973

.15 5 .547 .618 .501 .58

10 .780 .799 .754 .775

20 .920 .920 .913 .913

30 .957 .950 .956 .951

40 .974 .967 .973 .966

.20 5 .522 .540 .491 .514

10 .741 .739 .712 .713

20 .888 .887 .878 .877

30 .937 .937 .926 .924

40 .958 .956 .955 .953

.25 5 .513 .503 .465 .462

10 .705 .688 .683 .661

20 .856 .858 .839 .839

30 .913 .920 .895 .902

40 .938 .945 .933 .941
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Power for β1 = .2 (Table A2).

T A B L E  A 1   (Continued)

𝑨𝑨 𝑨𝑨𝟐𝟐
𝟐𝟐
  k2

Q-test F-test

MEM MELSM MEM MELSM

.30 5 .501 .463 .47 .422

10 .680 .642 .644 .6

20 .823 .824 .81 .811

30 .885 .896 .874 .887

40 .918 .933 .904 .922

.35 5 .495 .430 .454 .393

10 .656 .599 .619 .566

20 .793 .793 .771 .773

30 .859 .881 .847 .868

40 .890 .915 .875 .906

.40 5 .486 .404 .438 .361

10 .627 .555 .593 .526

20 .761 .762 .746 .747

30 .828 .856 .807 .839

40 .864 .902 .852 .895

Note. “MEM” indicates power rates observed under the standard MEM and “MELSM” indicates power rates observed under the MELSM with the 
moderator included in the scale submodel.

T A B L E  A 2   Power for β1 = .2

𝑨𝑨 𝑨𝑨𝟐𝟐
𝟐𝟐
  k2

Q-test F-test

MEM MELSM MEM MELSM

.05 5 .09 .25 .07 .22

10 .21 .30 .18 .28

20 .35 .35 .33 .33

30 .45 .38 .43 .37

40 .50 .39 .50 .39

.10 5 .11 .21 .09 .19

10 .20 .26 .17 .22

20 .31 .31 .29 .29

30 .38 .35 .37 .33

40 .43 .37 .41 .35

.15 5 .13 .19 .11 .17

10 .21 .23 .17 .20

20 .28 .28 .25 .25

30 .33 .32 .31 .30

40 .37 .35 .34 .32

(Continues)
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Power for β2 = .8 (Table A3).

T A B L E  A 2   (Continued)

𝑨𝑨 𝑨𝑨𝟐𝟐
𝟐𝟐
  k2

Q-test F-test

MEM MELSM MEM MELSM

.20 5 .15 .18 .12 .16

10 .20 .21 .18 .19

20 .25 .25 .24 .24

30 .30 .31 .28 .28

40 .32 .32 .31 .32

.25 5 .15 .17 .14 .15

10 .20 .19 .17 .16

20 .24 .24 .21 .21

30 .27 .28 .24 .26

40 .28 .31 .27 .29

.30 5 .16 .16 .14 .15

10 .20 .18 .17 .15

20 .22 .22 .20 .20

30 .23 .26 .23 .25

40 .26 .29 .24 .28

.35 5 .18 .17 .15 .14

10 .19 .16 .16 .14

20 .21 .21 .19 .19

30 .21 .24 .20 .23

40 .23 .28 .21 .26

.40 5 .19 .15 .16 .14

10 .19 .16 .17 .14

20 .21 .21 .18 .18

30 .20 .24 .18 .22

40 .21 .27 .19 .25

Note: k1 = 20; 𝐴𝐴 𝐴𝐴2
1
= .2 . “MEM” indicates power rates observed under the standard MEM and “MELSM” indicates power rates observed under the 

MELSM with the moderator included in the scale submodel.

T A B L E  A 3   Power for β1 = .8

𝑨𝑨 𝑨𝑨𝟐𝟐
𝟐𝟐
  k2

Q-test F-test

MEM MELSM MEM MELSM

.05 5 .97 .99 .95 .99

10 1.00 1.00 1.00 1.00

20 1.00 1.00 1.00 1.00

30 1.00 1.00 1.00 1.00

40 1.00 1.00 1.00 1.00

.10 5 .94 .97 .93 .96

10 1.00 1.00 .99 1.00

20 1.00 1.00 1.00 1.00

30 1.00 1.00 1.00 1.00

40 1.00 1.00 1.00 1.00
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HETEROGENEOUS HETEROGENEITY BY DEFAULT 25

APPENDIX B

B.1  |  SIMULATION RESULTS FOR THREE GROUPS

To examine whether the results in Section Simulation Studies generalized to situations involving the 
comparison of  more than two groups, we conducted supplemental simulation studies. These followed the 
same procedures described in Simulation Studies but included a third level in the categorical moderator. 
Thus, in addition to k2 and 𝐴𝐴 𝐴𝐴2

2
 , we also systematically varied the between-study variance and study sample 

size for the third group, k3 and 𝐴𝐴 𝐴𝐴2
3
 . These quantities were varied according the values in Table B1. Within 

the columns for ki and 𝐴𝐴 𝐴𝐴2
𝑖𝑖
 , each row represents a condition. For example, in the first condition for study 

T A B L E  A 3   (Continued)

𝑨𝑨 𝑨𝑨𝟐𝟐
𝟐𝟐
  k2

Q-test F-test

MEM MELSM MEM MELSM

.15 5 .92 .93 .90 .91

10 .99 .99 .99 .99

20 1.00 1.00 1.00 1.00

30 1.00 1.00 1.00 1.00

40 1.00 1.00 1.00 1.00

.20 5 .89 .88 .87 .85

10 .98 .98 .98 .98

20 1.00 1.00 1.00 1.00

30 1.00 1.00 1.00 1.00

40 1.00 1.00 1.00 1.00

.25 5 .87 .83 .85 .81

10 .97 .97 .97 .96

20 1.00 1.00 1.00 1.00

30 1.00 1.00 1.00 1.00

40 1.00 1.00 1.00 1.00

.30 5 .85 .80 .83 .77

10 .96 .95 .96 .94

20 1.00 1.00 .99 .99

30 1.00 1.00 1.00 1.00

40 1.00 1.00 1.00 1.00

.35 5 .82 .75 .80 .71

10 .96 .94 .94 .92

20 .99 .99 .99 .99

30 1.00 1.00 1.00 1.00

40 1.00 1.00 1.00 1.00

.40 5 .81 .71 .78 .67

10 .94 .90 .92 .89

20 .99 .99 .99 .99

30 1.00 1.00 1.00 1.00

40 1.00 1.00 1.00 1.00

Note: k1 = 20; 𝐴𝐴 𝐴𝐴2
1
= .2 . “MEM” indicates power rates observed under the standard MEM and “MELSM” indicates power rates observed under the 

MELSM with the moderator included in the scale submodel.
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RODRIGUEZ et al.26

sample size, k2 = k3 = 5, and for the between-study variance, 𝐴𝐴 𝐴𝐴2
2
= 𝜏𝜏2

3
= .2 in the first condition. In the 

end, the total number of  conditions was 2 (Q- or F-test) × 2 (MEM or MELSM) × 5 (ki) × 9 (𝐴𝐴 𝐴𝐴2
𝑖𝑖
 ) = 180 

conditions. In each condition, the second and third groups were compared to the first group, whose 
values remained fixed at 𝐴𝐴 𝐴𝐴2

1
= .2 and k1 = 20.

To study how well the MELSM controlled the Type I error of  the Q- and F-tests relative to the 
MEM when there were more than two groups, we set β0 = β1 = β2 = 0, or, in terms of  group means, 
μ1 = μ2 = μ3 = 0. Both moderator tests were conducted for β1 and β2. The α level for each test was set to 
.05. The results for β1 can be seen in Table B2, while those for β2 are presented in Table B3.

To study the empirical statistical power rates of  the moderator tests with respect to the two moder-
ator tests, we kept everything the same as in the Type I error rate simulation, with the exception that we 
changed the values of  the moderator. For the power simulation study, the first moderator effect was set to 
β1 = .2 or μ2 − μ1 = .2, and the second moderator effect was set to β1 = .8 or μ2 − μ1 = .8. The power rates 
for the moderator effects can be found in Tables B4 and B5, respectively.

The patterns observed for the Type I error and power rates for the MEM and the MELSM qualita-
tively mirror those in the section Simulation Studies and are briefly described in the Discussion.

T A B L E  B 1   Simulation values

ki 𝑨𝑨 𝑨𝑨𝟐𝟐
𝒊𝒊
 

k2 k3 𝑨𝑨 𝑨𝑨𝟐𝟐
𝟐𝟐
  𝑨𝑨 𝑨𝑨𝟐𝟐

𝟑𝟑
 

5 5 .2 .2

10 10 .1 .2

20 20 .2 .1

40 40 .1 .1

10 40 .1 .4

40 10 .4 .1

.4 .4

.2 .4

.4 .2

Note: k1 = 20, 𝐴𝐴 𝐴𝐴2
1
= .2 .

T A B L E  B 2   Type I error rate for β2

𝑨𝑨 𝑨𝑨𝟐𝟐
𝟐𝟐
  𝑨𝑨 𝑨𝑨𝟐𝟐

𝟑𝟑
  k2 k3

Q-test F-test

MEM MELSM MEM MELSM

.2 .2 5 5 .05 .09 .06 .09

10 10 .05 .06 .06 .07

20 20 .05 .05 .05 .05

40 40 .05 .05 .05 .05

10 40 .05 .06 .06 .06

40 10 .05 .05 .05 .05

.1 .2 5 5 .02 .08 .03 .08

10 10 .03 .06 .03 .07

20 20 .04 .05 .04 .05

40 40 .05 .06 .05 .06

10 40 .02 .06 .03 .06

40 10 .07 .06 .07 .06
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HETEROGENEOUS HETEROGENEITY BY DEFAULT 27

T A B L E  B 2   (Continued)

𝑨𝑨 𝑨𝑨𝟐𝟐
𝟐𝟐
  𝑨𝑨 𝑨𝑨𝟐𝟐

𝟑𝟑
  k2 k3

Q-test F-test

MEM MELSM MEM MELSM

.2 .1 5 5 .05 .09 .07 .10

10 10 .06 .06 .07 .07

20 20 .07 .06 .08 .06

40 40 .07 .05 .08 .06

10 40 .09 .06 .09 .07

40 10 .06 .05 .06 .06

.1 .1 5 5 .03 .08 .03 .07

10 10 .04 .06 .05 .07

20 20 .06 .05 .07 .06

40 40 .08 .06 .08 .05

10 40 .05 .06 .06 .06

40 10 .07 .05 .08 .06

.1 .4 5 5 .01 .08 .02 .08

10 10 .02 .06 .02 .06

20 20 .02 .05 .02 .06

40 40 .03 .06 .03 .06

10 40 .01 .06 .01 .06

40 10 .05 .05 .06 .06

.4 .1 5 5 .11 .10 .13 .10

10 10 .10 .07 .11 .07

20 20 .08 .06 .09 .06

40 40 .06 .05 .06 .05

10 40 .15 .07 .14 .07

40 10 .04 .05 .04 .06

.4 .4 5 5 .09 .10 .11 .10

10 10 .06 .06 .08 .07

20 20 .04 .06 .05 .06

40 40 .02 .05 .03 .05

10 40 .05 .06 .05 .07

40 10 .03 .05 .03 .06

.2 .4 5 5 .04 .08 .05 .09

10 10 .03 .06 .04 .07

20 20 .03 .05 .03 .06

40 40 .03 .06 .03 .06

10 40 .02 .06 .02 .07

40 10 .04 .05 .04 .06

.4 .2 5 5 .10 .10 .12 .11

10 10 .08 .06 .09 .07

20 20 .06 .06 .07 .06

40 40 .04 .05 .05 .06

10 40 .09 .06 .10 .07

40 10 .03 .05 .04 .06

Note: k1 = 20; 𝐴𝐴 𝐴𝐴2
1
= .2 . “MEM” indicates power rates observed under the standard MEM and “MELSM” indicates power rates observed 

under the MELSM with the moderator included in the scale submodel.
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RODRIGUEZ et al.28

T A B L E  B 3   Type I error rate for β2

𝑨𝑨 𝑨𝑨𝟐𝟐
𝟐𝟐
  𝑨𝑨 𝑨𝑨𝟐𝟐

𝟑𝟑
  k2 k3

Q-test F-test

MEM MELSM MEM MELSM

.2 .2 5 5 .05 .09 .06 .09

10 10 .05 .06 .06 .07

20 20 .05 .05 .06 .06

40 40 .05 .05 .05 .05

10 40 .05 .05 .05 .06

40 10 .05 .06 .06 .07

.1 .2 5 5 .06 .09 .07 .10

10 10 .06 .06 .07 .07

20 20 .06 .05 .07 .06

40 40 .07 .05 .08 .06

10 40 .05 .05 .06 .06

40 10 .09 .06 .09 .06

.2 .1 5 5 .02 .08 .03 .08

10 10 .03 .06 .04 .07

20 20 .04 .05 .04 .06

40 40 .05 .06 .05 .06

10 40 .07 .06 .07 .06

40 10 .03 .06 .03 .06

.1 .1 5 5 .03 .08 .03 .08

10 10 .04 .06 .05 .06

20 20 .06 .05 .07 .06

40 40 .08 .06 .09 .06

10 40 .07 .06 .08 .06

40 10 .06 .06 .06 .07

.1 .4 5 5 .11 .09 .13 .10

10 10 .10 .07 .10 .06

20 20 .08 .05 .09 .06

40 40 .06 .05 .07 .06

10 40 .04 .05 .04 .06

40 10 .14 .06 .14 .07

.4 .1 5 5 .01 .08 .02 .08

10 10 .02 .06 .02 .07

20 20 .02 .06 .02 .06

40 40 .02 .06 .02 .06

10 40 .05 .06 .05 .06

40 10 .01 .06 .01 .06

.4 .4 5 5 .08 .09 .10 .10

10 10 .06 .06 .07 .07

20 20 .04 .05 .05 .06

40 40 .02 .05 .03 .06

10 40 .03 .05 .03 .06

40 10 .04 .06 .05 .07
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HETEROGENEOUS HETEROGENEITY BY DEFAULT 29

T A B L E  B 3   (Continued)

𝑨𝑨 𝑨𝑨𝟐𝟐
𝟐𝟐
  𝑨𝑨 𝑨𝑨𝟐𝟐

𝟑𝟑
  k2 k3

Q-test F-test

MEM MELSM MEM MELSM

.2 .4 5 5 .10 .09 .12 .10

10 10 .08 .06 .09 .07

20 20 .06 .05 .07 .06

40 40 .05 .06 .05 .05

10 40 .04 .05 .04 .06

40 10 .09 .06 .10 .07

.4 .2 5 5 .04 .08 .05 .10

10 10 .03 .06 .04 .07

20 20 .03 .06 .03 .06

40 40 .02 .06 .03 .06

10 40 .04 .05 .04 .05

40 10 .02 .06 .02 .07

Note: k1 = 20; 𝐴𝐴 𝐴𝐴2
1
= .2 . “MEM” indicates power rates observed under the standard MEM and “MELSM” indicates power rates observed under the 

MELSM with the moderator included in the scale submodel.

T A B L E  B 4   Power for β1 = .2

𝑨𝑨 𝑨𝑨𝟐𝟐
𝟐𝟐
  𝑨𝑨 𝑨𝑨𝟐𝟐

𝟑𝟑
  k2 k3

Q-test F-test

MEM MELSM MEM MELSM

.2 .2 5 5 .13 .17 .14 .18

10 10 .17 .19 .19 .20

20 20 .24 .25 .26 .27

40 40 .31 .32 .32 .33

10 40 .18 .20 .19 .21

40 10 .30 .31 .32 .33

.1 .2 5 5 .09 .21 .11 .20

10 10 .16 .23 .18 .25

20 20 .26 .29 .28 .31

40 40 .36 .36 .37 .37

10 40 .15 .24 .17 .26

40 10 .40 .37 .41 .36

.2 .1 5 5 .13 .17 .16 .18

10 10 .21 .19 .22 .20

20 20 .29 .25 .29 .25

40 40 .37 .32 .38 .32

10 40 .24 .19 .26 .20

40 10 .32 .32 .34 .32

.1 .1 5 5 .10 .20 .12 .21

10 10 .20 .24 .22 .26

20 20 .32 .30 .35 .32

40 40 .44 .36 .45 .37

10 40 .23 .24 .24 .25

40 10 .42 .36 .43 .37

(Continues)
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RODRIGUEZ et al.30

T A B L E  B 4   (Continued)

𝑨𝑨 𝑨𝑨𝟐𝟐
𝟐𝟐
  𝑨𝑨 𝑨𝑨𝟐𝟐

𝟑𝟑
  k2 k3

Q-test F-test

MEM MELSM MEM MELSM

.1 .4 5 5 .07 .20 .09 .22

10 10 .11 .24 .13 .25

20 20 .19 .31 .19 .31

40 40 .25 .37 .26 .37

10 40 .07 .24 .07 .25

40 10 .35 .36 .37 .37

.4 .1 5 5 .18 .14 .20 .16

10 10 .20 .15 .22 .16

20 20 .24 .19 .25 .20

40 40 .28 .26 .28 .26

10 40 .27 .15 .28 .16

40 10 .21 .25 .23 .27

.4 .4 5 5 .14 .14 .17 .16

10 10 .15 .15 .17 .16

20 20 .16 .19 .16 .19

40 40 .17 .25 .18 .27

10 40 .12 .15 .13 .15

40 10 .19 .26 .20 .27

.2 .4 5 5 .10 .17 .12 .18

10 10 .13 .19 .15 .20

20 20 .17 .25 .19 .26

40 40 .21 .31 .23 .33

10 40 .09 .20 .10 .20

40 10 .27 .32 .28 .32

.4 .2 5 5 .17 .14 .19 .16

10 10 .19 .15 .20 .16

20 20 .21 .20 .22 .20

40 40 .23 .26 .25 .26

10 40 .20 .15 .21 .15

40 10 .20 .25 .21 .25

Note: k1 = 20; 𝐴𝐴 𝐴𝐴2
1
= .2 . “MEM” indicates power rates observed under the standard MEM and “MELSM” indicates power rates observed under the 

MELSM with the moderator included in the scale submodel.
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HETEROGENEOUS HETEROGENEITY BY DEFAULT 31

T A B L E  B 5   Power for β2 = .8

𝑨𝑨 𝑨𝑨𝟐𝟐
𝟐𝟐
  𝑨𝑨 𝑨𝑨𝟐𝟐

𝟑𝟑
  k2 k3

Q-test F-test

MEM MELSM MEM MELSM

.2 .2 5 5 .87 .87 .90 .89

10 10 .98 .98 .99 .98

20 20 1.00 1.00 1.00 1.00

40 40 1.00 1.00 1.00 1.00

10 40 1.00 1.00 1.00 1.00

40 10 .98 .98 .99 .98

.1 .2 5 5.00 .88 .87 .90 .88

10 10 .99 .98 .99 .98

20 20 1.00 1.00 1.00 1.00

40 40 1.00 1.00 1.00 1.00

10 40 1.00 1.00 1.00 1.00

40 10 .99 .98 .99 .98

.2 .1 5 5.00 .93 .96 .94 .96

10 10 .99 1.00 1.00 1.00

20 20 1.00 1.00 1.00 1.00

40 40 1.00 1.00 1.00 1.00

10 40 1.00 1.00 1.00 1.00

40 10 1.00 1.00 1.00 1.00

.1 .1 5 5 .94 .96 .95 .97

10 10 1.00 1.00 1.00 1.00

20 20 1.00 1.00 1.00 1.00

40 40 1.00 1.00 1.00 1.00

10 40 1.00 1.00 1.00 1.00

40 10 1.00 1.00 1.00 1.00

.1 .4 5 5 .80 .69 .82 .71

10 10 .94 .90 .96 .91

20 20 .99 .99 .99 .99

40 40 1.00 1.00 1.00 1.00

10 40 1.00 1.00 1.00 1.00

40 10 .97 .90 .97 .91

.4 .1 5 5 .90 .96 .93 .97

10 10 .99 1.00 .99 1.00

20 20 1.00 1.00 1.00 1.00

40 40 1.00 1.00 1.00 1.00

10 40 1.00 1.00 1.00 1.00

40 10 .98 1.00 .98 1.00

(Continues)
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RODRIGUEZ et al.32

T A B L E  B 5   (Continued)

𝑨𝑨 𝑨𝑨𝟐𝟐
𝟐𝟐
  𝑨𝑨 𝑨𝑨𝟐𝟐

𝟑𝟑
  k2 k3

Q-test F-test

MEM MELSM MEM MELSM

.4 .4 5 5 .77 .70 .79 .71

10 10 .92 .90 .93 .91

20 20 .98 .99 .98 .99

40 40 1.00 1.00 1.00 1.00

10 40 1.00 1.00 1.00 1.00

40 10 .90 .91 .91 .91

.2 .4 5 5 .79 .69 .81 .71

10 10 .93 .90 .95 .91

20 20 .99 .99 .99 .99

40 40 1.00 1.00 1.00 1.00

10 40 1.00 1.00 1.00 1.00

40 10 .95 .91 .95 .91

.4 .2 5 5 .85 .87 .87 .88

10 10 .97 .98 .98 .98

20 20 1.00 1.00 1.00 1.00

40 40 1.00 1.00 1.00 1.00

10 40 1.00 1.00 1.00 1.00

40 10 .96 .98 .96 .98

Note: k1 = 20; 𝐴𝐴 𝐴𝐴2
1
= .2 .“MEM” indicates power rates observed under the standard MEM and “MELSM” indicates power rates observed under the 

MELSM with the moderator included in the scale submodel.
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