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Abstract. Recent advances in probabilistic deep learning enable effi-
cient amortized Bayesian inference in settings where the likelihood func-
tion is only implicitly defined by a simulation program (simulation-based
inference; SBI). But how faithful is such inference if the simulation repre-
sents reality somewhat inaccurately—that is, if the true system behavior
at test time deviates from the one seen during training? We conceptual-
ize the types of model misspecification arising in SBI and systematically
investigate how the performance of neural posterior approximators grad-
ually deteriorates under these misspecifications, making inference results
less and less trustworthy. To notify users about this problem, we propose
a new misspecification measure that can be trained in an unsupervised
fashion (i.e., without training data from the true distribution) and reli-
ably detects model misspecification at test time. Our experiments clearly
demonstrate the utility of our new measure both on toy examples with
an analytical ground-truth and on representative scientific tasks in cell
biology, cognitive decision making, and disease outbreak dynamics. We
show how the proposed misspecification test warns users about suspi-
cious outputs, raises an alarm when predictions are not trustworthy, and
guides model designers in their search for better simulators.

Keywords: Simulation-Based Inference · Model Misspecification ·
Robustness

1 Introduction

Computer simulations play a fundamental role in many fields of science. However,
the associated inverse problems of finding simulation parameters that accurately
reproduce or predict real-world behavior are generally difficult and analytically
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Fig. 1. Conceptual overview of our neural approach. The summary network hψ maps
observations x to summary statistics hψ(x), and the inference network fφ estimates
the posterior p(θ | x, M) from the summary statistics. The generative model M creates
training data x in the green region, and the networks learn to map these data to well-
defined summary statistics and posteriors (green regions/dot/box). If the generative
model M is misspecificed, real observations

o
x fall outside the training region and are

therefore mapped to outlying summary statistics and potentially incorrect posteriors
(red dots/box). Since our learning approach enforces a known inlier summary distribu-
tion (e.g., Gaussian), misspecification can be detected by a distribution mismatch in
summary space, as signaled by a high maximum mean discrepancy [22] score. (Color
figure online)

intractable. Here, we consider simulation-based inference (SBI) [9] as a general
approach to overcome this difficulty within a Bayesian inference framework. That
is, given an assumed generative model M (as represented by the simulation pro-
gram, see Sect. 3.2 for details) and observations x (real or simulated outcomes),
we estimate the posterior distribution p(θ |x,M) of the simulation parameters θ
that would reproduce the observed x. The recent introduction of efficient neural
network approximators for this task has inspired a rapidly growing literature on
SBI solutions for various application domains [4,6,18,20,29,33,48]. These empir-
ical successes call for a systematic investigation of the trustworthiness of SBI,
see Fig. 1.

We conduct an extensive analysis of neural posterior estimation (NPE) and
sequential neural posterior estimation (SNPE), two deep learning algorithms to
approximate the posterior distribution p(θ |x,M). In particular, we study their
accuracy under model misspecification, where the generative model M∗ at test
time (the “true data generating process”) deviates from the one assumed during
training (i.e., M∗ �= M), a situation commonly known as simulation gap. As a
consequence of a simulation gap, the observed data of interest might lie outside of
the simulated data from the training phase of SBI. Paralleling the notion of “out-
of-distribution” in anomaly detection and representation learning, simulation
gaps may lead to “out-of-simulation” samples, and ultimately to wrong posterior
estimates.

In this work, we propose a new misspecification measure that can be trained
in an unsupervised fashion (i.e., without knowledge of M∗ or training data from
the true data distribution) and reliably quantifies by how much M∗ deviates
from M at test time. Our experiments clearly demonstrate the power of our
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new measure both on toy examples with an analytical ground-truth, and on rep-
resentative scientific tasks in cell biology, cognitive decision making, and disease
outbreak dynamics. We show how simulation-based posterior inference gradually
deteriorates as the simulation gap widens and how the proposed misspecification
test warns users about suspicious outputs, raises an alarm when predictions are
not trustworthy, and guides model designers in their search for better simula-
tors. Thus, our investigations complement existing work on deep amortized SBI,
whose main focus has been on network architectures and training algorithms
for high accuracy in the well-specified case M∗ = M [14,21,35,38,41,45,46]. In
particular, our paper makes the following key contributions:

(i) We systematically conceptualize different sources of model misspecification
in amortized Bayesian inference with neural networks and propose a new
detection criterion that is widely applicable to different model structures,
inputs, and outputs.

(ii) We incorporate this criterion into existing neural posterior estimation meth-
ods, with hand-crafted and learned summary statistics, with sequential or
amortized inference regimes, and we extend the associated learning algo-
rithms in a largely non-intrusive manner.

(iii) We conduct a systematic empirical evaluation of our detection criterion,
the influence of the summary space dimension, and the relationship between
summary outliers and posterior distortion under various types and strengths
of model misspecification.

2 Related Work

Model misspecification has been studied both in the context of standard Bayesian
inference and generalizations thereof [28,47]. To alleviate model misspecifica-
tion in generalized Bayesian inference, researchers have investigated probabilis-
tic classifiers [52], second-order PAC-Bayes bounds [36], scoring rules [19], priors
over a class of predictive models [31], or Stein discrepancy as a loss function [37].
Notably, these approaches deviate from the standard Bayesian formulation and
investigate alternative schemes for belief updating and learning (e.g., replacing
the likelihood function with a generic loss function). In contrast, our method
remains grounded in the standard Bayesian framework embodying an implicit
likelihood principle [3]. Differently, power scaling methods incorporate a mod-
ified likelihood (raised to a power 0 < α < 1) in order to prevent potentially
overconfident Bayesian updating [23,26]. However, the SBI setting assumes that
the likelihood function is not available in closed-form, which makes an explicit
modification of the implicitly defined likelihood less obvious.

Neural approaches to amortized SBI can be categorized as either targeting
the posterior [21,45], the likelihood [24,43], or both [56]. These methods employ
simulations for training amortized neural approximators which can either gen-
erate samples from the posterior directly [21,45,56] or in tandem with Markov
chain Monte Carlo (MCMC) sampling algorithms [24,43]. Since the behavior of
these methods depends on the fidelity of the simulations used as training data,
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we hypothesize that their estimation quality will be, in general, unpredictable,
when faced with atypical real-world data. Indeed, the critical impact of model
misspecification in neural SBI has been commonly acknowledged in the scientific
research community [1,8,15,16,39,58].

Recent approaches to detect model misspecification in simulation-based
inference are usually based on the obtained approximate posterior distribu-
tion [12,25,30]. However, we show in Experiment 1 and Experiment 5
(Appendix) that the approximate posteriors in simulation-based inference tend
to show pathological behavior under misspecified models. Posteriors from mis-
specified models may erroneously look legitimate, rendering diagnostic methods
on their basis unreliable. Moreover, the same applies for approaches based on
the posterior predictive distribution [7,17,53] since these also rely on the fidelity
of the posterior distribution and can therefore only serve as an indirect measure
of misspecification.

A few novel techniques aim to mitigate model misspecification in simulation-
based inference to achieve robust inference. [11] equip neural ratio estimation
[24] with a balancing condition which tends to produce more conservative poste-
rior approximations. [54] explore a way to alleviate model misspecification with
two neural approximators and subsequent MCMC. While both approaches are
appealing in theory, the computational burden of MCMC sampling contradicts
the idea of amortized inference and prohibits their use in complex applications
with learned summary statistics and large amounts of data. In fact, [29] used
amortized neural SBI on more than a million data sets of multiple observa-
tions each and demonstrated that an alternative inference method involving
non-amortized MCMC would have taken years of sampling.

For robust non-amortized ABC samplers, the possibility of utilizing hand-
crafted summary statistics as an important element of misspecification analysis
has already been explored [15,16]. Our work parallels these ideas and extends
them to the case of learnable summary statistics in amortized SBI on potentially
massive data sets, where ABC becomes infeasible. However, we show in Exper-
iment 2 that our method also works with hand-crafted summary statistics.

Finally, from the perspective of deep anomaly detection, our approach for
learning informative summary statistics can be viewed as a special case of generic
normality feature learning [40]. Standard learned summary statistics are opti-
mized with a generic feature learning objective which is not primarily designed
for anomaly detection [45]. However, since learned summary statistics are also
optimized to be maximally informative for posterior inference, they will likely
capture underlying data regularities [40].

3 Method

For simulation-based Bayesian inference, we define a generative model as a triple
M =

(
g(θ, ξ), p(ξ |θ), p(θ)

)
. A generative model M generates data x ∈ X

according to the system

x = g(θ, ξ) with ξ ∼ p(ξ |θ), θ ∼ p(θ), (1)
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where g denotes a (randomized) simulator, ξ ∈ Ξ is a source of randomness
(i.e., noise) with density function p(ξ |θ), and p(θ) encodes prior knowledge
about plausible simulation parameters θ ∈ Θ. Throughout the paper, we use the
decorated symbol o

x to mark data that was in fact observed in the real world
and not merely simulated by the assumed model M. The parameters θ consist
of hidden properties whose role in g we explicitly understand and model, and ξ
takes care of nuisance effects that we only treat statistically. The abstract spaces
X , Ξ, and Θ denote the domain of possible output data (possible worlds), the
scope of noise, and the set of admissible model parameters, respectively. The
distinction between hidden properties θ and noise ξ is not entirely clear-cut, but
depends on our modeling goals and may vary across applications.

Our generative model formulation is equivalent to the standard factoriza-
tion of the Bayesian joint distribution into likelihood and prior, p(θ,x |M) =
p(x |θ,M) p(θ |M), where M expresses the prior knowledge and assumptions
embodied in the model. The likelihood is obtained by marginalizing the joint
distribution p(ξ,x |θ,M) over all possible values of the nuisance parameters ξ,
that is, over all possible execution paths of the simulation program, for fixed θ:

p(x |θ,M) =
∫

Ξ

p(ξ,x |θ,M) dξ. (2)

This integral is typically intractable [9], but we assume that it exists and
is non-degenerate, that is, it defines a proper density over the constrained
manifold (g(θ, ξ), ξ), and this density can be learned. A major challenge in
Bayesian inference is approximating the posterior distribution p(θ |x,M) ∝
p(x |θ,M) p(θ |M). Below, we focus on amortized posterior approximation with
neural networks, which aims to achieve zero-shot posterior sampling for any input
data x compatible with the reference model M.1

3.1 Neural Posterior Estimation

Neural Posterior Estimation (NPE) with learned summary statistics hψ(x)
involves a posterior network and a summary network which jointly minimize
the expected KL divergence between analytic and approximate posterior

ψ∗,φ∗ = argmin
ψ ,φ

Ep(x | M)

[
KL

[
p(θ |x,M) || qφ

(
θ |hψ (x),M)] ]

, (3)

where the expectation runs over the prior predictive distribution p(x |M). The
above criterion simplifies to

ψ∗,φ∗ = argmin
ψ ,φ

Ep(θ ,x | M)

[
− log qφ

(
θ |hψ (x),M)]

, (4)

since the analytic posterior p(θ |x,M) does not depend on the trainable neural
network parameters (ψ, φ). This criterion optimizes a summary (aka embedding)
1 We demonstrate in Experiment 1 that model misspecification also affects the per-

formance of non-amortized sequential neural posterior estimation.
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network with parameters ψ and an inference network with parameters φ which
learn to perform zero-shot posterior estimation over the generative scope of M.
The summary network transforms input data x of variable size and structure
to a fixed-length representation z = hψ (x). The inference network fφ generates
random draws from an approximate posterior qφ via a normalizing flow, for
instance, realized by a conditional invertible neural network [2] or a conditional
masked autoregressive flow [42].

We approximate the expectation in Eq. 4 via simulations from the generative
model M and repeat the process until convergence, which enables us to perform
fully amortized inference (i.e., the posterior functional can be evaluated for any
number of observed data sets x). Moreover, this objective is self-consistent and
results in correct amortized inference under optimal convergence [21,45].

3.2 Model Misspecification in Simulation-Based Inference

When modeling a complex system or process, we typically assume an unknown
(true) generator M∗, which yields an unknown (true) distribution o

x ∼ p∗(x)
and is available to the data analyst only via a finite realization (i.e., actually
observed data o

x). According to a common definition [16,32,36,55], the generative
model M is well-specified if a “true” parameter θ∗ ∈ Θ exists, such that the
(conditional) likelihood matches the data-generating distribution,

p(x |θ∗,M) = p∗(x), (5)

and misspecified otherwise. This likelihood-centered definition is well-established
and sensible in many domains of Bayesian inference.

In simulation-based inference, however, there is an additional difficulty
regarding model specification: Simulation-based training (see Eq. 3) takes
the expectation with respect to the model-implied prior predictive distribu-
tion p(x |M), not necessarily the “true” real-world distribution p∗(x). Thus,
optimal convergence does not imply correct amortized inference or faithful pre-
diction in the real world when there is a simulation gap, that is, when the
assumed training model M deviates critically from the unknown true generative
model M∗.

Crucially, even if the generative model M is well-specified according to the
likelihood-centered definition in Eq. 5, finite training with respect to a “wrong”
prior (predictive) distribution will likely result in insufficient learning of relevant
parameter (and data) regions. This scenario could also be framed as “out-of-
simulation” (OOSim) by analogy with the common out-of-distribution (OOD)
problem in machine learning applications [57]. In fact, we observe in Experi-
ment 1 that a misspecified prior distribution worsens posterior inference just
like a misspecified likelihood function does.

Thus, our adjusted definition of model misspecification in the context of
simulation-based inference considers the entire prior predictive distribution
p(x |M): A generative model M is well-specified if the information loss through
modeling p∗(x) with p(x |M) falls below an acceptance threshold ϑ,

D
[
p(x |M) || p∗(x)

]
< ϑ, (6)
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and misspecified otherwise. The symbol D denotes a divergence metric quantify-
ing the “distance” between the data distributions implied by reality and by the
model (i.e., the marginal likelihood). A natural choice for D would stem from
the family of F-divergences, such as the KL divergence. However, we choose the
Maximum Mean Discrepancy (MMD) because we can tractably estimate it on
finite samples from p(x |M) and p∗(x) and its analytic value equals zero if and
only if the two densities are equal [22].

Our adjusted definition of model misspecification no longer assumes the exis-
tence of a true parameter vector θ∗ (cf. Eq. 5). Instead, we focus on the marginal
likelihood p(x |M) which represents the entire prior predictive distribution of a
model and does not commit to a single most representative parameter vector.
In this way, multiple models whose marginal distributions are representative of
p∗(x) can be considered well-specified without any reference to some hypotheti-
cal ground-truth θ∗, which may not even exist for opaque systems with unknown
properties.

3.3 Structured Summary Statistics

In simulation-based inference, summary statistics have a dual purpose because
(i) they are fixed-length vectors, even if the input data x have variable length;
and (ii) they usually contain crucial features of the data, which simplifies neural
posterior inference. However, in complex real-world scenarios such as COVID-
19 modeling (see Experiment 3), it is not feasible to rely on hand-crafted
summary statistics. Thus, combining neural posterior estimation with learned
summary statistics leverages the benefits of summary statistics (i.e., compression
to fixed-length vectors) while avoiding the virtually impossible task of designing
hand-crafted summary statistics for complex models.

In simulation-based inference, the summary network hψ acts as an interface
between the data x and the inference network fφ . Its role is to learn maxi-
mally informative summary vectors of fixed size S from complex and structured
observations (e.g., sets of i.i.d. measurements or multivariate time series). Since
the learned summary statistics are optimized to be maximally informative for
posterior inference, they are forced to capture underlying data regularities (see
Sect. 2). Therefore, we deem the summary network’s representation z = hψ (x)
as an adequate target to detect simulation gaps.

Specifically, we prescribe an S-dimensional multivariate unit (aka. standard)
Gaussian distribution to the summary space, p

(
z = hψ (x) |M) ≈ N (z |0, I),

by minimizing the MMD between summary network outputs and random draws
from a unit Gaussian distribution. To ensure that the summary vectors comply
with the support of the Gaussian density, we use a linear (bottleneck) output
layer with S units in the summary network. A random vector in summary space
takes the form hψ (x) ≡ z ≡ (z1, . . . , zS) ∈ R

S . The extended optimization
objective follows as
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ψ∗,φ∗ = argmin
ψ ,φ

Ep(θ ,x | M)

[
− log qφ

(
θ |hψ (x),M)]

+ γ MMD
2
[
p
(
hψ (x) |M) || N (

0, I
)] (7)

with a hyperparameter γ to control the relative weight of the MMD term. Intu-
itively, this objective encourages the approximate posterior qφ

(
θ |hψ (x),M)

to match the correct posterior and the summary distribution p
(
hψ (x) |M)

to
match a unit Gaussian. The extended objective does not constitute a theoreti-
cal trade-off between the two terms, since the MMD merely reshapes the sum-
mary distribution in an information-preserving manner. In practice, the extended
objective may render optimization of the summary network more difficult, but
our experiments suggest that it does not restrict the quality of the amortized
posteriors.

This method is also directly applicable to hand-crafted summary statistics.
Hand-crafted summary statistics already have fixed length and usually contain
rich information for posterior inference. Thus, the task of the summary network
hψ simplifies to transforming the hand-crafted summary statistics to a unit Gaus-
sian (Eq. 7) to enable model misspecification via distribution matching during
test time (see below). We apply our method to a problem with hand-crafted
summary statistics in Experiment 2.

3.4 Detecting Model Misspecification with Finite Data

Once the simulation-based training phase is completed, we can generate M
validation samples {θ(m),x(m)} from our generative model M and pass them
through the summary network to obtain a sample of latent summary vectors
{z(m)}, where z = hψ (x) denotes the output of the summary network. The
properties of this sample contain important convergence information: If z is
approximately unit Gaussian, we can assume a structured summary space given
the training model M. This enables model misspecification diagnostics via distri-
bution checking during inference on real data (see the Appendix for the detailed
algorithm).

Let { o
x(n)} be an observed sample, either simulated from a different genera-

tive model, or arising from real-world observations with an unknown generator.
Before invoking the inference network, we pass this sample through the sum-
mary network to obtain the summary statistics for the sample: { o

z(n)}. We then
compare the validation summary distribution {z(m)} with the summary statis-
tics of the observed data { o

z(n)} according to the sample-based MMD estimate
M̂MD

2
(p(z) || p( o

z)) [22]. Importantly, we are not limited to pre-determined sizes
of simulated or real-world data sets, as the MMD estimator is defined for arbi-
trary M and N . To allow MMD estimation for data sets with single instances
(N = 1 or M = 1), we do not use the unbiased MMD version from [22]. Singleton
data sets are an important use case for our method in practice, and potential
advantages of unbiased estimators do not justify exclusion of such data. To
enhance visibility, the figures in the experimental section will depict the square
root of the originally squared MMD estimate.
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Fig. 2. Experiment 1. Summary space samples for the minimal sufficient summary
network (S = 2) from a well-specified model M (blue) and several misspecified config-
urations. Left: Prior misspecification can be detected. Right: Noise misspecification
can be detected, while simulator scale misspecification is indistinguishable from the
validation summary statistics.

Whenever we estimate the MMD from finite data, its estimates vary accord-
ing to a sampling distribution and we can resort to a frequentist hypothesis test
to determine the probability of observed MMD values under well-specified mod-
els. Although this sampling distribution under the null hypothesis is unknown,
we can estimate it from multiple sets of simulations from the generative model,
{z(m)} and {z(n)}, with M large and N equal to the number of real data sets.
Based on the estimated sampling distribution, we can obtain a critical MMD
value for a fixed Type I error probability (α) and compare it to the one esti-
mated with the observed data. In general, a larger α level corresponds to a more
conservative modeling approach: A larger type I error implies that more tests
reject the null hypothesis, which corresponds to more frequent model misspecifi-
cation alarms and a higher chance that incorrect models will be recognised. The
Type II error probability (β) of this test will generally be high (i.e., the power
of the test will be low) whenever the number of real data sets N is very small.
However, we show in Experiment 3 that even as few as 5 real data sets suffice
to achieve β ≈ 0 for a complex model on COVID-19 time series.

4 Experiments

4.1 Experiment 1: 2D Gaussian Means

We set the stage by estimating the means of a 2-dimensional conjugate Gaussian
model with K = 100 observations per data set and a known analytic posterior in
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Fig. 3. Experiment 1. Summary space MMD as a function of misspecification sever-
ity. White stars indicate the well-specified model configuration (i.e., equal to the train-
ing model M).

order to illustrate our method. This experiment contains the Gaussian examples
from [16] and [54], and extends them by (i) studying misspecifications beyond
the likelihood variance (see below); and (ii) implementing continuously widen-
ing simulation gaps, as opposed to a single discrete misspecification. The data
generating process is defined as

xk ∼ N (x |μ,Σ) for k = 1, ...,K with μ ∼ N (μ |μ0,Σ0). (8)

As a summary network, we use a permutation invariant network [5] with
S = 2 output dimensions, which equal the number of minimal sufficient statis-
tics implied by the analytic posterior. The terms “minimal”, “sufficient”, and
“overcomplete” refer to the inference task and not to the data. Thus, S = 2
summary statistics are sufficient to solve the inference task, namely recover two
means. For training the posterior approximator, we set the prior of the genera-
tive model M to a unit Gaussian and the likelihood covariance Σ to an identity
matrix.

We induce prior misspecification by altering the prior location μ0 and covari-
ance Σ0 = τ0I (only diagonal covariance, controlled through the factor τ0). Fur-
ther, we achieve misspecified likelihoods by manipulating the likelihood covari-
ance Σ = τI (only diagonal covariance, controlled through τ). We induce noise
misspecification by replacing a fraction λ ∈ [0, 1] of the data x with samples
from a scaled Beta(2, 5) distribution.

Results. The neural posterior estimator trained to minimize the augmented
objective (Eq. 7) exhibits excellent recovery and calibration [49,50] in the well-
specified case, as shown in the Appendix. All prior misspecifications manifest
themselves in anomalies in the summary space which are directly detectable
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Fig. 4. Experiment 2. MMD increases with misspecification severity (a; mean, SD
of 20 repetitions). Our test easily detects the setting from [54] (b).

through visual inspection of the 2-dimensional summary space in Fig. 2 (left).
Note that the combined prior misspecification (location and scale) exhibits a
summary space pattern that combines the location and scale of the respective
location and scale misspecifications. However, based on the 2-dimensional sum-
mary space, misspecifications in the fixed parameters of the likelihood (τ) and
mixture noise are not detectable via an increased MMD (see Fig. 3, top right).

We further investigate the effect of an overcomplete summary space with
respect to the inference task, namely S = 4 learned summary statistics with an
otherwise equal architecture. In addition to prior misspecifications, the overcom-
plete summary network also captures misspecifications in the noise and simulator
via the MMD criterion (see Fig. 3, bottom row). Furthermore, the induced mis-
specifications in the noise and simulator are visually detectable in the summary
space samples (see Appendix). Recall that the 2-dimensional summary space
fails to capture these misspecifications (see Fig. 3, top right). The effect of model
misspecificaiton on the posterior recovery error is described in the Appendix.

SNPE-C. Our method successfully detects model misspecification using
SNPE-C [21] with a structured summary space (see Appendix). The results are
largely equivalent to those obtained with NPE, as implemented in the BayesFlow
framework [45].

4.2 Experiment 2: Cancer and Stromal Cell Model

This experiment illustrates model misspecification detection in a marked point
process model of cancer and stromal cells [27]. We use the original implementa-
tion of [54] with hand-crafted summary statistics and showcase the applicability
of our method in scenarios where good summary statistics are known. The infer-
ence parameters are three Poisson rates λc, λp, λd, and the setup in [54] extracts
four hand-crafted summary statistics from the 2D plane data: (1–2) number
of cancer and stromal cells; (3–4) mean and maximum distance from stromal
cells to the nearest cancer cell. All implementation details are described in the
Appendix.
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We achieve misspecification during inference by mimicking necrosis, which
often occurs in core regions of tumors. A Bernoulli distribution with parameter
π controls whether a cell is affected by necrosis or not. Consequently, π = 0
implies no necrosis (and thus no simulation gap), and π = 1 entails that all cells
are affected. The experiments by [54] study a single misspecification, namely
the case π = 0.75 in our implementation. In order to employ our proposed
method for model misspecification detection, we add a small summary network
hψ : R

4 → R
4 consisting of three hidden fully connected layers with 64 units

each. This network hψ merely transforms the hand-crafted summary statistics
into a 4-D unit Gaussian, followed by NPE for posterior inference.

Results. Our MMD misspecification score increases with increasingly severe
model misspecification (i.e., increasing necrosis rate π), see Fig. 4a. What is
more, for the single misspecification π = 0.75 studied by [54], we illustrate (i)
the power of our proposed hypothesis test; and (ii) the summary space distri-
bution for misspecified data. The power (1 − β) essentially equals 1, as shown
in Fig. 4b: The MMD sampling distributions under the training model (H0) and
under the observed data generating process (M∗) are completely separated.

4.3 Experiment 3: Epidemiological Model for COVID-19

Fig. 5. Representation of Germany’s
COVID-19 time series w.r.t. the MMD
distribution under H0 : p∗(x) = p(x | M).

As a final real-world example, we
treat a high-dimensional compartmen-
tal model representing the early months
of the COVID-19 pandemic in Germany
[44]. We investigate the utility of our
method to detect simulation gaps in
a much more realistic and non-trivial
extension of the SIR settings in [34] and
[54] with substantially increased com-
plexity. Moreover, we perform inference
on real COVID-19 data from Germany
and use our new method to test whether the model used in [44] is misspeci-
fied, possibly undermining the trustworthiness of political conclusions that are
based on the inferred posteriors. To achieve this, we train an NPE setup with
the BayesFlow framework [45] identical to [44] but using our new optimization
objective (Eq. 7) to encourage a structured summary space. We then simulate
1000 time series from the training model M and 1000 time series from three
misspecified models: (i) a model M1 without an intervention sub-model; (ii)
a model M2 without an observation sub-model; (iii) a model M3 without a
“carrier” compartment [10].

Results. Table 1 shows the MMD between the summary representation of N =
1, 2, 5 bootstrapped time series from each model and the summary representation
of the 1000 time series from model M (see the Appendix for bootstrapping
details). We also calculate the power (1 − β) of our hypothesis test for each
misspecified model under the sampling distribution estimated from 1 000 samples
of the 1 000 time series from M at a type I error probability of α = .05. We
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Table 1. Experiment 3. Results for different variations of the COVID-19 compart-
mental model. We report the median and 95% CI of 100 bootstrap samples.

Model
Bootstrap MMD Power (1 − β)

N = 1 N = 2 N = 5 N = 1 N = 2 N = 5

M 3.70 [3.65, 3.79] 2.61 [2.54, 2.91] 1.66 [1.59, 1.84] — — —

M1 3.76 [3.72, 3.80] 2.86 [2.62, 3.16] 2.11 [1.82, 2.50] .998 .958 ≈ 1.0

M2 3.80 [3.73, 3.83] 2.81 [2.65, 3.00] 2.01 [1.82, 2.19] .789 .804 ≈ 1.0

M3 3.78 [3.74, 3.83] 2.81 [2.68, 3.11] 2.07 [1.92, 2.41] .631 .690 ≈ 1.0

observe that the power of the test rapidly increases with more data sets and the
Type II error probability (β) is essentially zero for as few as N = 5 time series.

As a next step, we pass the reported COVID-19 data between 1 March and
21 April 2020 [13] through the summary network and compute the critical MMD
value for a sampling-based hypothesis test with an α level of .05 (see Fig. 5). The
MMD of the Germany data is well below the critical MMD value (it essentially
lies in the bulk of the distribution), leading to the conclusion that the assumed
training model M is well-specified for this time period.

5 Conclusions

This paper approached a fundamental problem in amortized simulation-based
Bayesian inference, namely, flagging potential posterior errors due to model mis-
specification. We argued that misspecified models might cause so-called simula-
tion gaps, resulting in deviations between simulations during training time and
actual observed data at test time. We further showed that simulation gaps can be
detrimental for the performance and faithfulness of simulation-based inference
relying on neural networks. We proposed to increase the networks’ awareness of
posterior errors by compressing simulations into a structured latent summary
space induced by a modified optimization objective in an unsupervised fashion.
We then applied the maximum mean discrepancy (MMD) estimator, equipped
with a sampling-based hypothesis test, as a criterion to spotlight discrepancies
between model-implied and actually observed distributions in summary space.
While we focused on the application to NPE (BayesFlow implementation [45])
and SNPE (sbi implementation [51]), the proposed method can be easily inte-
grated into other inference algorithms and frameworks as well. Our software
implementations are available in the BayesFlow library (http://www.bayesflow.
org) and can be seamlessly integrated into an end-to-end workflow for amortized
simulation-based inference.
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