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Abstract
Determining the sensitivity of the posterior to perturbations of the prior and likelihood is an important part of the Bayesian
workflow. We introduce a practical and computationally efficient sensitivity analysis approach using importance sampling to
estimate properties of posteriors resulting from power-scaling the prior or likelihood. On this basis, we suggest a diagnostic
that can indicate the presence of prior-data conflict or likelihood noninformativity and discuss limitations to this power-scaling
approach. The approach can be easily included in Bayesianworkflowswithminimal effort by themodel builder andwe present
an implementation in our new R package priorsense. We further demonstrate the workflow on case studies of real data
using models varying in complexity from simple linear models to Gaussian process models.
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1 Introduction

Bayesian inference is characterised by the derivation of a
posterior from a prior and a likelihood. As the posterior
is dependent on the specification of these two components,
investigating its sensitivity to perturbations of the prior and
likelihood is a critical step in the Bayesian workflow (Gel-
man et al. 2020; Depaoli et al. 2020; Lopes and Tobias
2011).Alongwith indicating the robustness of an inference in
general, such sensitivity is related to issues of prior-data con-
flict (Evans andMoshonov 2006; Al Labadi and Evans 2017;
Reimherr et al. 2021) and likelihood noninformativity (Gel-
man et al. 2017; Poirier 1998). Historically, sensitivity
analysis has been an important topic in Bayesian methods
research (e.g. Canavos 1975; Skene et al. 1986; Berger 1990;
Berger et al. 1994;Hill and Spall 1994).However, the amount
of research on the topic has diminished (Watson and Holmes
2016;Berger et al. 2000) and results from sensitivity analyses
are seldom reported in empirical studies employing Bayesian
methods (van de Schoot et al. 2017).We suggest that a reason
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for this is the lack of sensitivity analysis approaches that are
easily incorporated into existing modelling workflows.

In this work, we present a sensitivity analysis approach
that fits into workflows in which modellers use probabilistic
programming languages, such as Stan (Stan Development
Team 2021) or PyMC (Salvatier et al. 2016), and employ
Markov chain Monte Carlo (MCMC) methods to estimate
posteriors via posterior draws (e.g. workflows described in
Grinsztajn et al. 2021; Gelman et al. 2020; Schad et al. 2021).
The number of active users of such frameworks is currently
estimated to be over a hundred thousand (Carpenter 2022).
Weprovide exampleswithmodels that are commonlyusedby
this community, but the general principles are not tied to any
specificmodel or prior families. Furthermore, as the approach
focuses on MCMC-based workflows, analytical derivations
that would rely on conjugate priors or specificmodel families
are not the focus and are not presented here.

A common workflow is to begin with a base model with
template or ‘default’ priors, and iteratively build more com-
plex models (Gelman et al. 2020). Recommended template
priors, and default priors in higher-level interfaces to Stan
and PyMC, such as rstanarm (Goodrich et al. 2020),
brms (Bürkner 2017), and bambi (Capretto et al. 2022),
are designed to be weakly informative and should work well
when the data is highly informative so that the likelihood
dominates. However, the presence of prior and likelihood
sensitivity should still be checked, as no prior can be univer-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-023-10366-5&domain=pdf


57 Page 2 of 27 Statistics and Computing (2024) 34 :57

Fig. 1 Example of our power-scaling sensitivity approach. Here, the
prior is power-scaled, and the effect on the posterior is shown. In
this case the prior is normal(0, 2.5) and the likelihood is equivalent

to normal(5, 1). Power-scaling the prior by different α values (in this
case 0.5 and 2.0) shifts the posterior (shaded for emphasis), indicating
prior sensitivity

sally applicable. Considering the prevalence of default priors,
a tool that assists in checking for prior (and likelihood) sen-
sitivity is a valuable contribution to the community.

User-guided sensitivity analysis can be performed by fit-
ting models with different specified perturbations to the prior
or likelihood (Spiegelhalter et al. 2003), but this can require
substantial amounts of both user and computing time (Pérez
et al. 2006; Jacobi et al. 2018). Using more computation-
ally efficient methods can reduce the computation time, but
existing methods, while useful in many circumstances, are
not always applicable. They are focused on particular types
of models (Roos et al. 2021; Hunanyan et al. 2022) or
inference mechanisms (Roos et al. 2015), rely on manual
specification of perturbations (McCartan 2022), require sub-
stantial or technically complex changes to the model code
that hinderwidespread use (Giordano et al. 2018; Jacobi et al.
2018), or may still require substantial amounts of computa-
tion time (Ho 2020; Bornn et al. 2010).

Wepresent a complementary sensitivity analysis approach
that aims to

• be computationally efficient;
• be applicable to a wide range of models;
• provide automated diagnostics;
• require minimal changes to existing model code and
workflows.

We emphasise that the approach should not be used for
repeated tuning of priors until diagnostic warnings no longer
appear. Instead, the approach should be considered as a diag-
nostic to detect accidentally misspecified priors (for example
default priors) and unexpected sensitivities or conflicts. The

reaction to diagnostic warnings should always involve care-
ful consideration about domain expertise, priors, and model
specification.

Our proposed approach uses importance sampling to esti-
mate properties of perturbed posteriors that result from
power-scaling (exponentiating by some α > 0) the prior
or likelihood (see Fig. 1). We use a variant of importance
sampling (Pareto smoothed importance sampling; PSIS) that
is self-diagnosing and alerts the user when estimates are
untrustworthy (Vehtari et al. 2022). We propose a diagnostic,
based on the change to the posterior induced by this pertur-
bation, that can indicate the presence of prior-data conflict
or likelihood noninformativity. Importantly, as long as the
changes to the priors or likelihood induced by power-scaling
are not too substantial, the procedure does not require refit-
ting the model, which drastically increases its efficiency. The
envisioned workflow is as follows (also see Fig. 2):

(1) Fit a base model (either a template model or a manually
specified model) to data, resulting in a base posterior
distribution.

(2, 3) Estimate properties of perturbed posteriors that result
from separately power-scaling the prior and likelihood.

(4, 5) Evaluate the extent the perturbed posteriors differ from
the base posterior numerically and visually.

(6) Diagnose based on the pattern of prior and likelihood
sensitivity.

(7) Reevaluate the assumptions implied by the base model
and potentially modify it (and repeat (1)–(6)).

(8) Continuewith use of themodel for its intended purpose.
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Fig. 2 Workflow of our
proposed sensitivity analysis
approach

2 Details of the approach

2.1 Power-scaling perturbations

The proposed sensitivity analysis approach relies on sep-
arately perturbing the prior or likelihood through power-
scaling (exponentiating by some α > 0 close to 1). This
power-scaling is a controlled, distribution-agnostic method
of modifying a probability distribution. Intuitively, it can be
considered to weaken (when α < 1) or strengthen (when
α > 1) the component being power-scaled in relation to
the other. Although power-scaling changes the normalis-
ing constant, this is not a concern when using Monte Carlo
approaches for estimating posteriors via posterior draws. Fur-
thermore, while the posterior can become improper when α

approaches 0, this is not an issue as we only consider values
close to 1.

For all non-uniform distributions, as α diverges from 1,
the shape of the distribution changes. However, it retains the
support of the base distribution (if the density at a point in the
base distribution is zero, raising it to any powerwill still result
in zero; likewise any nonzero density will remain nonzero).

The power-scaling approach is not dependent on the
form of the distribution family and will work providing
that the distribution family is non-uniform (distributions
with parameters controlling the support will only be power-
scaled with respect to the base support). To provide intuition,
we present analytically how power-scaling affects several
exponential family distributions commonly used as priors
(Fig. 3 and Table 1). For instance, a normal distribution,
normal(θ | μ, σ) ∝ exp (− 1

2 (
θ−μ

σ
)2), when power-scaled

by some α > 0 simply scales the σ parameter by α−1/2, thus
normal(θ | μ, σ)α ∝ normal(θ | μ, α−1/2σ).

Power-scaling, while effective, is only able to perturb a
distribution in a particular manner. For example, it is not
possible to directly shift the location of a distribution via
power-scaling, without also changing other aspects. Like
most diagnostics, when power-scaling sensitivity analysis
does not indicate sensitivity, this only means that it could
not detect sensitivity to power-scaling, not that the model
is certainly well-behaved or insensitive to other types of
perturbations. Nevertheless, power-scaling remains an intu-
itive perturbation as it mirrors increasing or decreasing the
strength of prior beliefs or amount of data.

2.2 Power-scaling priors and likelihoods

In the context of prior perturbations, the properties of
power-scaling are desirable as slight perturbations from
power-scaling result in distributions that likely represent sim-
ilar implied assumptions to those of the base distribution.
A set of slightly perturbed priors can thus be considered a
reasonable class of distributions for prior sensitivity analy-
sis (see Berger 1990; Berger et al. 1994).

In order for the sensitivity analysis approach to be inde-
pendent of the number of parameters in the model, all priors
could be power-scaled simultaneously. However, in some
cases, certain priors should be excluded from this set or
others selectively power-scaled. For example, in hierarchi-
cal models, power-scaling both top- and intermediate-level
priors can lead to unintended results. To illustrate this, con-
sider two forms of prior, a non-hierarchical prior with two
independent parameters p(θ) p(φ) and a hierarchical prior
of the form p(θ | φ) p(φ). In the first case, the appropriate
power-scaling for the prior is p(φ)α p(θ)α , while in the sec-
ond, only the top level prior should be power-scaled, that is,
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Fig. 3 The effect of power-scaling on exponential family distributions
commonly used as priors. In each case, the resulting distributions can
be expressed in the same form as the base distribution with modified

parameters. The power-scaling approach is not tied to specific distribu-
tion families, and these formulations are provided for intuition

Table 1 Forms of power-scaled distributions for common distributions

Base Power-scaled

exponential(θ | λ) ∝ exponential(θ | αλ)

normal(θ | μ, σ) ∝ normal(θ | μ, α−1/2σ)

beta(θ | s1, s2) ∝ beta(θ | αs1 − α + 1, αs2 − α + 1)

gamma(θ | s1, s2) ∝ gamma(θ | αs1 − α + 1, αs2)

p(θ | φ) p(φ)α . If the prior p(θ | φ) is also power-scaled,
θ will be affected by the power-scaling twice, directly and
indirectly, perhaps even in opposite directions depending on
the parameterisation.

For the likelihood, power-scaling acts as an approximation
for decreasing or increasing the number of (condition-
ally independent) observations, akin to data cloning (Lele
et al. 2007) and likelihood weighting (Greco et al. 2008;
Agostinelli and Greco 2013). Power-scaling can be per-
formed on the joint likelihood, or the likelihood contribution
from a subset of observations or a single observation. High
likelihood sensitivity for single observations may indicate
those are more influential than others. For hierarchical
models, high sensitivity of group-level parameters to power-
scaling likelihood contributions of a specific group can
indicate that group is an outlier. In models with parameters
informed by different subsets of data, such as evidence syn-
thesis models (Presanis et al. 2008), comparing the effects on
a shared parameter of power-scaling the likelihood contribu-
tions of different data subsets can highlight conflict between
the subsets.

2.3 Estimating properties of perturbed posteriors

As the normalizing constant for the posterior distribution
can rarely be computed analytically in real-world analyses,

our approach assumes that the base posterior is approxi-
mated using (Markov chain) Monte Carlo draws (workflow
step 1, see Fig. 2). These draws are used to estimate prop-
erties of the perturbed posteriors via importance sampling
(workflow steps 2 and 3, see Fig. 2). Importance sampling
is a method to estimate expectations of a target distribu-
tion by weighting draws from a proposal distribution (Robert
and Casella 2004). After computing these weights, there are
several possibilities for evaluating sensitivity. For example,
different summaries of perturbed posteriors can be computed
directly, or resampled draws can be generated using impor-
tance resampling (Rubin 1988).

Importance sampling as a method for efficient sensitiv-
ity analysis has been previously described by Berger et al.
(1994); Besag et al. (1995);O’Neill (2009); Tsai et al. (2011).
However, one limitation of importance sampling is that it can
be unreliable when the variance of importance weights is
large or infinite. Hence, as described by Berger et al. (1994),
relying on importance sampling to estimate a posterior result-
ing from a perturbed prior or likelihood, without controlling
the width of the perturbation class (e.g. through a continu-
ous parameter to control the amount of perturbation, α in our
case) is likely to lead to unstable estimates.

To further alleviate issues with importance sampling, we
use Pareto smoothed importance sampling (PSIS; Vehtari
et al. 2022), which stabilises the importance weights in an
efficient, self-diagnosing and trustworthy manner by mod-
elling the upper tail of the importance weights with a
generalised Pareto distribution. In cases where PSIS does
not perform adequately, weights are adaptedwith importance
weighted moment matching (IWMM; Paananen et al. 2021),
which is a generic adaptive importance sampling algorithm
that improves the implicit proposal distribution by itera-
tive weighted moment matching. The combination of using
a continuous parameter to control the amount of perturba-
tion, along with PSIS and IWMM, allows for a reliable and
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self-diagnosingmethod of estimating properties of perturbed
posteriors.

2.3.1 Calculating importance weights for power-scaling
perturbations

Consider an expectation of a function h of parameters θ ,
which come from a target distribution f (θ):

E f [h(θ)] =
∫

h(θ) f (θ)dθ. (1)

In cases when draws can be generated from the target dis-
tribution, the simple Monte Carlo estimate can be calculated
from a sequence of S draws from f (θ):

E f [h(θ)] ≈ 1

S

S∑
s=1

h(θ(s)),where θ(s) ∼ f (θ). (2)

As an alternative to calculating the expectation directly with
draws from f (θ), the importance sampling estimate instead
uses draws from a proposal distribution g(θ) and the ratio
between the target and proposal densities, known as the
importance weightsw. The self-normalised importance sam-
pling estimate does not require known normalising constants
of the target or proposal. Thus, it is well suited for use in the
context of probabilistic programming languages, which do
not calculate these:

E f [h(θ)] ≈
∑S

s=1 h(θ(s))
f (θ(s))

g(θ(s))∑S
s=1

f (θ(s))

g(θ(s))

=
∑S

s=1 h(θ(s))w(s)

∑S
s=1 w(s)

,

where θ(s) ∼ g(θ). (3)

In the context of power-scaling perturbations, the proposal
distribution is the base posterior and the target distribution is
a perturbed posterior resulting frompower-scaling. If the pro-
posal and target distributions are expressed as the products
of the prior p(θ) and likelihood p(y | θ), with one of these
components raised to the power of α, the importance sam-
pling weights only depend on the density of the component
being power-scaled. For prior power-scaling, the importance
weights are

w(s)
αpr

= p(θ(s))α p(y | θ(s))

p(θ(s))p(y | θ(s))

= p(θ(s))α−1. (4)

Analogously, the importance weights for likelihood power-
scaling are

w(s)
αlik

= p(y | θ(s))α−1. (5)

As the importance weights are only dependent on the density
of the power-scaled component at the location of the proposal
draws, they are easy to compute for a range of α values.
See Appendix B for practical implementation details about
computing the weights.

2.4 Measuring sensitivity

There are different ways to evaluate the effect of power-
scaling perturbations on a posterior (workflow steps 4 and 5,
see Fig. 2). Here we present two options: first, a method that
investigates changes in specific posterior quantities of inter-
est (e.g. mean and standard deviation), and second, a method
based on the distances between the base marginal posteriors
and the perturbedmarginal posteriors. Thesemethods should
not be considered competing, but rather allow for different
levels of sensitivity analysis, and depending on the context
and what the modeller is interested in, one may be more use-
ful than the other. Importantly, the proposed power-scaling
approach is not tied to any particular method of evaluat-
ing sensitivity. These methods are our suggestions, but once
quantities or weighted draws from perturbed posteriors are
computed, a multitude of comparisons to the base posterior
and other posteriors can be performed.

2.4.1 Quantity-based sensitivity

In somecases it can bemost useful to investigate sensitivity of
particular quantities of interest. Expectations of interest for a
perturbed posterior can be calculated from the base draws and
the importance weights using Equation (3). Other quantities
that are not expectations (such as the median and quantiles)
can be derived from the weighted empirical cumulative dis-
tribution function (ECDF). Computed quantities can then be
compared based on the specific interests of the modeller, or
local sensitivity can be quantified by derivatives with respect
to the perturbation parameter α.

2.4.2 Distance-based sensitivity

We can investigate the sensitivity of marginal posteriors
using a distance-based approach. Here, we follow previous
work which has quantified sensitivity based on the distance
between the base and perturbed posteriors (O’Hagan 2003;
Al Labadi et al. 2021; Kurtek and Bharath 2015). In prin-
ciple, many different divergence or distance measures can
be used, although there may be slight differences in inter-
pretation (see, for example van de Schoot 2019; Cha 2007),
however, the cumulative Jensen–Shannon divergence (CJS;
Nguyen and Vreeken 2015) has two properties that make
it appropriate for our use case. First, its symmetrised form
is upper-bounded, like the standard Jensen–Shannon diver-
gence (Lin 1991), which aids interpretation. Second, instead
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of comparing probability density functions (PDFs) or empiri-
cal kernel density estimates, as the standard Jensen–Shannon
divergence does, it compares cumulative distribution func-
tions (CDFs) or ECDFs, which can be efficiently estimated
fromMonte Carlo draws. Although PDFs could be estimated
from the draws using kernel density estimation and then
the standard Jensen–Shannon distance used, this relies on
smoothness assumptions and may require substantially more
draws to be accurate, and lead to artefacts otherwise (for fur-
ther discussion of the benefits of ECDFs, see, for example
Säilynoja et al. 2022).

Given two CDFs P(θ) and Q(θ),

CJS(P(θ)‖Q(θ)) =
∫

P(θ) log2

(
2P(θ)

P(θ) + Q(θ)

)
dθ

+ 1

2 ln(2)

∫
(Q(θ) − P(θ)) dθ . (6)

As a distancemeasure, we use the symmetrised andmetric
(square root) version of CJS, normalised with respect to its
upper bound, such that it is bounded on the 0 to 1 interval (for
further details see Nguyen and Vreeken 2015):

CJSdist(P(θ)‖Q(θ))

=
√
CJS(P(θ)‖Q(θ))+CJS(Q(θ)‖P(θ))∫

(P(θ)+Q(θ)) dθ
. (7)

As CJS is not invariant to the sign of the parame-
ter values, CJS(P(θ)‖Q(θ)) �= CJS(P(−θ)‖Q(−θ)), we
use max(CJSdist(P(θ)‖Q(θ)),CJSdist(P(−θ)‖Q(−θ))) to
account for this and ensure applicability regardless of pos-
sible transformations applied to posterior draws that may
change the sign.

In our approach, we compare the ECDFs of the base pos-
terior to the perturbed posteriors. The ECDF of the base
posterior is estimated from the base posterior draws, whereas

the ECDFs of the perturbed posteriors are estimated by
first weighting the base draws with the importance weights.
The ECDF is a step-function derived from the draws. In an
unweighted ECDF, the heights of each step are all equal to
1/S, where S is the number of draws. In the weighted ECDF,
theheights of the steps are equal to thenormalised importance
weights of each draw. As described by Nguyen and Vreeken
(2015), when using ECDFs, the integrals in Eqs. (6) and (7)
reduce to sums, which allows for efficient computation.

2.4.3 Local sensitivity

Both distance-based and quantity-based sensitivity can be
evaluated for any α value. It is also possible to obtain an
overall estimate of sensitivity at α = 1 by differentiation.
This follows previous work which defines the local sen-
sitivity as the derivative with respect to the perturbation
parameter (Gustafson 2000; Maroufy and Marriott 2015;
Sivaganesan 1993; Giordano et al. 2018). For power-scaling,
we suggest considering the derivative with respect to log2(α)

as it captures the symmetry of power-scaling around α = 1
and provides values on a natural scale in relation to halving
or doubling the log density of the component.

Because of the simplicity of the power-scaling procedure,
local sensitivity at α = 1 can be computed analytically with
importance sampling for certain quantities, such as the mean
and variance, without knowing the analytical form of the
posterior. This allows for a highly computationally efficient
method to probe for sensitivity in common quantities before
performing further sensitivity diagnostics. For quantities that
are computed as an expectation of some function h, the
derivative at α = 1 can be computed as follows. We denote
the power-scaling importanceweights as pps(θ(s))α−1,where
pps(θ(s)) is the density of the power-scaled component,
which can be either the prior or likelihood depending on
the type of scaling. Then

∑S
s=1 h(θ(s))pps(θ(s))α−1

∑S
s=1 pps(θ

(s))α−1

∂

∂ log2(α)

∣∣∣∣∣
α=1

=
(∑S

s=1 α ln(2)h(θ(s))pps(θ(s))α−1 ln(pps(θ(s)))
) (∑S

s=1 pps(θ
(s))α−1

)
(∑S

s=1 pps(θ
(s))α−1

)2
∣∣∣∣∣∣∣
α=1

−
(∑S

s=1 h(θ(s))pps(θ(s))α−1
) (∑S

s=1 α ln(2)pps(θ(s))α−1 ln(pps(θ(s)))
)

(∑S
s=1 pps(θ

(s))α−1
)2

∣∣∣∣∣∣∣
α=1

= ln(2)

(
1

S

S∑
s=1

ln(pps(θ
(s)))h(θ(s)) −

(
1

S

S∑
s=1

h(θ(s))

) (
1

S

S∑
s=1

ln(pps(θ
(s)))

))
.

123



Statistics and Computing (2024) 34 :57 Page 7 of 27 57

Consider for example that we are interested in the sen-
sitivity of the posterior mean of the parameters θ . For
power-scaling the prior, the derivative of the mean with
respect to log2(α) at α = 1 is then

Dmean = ln(2)

(
1

S

S∑
s=1

ln(p(θ(s)))θ(s)

−
(
1

S

S∑
s=1

θ(s)

)(
1

S

S∑
s=1

ln(p(θ(s)))

))
. (8)

As with quantity-based sensitivity, distance-based sensi-
tivity can also be quantified by taking the corresponding
derivative. CJSdist increases from 0 as α diverges from 1
(approximately linearly in log scale) and its derivative is dis-
continuous at α = 1. As a measure of local power-scaling
sensitivity, we take the average of the absolute derivatives of
the divergence in the negative and positive α directions, with
respect to log2(α). We approximate this numerically from
the ECDFs with finite differences:

D = 1

2

(∣∣∣∣ f (x − �x) − f (x)

−�x

∣∣∣∣ +
∣∣∣∣ f (x + �x) − f (x)

�x

∣∣∣∣
)

DCJS =
CJSdist(P̂1(θ)‖P̂1/(1+δ)(θ)) + CJSdist(P̂1(θ)‖P̂1+δ(θ))

2 log2(1 + δ)
,

where P̂1(θ) is the ECDF of the base posterior (when α = 1),
P̂1/(1+δ)(θ) is the weighted ECDF when α = 1/(1 + δ) and
P̂1+δ(θ) is the weighted ECDF when α = 1 + δ, where δ

is the step size for the finite difference. For implementation
we use step size δ = 0.01 following Hunanyan et al. (2022)
which worked well in our experiments, but can adjusted if
needed (e.g. decreased if the importance sampling estimates
are unreliable).

2.4.4 Diagnostic threshold

The diagnostic DCJS is a continuous value based on the differ-
ences between ECDFs, so it is not tied to specific properties
of the posterior and should be generic (Fig. 16 in Appendix A
shows pairs of ECDFs all with the same CJS dist). For ease
of use, it can be helpful to have a threshold to define when
to provide warnings to the user. We found a threshold of
DCJS ≥ 0.05 to be a reasonable indication of sensitivity

based on our experiments. However, as with many continu-
ous diagnostics, a threshold should be considered as a guide
and may be adjusted by the user depending on the context,
how concerned a modeller is with sensitivity, or to reflect
what constitutes a meaningful change in the specific model.

Distance metrics (and corresponding sensitivity diagnos-
tics) can be calibrated and transformed with respect to
perturbing a known distribution, such as a standard nor-
mal (e.g. Roos et al. 2015). While we do not transform the
value of DCJS directly, a comparison with the normal distri-
bution can aid interpretation: For a standard normal, a DCJS

of 0.05 corresponds to the mean being shifted by more than
approximately 0.3 standard deviations, or the standard devi-
ation differing by a factor greater than approximately 0.3,
when the power-scaling α is changed by a factor of two.

2.5 Diagnosing sensitivity

Sensitivity can be diagnosed by comparing the amount of
exhibited prior and likelihood sensitivity (workflow step 6,
see Table 2). When a model is well-behaved, it is expected
that there will be likelihood sensitivity, as power-scaling the
likelihood is analogous to changing the number of (condi-
tionally independent) observations. In hierarchical models,
it is important to recognise that this is analogous to changing
the number of observationswithin each group, rather than the
number of groups. As such, in hierarchical models, lack of
likelihood sensitivity based on power-scaling does not nec-
essarily indicate that the likelihood is weak overall. As there
can be relations between parameters, the pattern of sensitiv-
ity for a single parameter should be considered in the context
of others. Cases in which the posterior is insensitive to both
prior and likelihood power-scaling (i.e. uninformative prior
with likelihood noninformativity) will likely be detectable
from model fitting issues, and are not further addressed by
our approach.

Likelihood domination (the combination of a weakly
informative or diffuse prior combined with a well-behaving
and informative likelihood) will result in likelihood sensitiv-
ity but no prior sensitivity. This indicates that the posterior is
mostly reliant on the data and likelihood rather than the prior
(see Fig. 4). This is the outcome that default priors aim for,
as the prior has little influence on the posterior.

In contrast, prior sensitivity can result from two primary
causes, both of which are indications that the model may
have an issue: 1) prior-data conflict and 2) likelihood non-

Table 2 The interplay between
prior sensitivity and likelihood
sensitivity can be used to
diagnose the cause

Prior sensitivity
No Yes

Likelihood sensitivity No Likelihood noninformativity

Yes Likelihood domination Prior-data conflict

123



57 Page 8 of 27 Statistics and Computing (2024) 34 :57

Fig. 4 A weakly informative normal(0, 10) prior and a well-behaving
normal(5, 1) likelihood lead to likelihood domination. This is indicated
by little to no prior sensitivity and expected likelihood sensitivity. This
is the outcome that many default priors aim for, as the prior has little

influence on the posterior. Top row: the prior is power-scaled; bottom
row: the likelihood is power-scaled. Note that in the figure the likelihood
and posterior densities are almost completely overlapping

informativity. In the case of prior-data conflict, the posterior
will exhibit both prior and likelihood sensitivity, whereas in
the case of likelihood noninformativity (in relation to the
prior) there will be some marginal posteriors which are not
as sensitive to likelihood power-scaling as they are to prior
power-scaling (or not at all sensitive to likelihood power-
scaling).

Prior-data conflict (Walter and Augustin 2009; Evans and
Moshonov 2006; Nott et al. 2020) can arise due to intention-
ally or unintentionally informative priors disagreeing with,
but not being dominated by, the likelihood. When this is
the case, the posterior will be sensitive to power-scaling
both the prior and the likelihood, as illustrated in Fig. 5.
When prior-data conflict has been detected, the modeller
may wish to modify the model by using a less informative
prior (e.g., Evans and Jang 2011; Nott et al. 2020) or using
heavy-tailed distributions (e.g., Gagnon 2022; O’Hagan and
Pericchi 2012).

The presence of prior sensitivity but relatively low (or
no) likelihood sensitivity is an indication that the likelihood
is weakly informative (or noninformative) in relation to the
prior. This can occur, for example, when there is complete
separation in a logistic regression. The simplest case of com-
plete separation occurs when there are observations of only
one class. For example, suppose a researcher is attempting

to identify the occurrence rate of a rare event in a new popu-
lation. Based on previous research, it is believed that the rate
is close to 1 out of 1000. The researcher has since collected
100 observations from the new population, all of which are
negative. As the data are only of one class, the posterior will
then exhibit prior sensitivity as the likelihood is relatively
weak. In the case of weakly informative or noninformative
likelihood, the choice of prior will have a direct impact on the
posterior and is therefore of a greater importance and should
be considered carefully. In some cases, the likelihood (or the
data)may not be problematic in and of itself, but if the chosen
prior is highly informative and dominates the likelihood, the
posterior may be relatively insensitive to power-scaling the
likelihood. As such, when interpreting sensitivity it is impor-
tant to consider both the prior and the likelihood and the
interplay between them (see related discussion by Gelman
et al. 2017).

2.5.1 Sensitivity for parameter combinations and other
quantities

As discussed, sensitivity can be evaluated for each marginal
distribution separately in a relatively automatedmanner. This
approach may lead to interpretation issues when individual
parameters are by definition not informed by the likelihood,
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Fig. 5 Conflict between t4(0, 2.5) prior and t4(5, 1) likelihood, results in the posterior (shaded for emphasis) being sensitive to both prior and
likelihood power-scaling. Top row: the prior is power-scaled; bottom row: the likelihood is power-scaled

or are not readily interpretable. In the case when the likeli-
hood may be informative for a combination of parameters,
but not any of the parameters individually, it can be useful to
perform a whitening transformation (such as principle com-
ponent analysis) (Kessy et al. 2018) on the posterior draws
and then investigate sensitivity in the compressed parameter
space. This can indicate which parameter combinations are
sensitive to likelihood perturbations, indicating that they are
jointly informed by the likelihood, and which are not.

Thiswhitening approachworkswhen there are fewparam-
eters, but as the number of parameters grows, the compressed
components can be more difficult to interpret. Instead, in
more complex cases, we suggest the modeller focus on tar-
get quantities of interest. For example, in the case ofGaussian
process regression or models specifically focused on predic-
tions, it can be more useful to investigate the sensitivity of
predictive distributions (Paananen et al. 2021, 2019) than
posterior distributions of model parameters.

3 Software implementation

Our approach for power-scaling sensitivity analysis is imple-
mented in priorsense (https://github.com/n-kall/prior
sense), our new R (R Core Team 2022) package for prior
sensitivity diagnostics. The implementation focuses onmod-
els fit with Stan (Stan Development Team 2021), but it can
be extended to work with other probabilistic programming

frameworks that provide similar functionality. The package
includes numerical diagnostics and graphical representa-
tions of changes in posteriors. These are available for both
distance- and quantity-based sensitivity. Further details on
the usage and implementation are included in Appendix B.

4 Simulations

Here we present two simulations demonstrating how the
diagnostic DCJS performs in two scenarios: (a) when the like-
lihood corresponds to the true model, but the data realisation
may weakly inform some parameters, and (b) when the prior
is changed to be in increasing conflict with the likelihood.
We show that the diagnostic can detect these two cases.

4.1 Separation simulation

Wegenerated 1000 data realisations of N = 25 observations,
with the following structure:

x1,i ∼ uniform(−1, 1), x2,i ∼ uniform(−1, 1),

Yi ∼ Bernoulli(pi ), log

(
pi

1 − pi

)
= x1,i + x2,i .
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Fig. 6 Relationship between
data separability and sensitivity
in the separation simulation.
ncomplete is the minumum
number of observations that
need to be removed to result in
complete separation. Each point
represents the mean over the
data realisations for which the
ncomplete were equal

We then fit a Bernoulli logit model to each realisation as
follows:

Yi ∼ Bernoulli(pi ), log

(
pi

1 − pi

)
= β0 +

2∑
k=1

βk xk,i

β0 ∼ normal(0, 10), βk ∼ normal(0, 2.5).

The model is correctly specified and matches the data
generating process. However, a single realisation of 25 obser-
vations may be weakly informative due to complete or
near-complete separation.

For each data realisation, we compare the a measure of
separation ncomplete (Christmann and Rousseeuw 2001), to
the power-scaling sensitivity diagnostic DCJS. ncomplete is
defined as the minimum number of observations that need
to be removed to result in complete separation. As shown in
Fig. 6, separability induced high sensitivity. When the data is
completely or nearly separable, the prior sensitivity is high
and when the data is far from completely separable, the prior
sensitivity is low.

4.2 Conflict simulation

We generate 100 data realisations of N = 25 observations,
with the following structure, for k ∈ 1, 2, 3, 4:

xk,i ∼ normal(0, 1), yi ∼ normal(μi , 1), μi = 0.25x1,i
+0.25x2,i + 0.25x3,i + 0.25x4,i .

We then transform each data realisation such that x1,i ←
x1,i/c and x2,i ← x2,i/c, for c ∈ {0.25, 0.5, 1, 2, 4} to
change the scale of the x1 and x2 variables and the corre-
sponding coefficients, but not the values of y. We then fit the

following model to each transformed data set:

yi ∼ normal(μi , 1), μi = β0 +
4∑

k=1

xk,iβk ,

β0 ∼ t3(0, 2.5), βk ∼ normal(0, 1).

The model is well specified in the sense that the parameter
space of the model includes the parameter value of the data
generating process.

As c is increased, the priors on β1 and β2 will begin to
conflict with the likelihood from finite data. We investigate
the effect of this increase on the power-scaling sensitivity
diagnostic DCJS for each regression coefficient.

As shown in Fig. 7, the coefficients for the scaled predic-
tors (β1, β2) exhibit different degrees of sensitivity depend-
ing on the degree of scaling. Prior sensitivity increases as
the scaling factor increases, indicating prior-data conflict.
Importantly, likelihood sensitivity decreases when c = 4,
indicating that the prior is beginning to dominate the like-
lihood. As expected, the other coefficients (β3, β4), do not
exhibit sensitivity or changes in sensitivity.

5 Case studies

In this section, we show how priorsense can be used in
a Bayesian model building workflow to detect and diagnose
prior sensitivity in realistic models fit to real data (corre-
sponding data and code are available at https://github.com/n-
kall/powerscaling-sensitivity). We present a variety of mod-
els and show sensitivity diagnostics for different quantities,
including regression coefficients (Sects. 5.1 and 5.2), scale
parameters (Sects. 5.1, 5.3, 5.4), model fit (Sect. 5.5), and
posterior predictions (Sects. 5.4 and 5.6).
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Fig. 7 Relation between
scaling the covariates and the
sensitivity. Each point
represents the mean of 100
model fits (using different data
realisations)

We use the brms package (Bürkner 2017), which is a
high-level R interface to Stan, to specify and fit the simpler
regression models and Stan directly for the more complex
models. Unless further specified, we use Stan to generate
posterior draws using the default settings (4 chains, 2000 iter-
ations per chain, half discarded as warm-up). Convergence
diagnostics and effective sample sizes are checked for all
model fits (Vehtari et al. 2021), and sampling parameters
are adjusted to relieve any identified issues before proceed-
ing with sensitivity analysis. As the quantitative indication of
sensitivity,weuse DCJS and the threshold of 0.05 as described
in Sect. 2.4, but we also present graphical checks.

5.1 Body fat (linear regression)

This case study shows a situation inwhich prior-data conflict
can be detected by power-scaling sensitivity analysis. This
conflict results from choosing priors that are not of appropri-
ate scales for some predictors. For this case study, we use the
bodyfat data set (Johnson 1996), which has previously
been the focus of variable selection experiments (Pavone
et al. 2022; Heinze et al. 2018). The aim of the analysis is to
predict an expensive and cumbersomewater immersionmea-
surement of body fat percentage from a set of thirteen easier
tomeasure characteristics, including age, height, weight, and
circumferences of various body parts.

We begin with a linear regression model to predict body
fat percentage from the aforementioned variables. By default,
in brms the β0 (intercept) and σ parameters are given
data-derived weakly informative priors, and the regression
coefficients are given improper flat priors. Power-scaling
will not affect flat priors, so we specify proper priors for
the regression coefficients. We specify the same prior for all
coefficients, normal(0, 1), which does not seem unreason-

able based on preliminary prior-predictive checks. We arrive
at the following model:

yi ∼ normal(μi , σ ), μi = β0 +
13∑
k=1

βk xk,i ,

β0 ∼ t3(0, 9.2), βk ∼ normal(0, 1), σ ∼ t+3 (0, 9.2).

From the marginal posteriors, there do not appear to be
issues, and all estimates are in reasonable ranges (Fig. 17).
Power-scaling sensitivity analysis, performed with the
powerscale_sensitivity function, however, shows
that there is both prior sensitivity and likelihood sensitivity
for one of the parameters, βwrist (Table 3). This indicates that
there may be prior-data conflict.

We then check how the ECDF of the posterior is
affected by power-scaling of the prior and likelihood. In
priorsense, this is done creating a sequence of weighted
draws (for a sequence of α values) using
powerscale_sequence, and then plotting this sequence
with powerscale_plot_ecdf (Fig. 8, left). We see that
the posterior is sensitive to both prior and likelihood power-
scaling, and that it shifts right (towards zero) as the prior
is strengthened, and left (away from zero) as the likelihood
is strengthened. This is an indication of prior-data conflict,
which can be further seen by plotting the change in quan-
tities using powerscale_plot_quantities (Fig. 9).
Prior-data conflict is evident by the ‘X’ shape of the mean
plot, as the mean is shifting in opposite directions. As there
is prior sensitivity arising from prior-data conflict, which is
unexpected and unintentional as our priors were chosen to be
weakly informative, we consider modifying the priors. On
inspecting the raw data, we see that although the predictor
variables are all measured on similar scales, the variances of
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Table 3 Sensitivity diagnostic
values for the body fat case
study

Parameter Original prior Adjusted prior
Prior sensitivity Likelihood sensitivity Prior sensitivity Likelihood sensitivity

βwrist 0.12 0.09 0.00 0.08

βweight 0.02 0.12 0.00 0.09

βthigh 0.01 0.08 0.00 0.10

βneck 0.01 0.11 0.00 0.09

βknee 0.01 0.1 0.00 0.08

βhip 0.01 0.11 0.00 0.09

βheight 0.00 0.09 0.00 0.08

βforearm 0.02 0.12 0.00 0.09

βchest 0.01 0.08 0.00 0.09

βbiceps 0.01 0.09 0.00 0.08

βankle 0.02 0.1 0.00 0.09

βage 0.03 0.12 0.00 0.08

βabdomen 0.00 0.09 0.00 0.10

βintercept 0.00 0.07 0.00 0.10

σ 0.00 0.19 0.00 0.20

Higher sensitivity values indicate greater sensitivity
Prior sensitivity above 0.05 indicates informative prior (bold)
Likelihood sensitivity below 0.05 indicates weak or noninformative likelihood

the variables differ substantially. For example, the variance of
wrist circumference is 0.83, while the variance of abdomen
is 102.65. This leads to our chosen prior to be unintentionally
informative for some of the regression coefficients, including
wrist, while being weakly informative for others. To account
for this, we refit the model with priors empirically scaled to
the data, βk ∼ normal(0, 2.5sy/sxk ), where sy is the standard
deviation of y and sxk is the standard deviation of predic-
tor variable xk . This corresponds to the default priors used
for regression models in the rstanarm package (Goodrich
et al. 2020), as described in Gelman et al. (2020) and Gabry
andGoodrich (200).We refit themodel and see that the poste-
rior mean for βwrist changes from−1.45 to−1.86, indicating
that the basepriorwas indeedunintentionally informative and
in conflict with the data, pulling the estimate towards zero.
Power-scaling sensitivity analysis on the adjusted model fit
shows that there is no longer prior sensitivity, and there is
appropriate likelihood sensitivity (Table 3, Fig. 8 right).

This is a clear example of how power-scaling sensitivity
analysis can detect and diagnose prior-data conflict. Unin-
tentionally informative priors resulted in the conflict, which
could not be detected by only inspecting the posterior esti-
mates of the base model. Once detected and diagnosed,
the model could be adjusted and analysis could proceed. It
is important to emphasise that the model was modified as
the original priors were unintentionally informative. If the
original priors had been manually specified based on prior
knowledge, it may not have been appropriate to modify the
priors after observing the sensitivity, as the precise prior spec-
ification would be an inherent part of the model.

5.2 Banknotes (logistic regression)

This case study is an example of using power-scaling
sensitivity analysis to detect and diagnose likelihood non-
informativity. We use the banknote data set (Flury and
Riedwyl 1988) available from themclust package (Scrucca
et al. 2016), which contains measurements of six properties
of 100 genuine (Y = 0) and 100 counterfeit (Y = 1) Swiss
banknotes. We fit a logistic regression on the status of a note
based on thesemeasurements. For priors, we use the template
priors normal(0, 10) for the intercept and normal(0, 2.5/sxk )
for the regression coefficients, where sxk is the standard devi-
ation of predictor k. The model is then

Yi ∼ Bernoulli(pi ), log

(
pi

1 − pi

)
= β0 +

6∑
k=1

βk xk,i ,

β0 ∼ normal(0, 10), βk ∼ normal(0, 2.5/sxk ).

Power-scaling sensitivity analysis indicates prior sensi-
tivity for all predictor coefficients (Table 4). Furthermore,
most exhibit low likelihood sensitivity, indicating a weak
likelihood. In a Bernoulli model, this may arise if the binary
outcome is completely separable by the predictors. This
can be confirmed using the detectseparation pack-
age (Kosmidis and Schumacher 2021), which detects infinite
maximum likelihood estimates (caused by separation) in
binary outcome regression models without fitting the model.
Indeed, according to this method, the data set is completely
separable and the prior sensitivity will remain, regardless of
choice of prior. As shown in the simulation study in Sect. 4.1,
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Fig. 8 Power-scaling
diagnostic plot of marginal
ECDFs for posterior βwrist in the
body fat case study. (Left)
Original prior; There is both
prior and likelihood sensitivity,
as the ECDFs are not
overlapping. (Right) Adjusted
prior; There is now no prior
sensitivity, as the ECDFs are
overlapping, whereas there is
still likelihood sensitivity

Table 4 Sensitivity diagnostic
values for the bank notes case
study

Parameter Prior sensitivity Likelihood sensitivity Comment

βlength 0.07 0.02 Weak likelihood

βleft 0.10 0.01 Weak likelihood

βright 0.08 0.02 Weak likelihood

βbottom 0.25 0.11 Prior-data conflict

βtop 0.18 0.04 Weak likelihood

βdiagonal 0.13 0.05 Prior-data conflict

Higher sensitivity values indicate greater sensitivity
Prior sensitivity above 0.05 indicates informative prior (bold)
Likelihood sensitivity below 0.05 indicates weak or noninformative likelihood (bold)

this is not necessarily an indication that the model is mis-
specified or problematic, but rather the complete separation
in the data realisation may be causing issues for estimating
the regression coefficients.

5.3 Bacteria treatment (hierarchical logistic
regression)

Here, we use the bacteria data set, available from the
MASS package (Venables and Ripley 2002) to demonstrate
power-scaling sensitivity analysis in hierarchical models.
This data has previously been used by Kurtek and Bharath
(2015) in a sensitivity analysis comparing posteriors result-
ing from different priors. We use the same model structure
and similar priors and arrive at matching conclusions. Impor-
tantly, we show that the problematic prior can be detected
from the resulting posterior, without the need to compare to
other posteriors (and without the need for multiple fits). The
data set contains 220 observations of the effect of a treatment

(placebo, drug with low compliance, drug with high compli-
ance) on 50 children (denoted by index i) with middle ear
infection over 5 time points (weeks, denoted by index j). The
outcome variable is the presence (Y = 1) or absence (Y = 0)
of the bacteria targeted by the drug. We fit the same gener-
alised linear multilevel model (with group-level intercepts
Vj ), on the data as Kurtek and Bharath (2015), based on an
example from Brown and Zhou (2010):

Yi j ∼ Bernoulli(pi j ), log

(
pi j

1 − pi j

)
= μ +

3∑
k=1

xki jβk + Vi ,

μ ∼ normal(0, 10), βk ∼ normal(0, 10),

Vi ∼ normal(0, σ ), τ = 1

σ 2 ∼ gamma(0.01, 0.01).

We try different priors for the precision hyperparam-
eter τ . We compare the sensitivity of the base model,
with prior τ ∼ gamma(0.01, 0.01), to the comparison
priors. Three of which are considered reasonable, τ ∼
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Fig. 9 Posterior quantities of βwrist as a function of power-scaling for
the body fat case study.With this plot, we can compare the effect of prior
and likelihood power-scaling on specific quantities. Shown as dashed
lines are ±2 Monte Carlo standard errors (MCSE) of the base posterior
quantity, as guides to whether an observed change is meaningful. Top:
original prior; The pattern of the change in themean indicates prior-data

conflict, as power-scaling the prior and likelihood have opposite direc-
tional effects on the posterior mean. Bottom: adjusted prior; there is no
longer prior or likelihood sensitivity for the mean, indicating no prior-
data conflict. Likelihood sensitivity for the posterior standard deviation
remains, indicating that the likelihood is informative

normal+(0, 10),Cauchy+(0, 100), gamma(1, 2), and one is
considered unreasonable, τ ∼ gamma(9, 0.5). These priors
are shown in Fig. 10. We fit each model with four chains of
10000 iterations (2000 discarded as warmup) and perform
power-scaling sensitivity analysis on each. As discussed in
Sect. 2.2, only the top-level parameters in the hierarchical
prior are power-scaled (i.e. the prior on Vi is not power-
scaled). Posterior quantities and sensitivity diagnostics for
all models are shown in Appendix D. It is apparent that
the τ parameter is sensitive to the prior when using the
gamma(9, 0.5) prior. This indicates that the prior may be
inappropriately informative. Although there is no indication
of power-scaling sensitivity for theμ and β parameters, com-

paring the posteriors for the models indicates differences in
these parameters for the unreasonable τ prior compared to
the other priors. This is an important observation, and high-
lights that power-scaling is a local perturbation and may not
influence the model strongly enough to change all quantities,
yet can indicate the presence of potential issues.

5.4 Motorcycle crash (Gaussian process regression)

Here, we demonstrate power-scaling sensitivity analysis on
model without readily interpretablemodel parameters.We fit
a Gaussian process regression to the mcycle data set, also
available in the MASS package and show the sensitivity of
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Fig. 10 Priors for the hyperparameter τ in the bacteria case study. Priors considered reasonable for this application are shown on the left while
priors considered unreasonable are shown on the right

predictions to perturbations of the prior and likelihood. For
a primer on Gaussian process regression, see Seeger (2004).

The data set contains 133 measurements of head acceler-
ation at different time points during a simulated motorcycle
crash. It is further described by Silverman (1985). We fit a
Gaussian process regression to the data, predicting the head
acceleration (y) from the time (x). We use two Gaussian pro-
cesses; one for the mean and one for the standard deviation
of the residuals. The model is

y ∼ normal( f (x), exp(g(x))),

f ∼ GP(0, K1(x, x
′, ρ f , σ f )),

g ∼ GP(0, K2(x, x
′, ρg, σg)),

ρ f ∼ normal+(0, 1), ρg ∼ normal+(0, 1),

σ f ∼ normal+(0, 0.05), σg ∼ normal+(0, 0.5).

For K1 and K2 we use Matérn covariance functions with
ν = 3/2. These functions are controlled by the ρ and σ

parameters. The ρ parameters are the length-scales of the
processes and define how close two points x and x ′ must
be to influence each other. The σ parameters define the stan-
dard deviations of the noise. For efficient samplingwith Stan,
we use Hilbert space approximate Gaussian processes (Solin
and Särkkä 2020; Riutort-Mayol et al. 2022). The number
of basis functions (m f = mg = 40) and the proportional
extension factor (c f = cg = 1.5) are adapted such that
the posterior length-scale estimates ρ̂ f and ρ̂g are above the
threshold of that which can be accurately approximated (see
Riutort-Mayol et al. 2022). We can then focus on the choice
of priors for the length-scale parameters (ρ f , ρg) and the
marginal standard deviation parameters (σ f , σg). It is known
that for a Gaussian process, the ρ and σ parameters are not
well informed independently (Diggle and Ribeiro 2007), so
the sensitivity of themarginals may not be properly represen-
tative as there may be prior sensitivity no matter the choice
of prior. We first demonstrate the sensitivity of the marginals

before proceedingwith a focus on the sensitivity of themodel
predictions, in accordance with Paananen et al. (2021).

As expected, there is prior sensitivity in the marginals
(Table 5). The prior and likelihood sensitivity for the param-
eters is high, whichmay be an indication of an issue, however
it is difficult to determine based on the parameter marginals
alone. Instead we follow up by plotting how the predictions
are affected by power-scaling. As shown in Fig. 11 (top), the
predictions around 20ms exhibit sensitivity to both prior and
likelihood power-scaling. The prediction interval widens as
the prior is strengthened (α > 1), and narrows as it is weak-
ened (α < 1). Likelihood power-scaling has the opposite
effect. This indicates potential prior-data conflict from an
unintentionally informative prior. Widening the prior on σ f

fromnormal(0, 0.05) to normal(0, 0.1) alleviates the conflict
such that it is no longer apparent in the predictions (Fig. 11,
bottom). Plotting the predictions with the raw data indicates
a good fit (Fig. 18). However, there remains sensitivity in the
parameters, although it is lessened (Table 5). This further
demonstrates that depending on the model, prior sensitivity
may be present, but is not necessarily an issue. We advise
modellers to pay attention to specific quantities and prop-
erties of interest, particularly when performing sensitivity
analyses on more complex models, rather than focusing on
parameters without clear interpretations.

5.5 US Crime (linear regression with shrinkage prior)

Here, we show how sensitivity can be analysed with respect
to model fit. We fit a regression to the UScrime data set,
available from the MASS (Venables and Ripley 2002) pack-
age, and use a joint prior on the regression coefficients based
on a prior on themodel fit, Bayesian R2 (Gelman et al. 2019).
Such a prior structure can be used to specify a weakly infor-
mative prior on the model fit to prevent overfitting (Gelman
et al. 2020). We use the R2-D2 prior (Zhang et al. 2022) as
implemented in brms and check for sensitivity of the poste-
rior R2 to changes to the prior on R2.
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Table 5 Prior and likelihood
sensitivity in the motorcycle
crash case study using the
original prior

Parameter Original prior Adjusted prior
Prior sensitivity Likelihood sensitivity Prior sensitivity Likelihood sensitivity

ρ f 0.52 1.62 0.12 0.13

ρg 0.18 0.06 0.15 0.25

σ f 0.92 2.09 0.35 0.20

σg 0.14 0.18 0.26 0.09

Higher sensitivity values indicate greater sensitivity
Prior sensitivity above 0.05 indicates informative prior (bold)
Likelihood sensitivity below 0.05 indicates weak or noninformative likelihood (bold)

Fig. 11 Sensitivity of posterior predictions to prior and likelihood
power-scaling in the motorcycle case study. Shown in the plots are
the mean, 50% and 95% credible intervals for the posterior predictions.
Top: original prior σ f ∼ normal(0, 0.05). There is clear prior and likeli-

hood sensitivity in the predictions around 20ms after the crash. Bottom:
alternative prior σ f ∼ normal(0, 0.1). There is now no prior sensitivity
and minimal likelihood sensitivity for the predictions

The data has observations from 47 US states in the year
1960. See Clyde et al. (2022) for further details on the data
set. We model the crime rate y from 15 predictors xk using
a logNormal observation model. All continuous predictors
are log transformed, following Venables and Ripley (2002).

We use the brms default weakly informative priors on the
intercept β0 and residual standard deviation σ .

The full model, including the R2-D2 prior is specified as

yi ∼ logNormal(μi , σ ), μi = β0 +
15∑
k=1

xk,iβk,

β0 ∼ t3(6.7, 2.5), σ ∼ t+3 (0, 2.5),
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Fig. 12 The priors and corresponding posteriors for the model fit (R2)
in the US Crime case study

βk ∼ normal(0, (
σ 2

s2xk
φkτ

2)1/2),

φ ∼ Dirichlet(1, . . . , 1), τ 2 = R2

1 − R2 ,

R2 ∼ beta(s1, s2),

where s2xk is the sample variance of predictor xk .
We contrast two prior specifications, prior 1: R2 ∼

beta(3, 7) and prior 2: R2 ∼ beta(0.45, 1.05), shown in
Fig. 12. The sensitivity analysis indicates that prior 1 may
be informative and affecting the posterior. Indeed, the poste-
rior for R2 is lower with prior 1 than prior 2 (Table 6).

To follow up this, we perform leave-one-out cross vali-
dation on both models to compare predictive performance
using the elpdloo metric (Vehtari et al. 2020). The results,
also shown in Table 6, indicate that prior 1 leads to lower
predictive performance than prior 2, and induces a lower
effective number of parameters (ploo). This further corrob-
orates the results of the sensitivity analysis, and shows that
the power-scaling sensitivity diagnostic can be used as an
early indication of issues that can influence predictive per-
formance.

5.6 COVID-19 interventions (infections and deaths
model)

In this case study, we evaluate the prior and likelihood
sensitivity in a model of deaths from the COVID-19 pan-

demic (Flaxman et al. 2020). The Stan code and data for
this model are available from PosteriorDB (Magnusson et al.
2021). We focus on the effects of power-scaling the priors on
three parameters of the model: τ , φ and κ . Due to the com-
plexity of the model, we separately power-scale each prior to
determine their individual effects.We evaluate the sensitivity
of predictions (expected number of deaths due toCOVID-19)
in 14 countries over 100 days.

For a full description of the model, see Flaxman et al.
(2020). The parts of the model which we focus on are as
follows. The prior on φ which partially controls the variance
of the negative binomial likelihood of observed daily deaths
Dt,m , modelled from the expected deaths due to the virus
dt,m for a given day t and country m:

Dt,m ∼ negBinomial(dt,m, dt,m + d2t,m/φ),

φ ∼ normal+(0, 5).

dt,m is a function of R0,m and c1,m . . . c6,m (among other
parameters). The prior on κ which controls the variance of
the baseline reproductive number R0 of the virus for each
country m:

R0,m ∼ normal+(3.28, κ), κ ∼ normal+(0, 0.5),

and the prior on τ which affects the number of seed infections
(infections in the six days following the beginning of the
seed period, which is defined as the 30 days before a country
observes a total of ten or more deaths):

c1,m, . . . , c6,m ∼ exponential(1/τ), τ ∼ exponential(0.03).

Here we focus on a subset of four countries, but results
for all 14 countries are presented in Appendix F. The results
shown in Fig. 13 indicate that there is likelihood sensitivity
throughout the time period, indicating the data is informa-
tive, as seen in Fig. 14. Furthermore, there is clear sensitivity
to the κ prior, and some sensitivity to the τ prior. This is most
pronounced in the predictions of deaths from day 30 to 70,
shortly after the first major governmental interventions. Sen-
sitivity is particularly high for the predictions for Germany.
Following this up by plotting the sensitivity of predictions
on day 50 in Germany (Fig. 15), there is an indication that

Table 6 Power-scaling sensitivity and predictive model performance for prior specifications in the US crime case study

Prior on R2 Prior sen-
sitivity
DCJS

Likelihood
sensitivity
DCJS

Posterior
R2

Median
(SE)

Predictive
perfor-
mance
elpdloo

Effective
number of
parame-
ters ploo

beta(3, 7) 0.17 0.57 0.42 (0.14) −326.7 (4.4) 5.2 (1.0)

beta(0.45, 1.05) 0.02 1.32 0.72 (0.12) −318.9 (4.4) 11.6 (2.0)
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Fig. 13 Likelihood sensitivity of posterior predictions (expected deaths due to COVID-19) for four countries. Vertical lines indicate the onset of
major governmental intervention. The dotted lines indicate the sensitivity threshold of 0.05, above which we consider sensitivity to be present

Fig. 14 Prior sensitivity of posterior predictions (expected deaths due to COVID-19) for four countries. The vertical lines indicate the onset of
major governmental intervention. The dotted lines indicate the sensitivity threshold of 0.05, above which we consider sensitivity to be present

the prior is in conflict with the data, as the mean is shifted in
opposite directions by prior and likelihood scaling.

These results are an indication that the chosen prior on
κ may be informative and in conflict with the data, and the
justification for this prior should be carefully considered. As
the prior on R0 for each country is centred around a specific
value, 3.28, based on previous literature (Liu et al. 2020),
some sensitivity to the prior on κ may be expected, however
the finding that it may be in conflict with the data is never-
theless important and may warrant further attention. This is
an example for how a more complex model can be checked
for prior and likelihood sensitivity by selectively perturbing
priors and focusing on predictions.

6 Discussion

We have introduced an approach and corresponding work-
flow for prior and likelihood sensitivity analysis using
power-scaling perturbations of the prior and likelihood. The
proposed approach is computationally efficient and appli-

cable to a wide range of models with minor changes to
existing model code. This will allow automated prior sensi-
tivity diagnostics for probabilistic programming languages
such as Stan and PyMC, and higher-level interfaces like
brms, rstanarm and bambi, and make the use of default
priors safer as potential problems can be detected and warn-
ings presented to users. The approach can also be used to
identify which priors may need more careful specification.
The use of PSIS and IWMMensures that the approach is reli-
able while being computationally efficient. These properties
were demonstrated in several simulated examples and case
studies of real data, and our sensitivity analysis workflow
easily fits into a larger Bayesian workflow involving model
checking and model iteration.

Rather than fixing the power-scaling α values, it could be
possible to include the α parameters in the model and place
hyperpriors on them. However, this naturally complicates the
model by adding additional levels of hierarchy. In addition,
the question of sensitivity to the choice of hyperprior would
then be raised, whichmay require further sensitivity analysis,
or additional levels of hierarchy, the parameters of which
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Fig. 15 Prior and likelihood sensitivity of posterior predictions (expected deaths due to COVID-19) for day 50 in Germany. Only the κ prior is
power-scaled

become less and less informed by the data (Goel andDeGroot
1981). Instead, the power-scaling sensitivity approach can
be seen as a controlled method for automatically comparing
alternative priors, which are interpretable by the modeller.

We have demonstrated checking the presence of sensitiv-
ity based on the derivative of the cumulative Jensen–Shannon
distance between the base and perturbed priors with respect
to the power-scaling factor. While this is a useful diagnostic,
power-scaling sensitivity analysis is a general approach with
multiple valid variants. Future work could include further
developing quantity-based sensitivity to identify meaningful
changes in quantities and predictions with respect to power-
scaling, and working towards automated guidance on safe
model adjustment after sensitivity has been detected and
diagnosed.

Other extensions include developing additional pertur-
bations that affect different aspects of distributions. Our
sensitivity approach could be applied to other perturba-
tions, however, they may require recomputing likelihood
and prior evaluations. An important benefit of the power-
scaling approach is that the values required for the importance
weights (the evaluations of the prior and likelihood) are
already calculated when computing the unnormalized pos-
terior density used in MCMC, so no new computations from
the model are required if these are saved. Another poten-
tial perturbation that could be done without recomputation
is inducing a mean shift via exponential tilting (Siegmund
1976), however this would require draws from the prior.

It is also possible to use the same framework to investi-
gate the influence of individual or groups of observations, by
perturbing the likelihood contribution of a single or subset of
observations. This would be particularly useful in evidence

synthesis models where different data sources are included.
The workflow for this should be explored in future work.

Finally, we emphasise that the presence of prior sensitivity
or the absence of likelihood sensitivity are not issues in and
of themselves. Rather, context and intention of the model
builder need to be taken into account. We suggest that the
model builder pay particular attention when the pattern of
sensitivity is unexpected or surprising, as this may indicate
themodel is not behaving as anticipated.We again emphasise
that the approach should be coupled with thoughtful consid-
eration of themodel specification andnot be used for repeated
tuning of the priors until diagnostic warnings disappear.
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Appendix

A. Diagnostic threshold

See Fig. 16.

Fig. 16 Pairs of ECDFs of 4000 draws from distributions of the same
form with different parameters. CJSdist ≈ 0.05 between each of the
pairs

B. Software implementation

B.1 Usage

Conducting a power-scaling sensitivity analysis with
priorsense can be done as follows: given a fitted
model object, powerscale_sensitivity will auto-
matically perform workflow steps 2–5 and return the local
sensitivity of each parameter in a model fit (based on
numerical derivatives of CJSdist by default). Follow-up
analysis for diagnosing the sensitivity can be performed
with powerscale_sequence, which returns an object
containing the base posterior draws along with weights
corresponding to each perturbed posterior (or optionally
resampled posterior draws). This can be plotted to visu-
alise the change in ECDFs, kernel density etimates, or
estimated quantities, with respect to the degree of power-
scaling. Sensitivity of posterior quantities such as the mean,
median or standard deviation can be assessed with the
powerscale_derivative (for analytical derivatives)
and powerscale_gradients (for numerical deriva-
tives) functions. All functions will provide warnings when
estimates derived from PSIS or IWMMmay not be trustwor-
thy due to too large differences between the perturbed and
base posteriors.

B.2 Practical implementation details

In this section, we provide more details for a practical
implementation of the approach. The importance weights for
power-scaling the prior or likelihood rely on density evalua-
tions of the power-scaled component. Thus, the following are
required for estimating properties of the perturbed posteriors:

• posterior draws from the base posterior
• (log of) likelihood evaluations at the locations of the pos-
terior draws

• (log of) joint prior evaluations (for the priors to be power-
scaled) at the locations of the posterior draws

In R, posterior draws can be accessed from the model
fit object directly, while the posterior package (Bürkner
et al. 2022) provides convenient functions for working with
them. Existing R packages interfacing with Stan already
make use of the log likelihood evaluations (e.g. theloopack-
age; Vehtari et al. 2020), and the log prior evaluations can be
specified in the model code, for example in the generated
quantities block of the Stan code (as shown in List-
ing 1). In cases where some priors should be excluded from
the power-scaling (such as intermediate priors in hierarchi-
cal models), only the priors to be power-scaled should be
included here. Log prior evaluations can also be stored in
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Listing 1 Example Stan code with log prior and log likelihood specified
such that the resulting fitted model can be used with priorsense.

data {
int <lower=1> N;
vector[N] y;

}
parameters {

real mu;
real <lower=0> sigma;

}
model {

// log priors
target += student_t_lpdf(mu | 4,
0, 10);

target += exponential_lpdf(sigma
| 0.1);

// log likelihood
target += normal_lpdf(y | mu , sigma);

}
generated quantities {

vector[N] log_lik; // log likelihood
real lprior; // joint log prior
// log likelihood
for (n in 1:N) log_lik[n] =
normal_lpdf(y[n] | mu , sigma);

// log prior
lprior = student_t_lpdf(mu | 4,
0, 10)

+ exponential_lpdf(sigma
| 0.1);}

an array, allowing for selective power-scaling of subsets of
priors.

priorsense uses the loo package for PSIS, while
IWMM is currently implemented directly. CJSdist is also
implemented directly, while other divergence measures can
be used from philentropy (Drost 2018). Functions from
matrixStats (Bengtsson 2020) and spatstat (Badde-
ley et al. 2015) are used for calculating weighted quantities
and weighted ECDFs, respectively. Diagnostics graphics are
created using ggplot2 (Wickham 2016).

C. Body fat (linear regression)

See Fig. 17.

Fig. 17 Marginal posteriors for the body fat case study. Points show
means, thick and thin lines correspond to 50% and 95% credible inter-
vals

D. Bacteria (hierarchical logistic regression)

See Table 7.
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Table 7 Sensitivity diagnostic
values for the bacteria case
study

Prior (comment) Parameter Post. mean Post. SD Prior sensitivity Likelihood sensitivity

τ ∼ gamma(0.01, 0.01)

τ 0.36 0.3 0.02 0.10

μ 3.8 0.76 0.03 0.18

βweek −0.17 0.06 0.02 0.10

βtrtDrugP −1.01 0.92 0.02 0.10

βtrtDrug −1.55 0.92 0.02 0.10

τ ∼ normal+(0, 1)

τ 0.44 0.27 0.01 0.20

μ 3.6 0.76 0.00 0.16

βweek −0.16 0.05 0.00 0.11

βtrtDrugP −0.94 0.85 0.00 0.10

βtrtDrug −1.48 0.84 0.01 0.10

τ ∼ Cauchy+(0, 1)

τ 0.44 0.30 0.01 0.12

μ 3.62 0.76 0.01 0.17

βweek −0.16 0.06 0.00 0.11

βtrtDrugP −0.95 0.85 0.00 0.11

βtrtDrug −1.47 0.85 0.00 0.09

τ ∼ gamma(1, 2)

τ 0.37 0.21 0.02 0.17

μ 3.73 0.8 0.02 0.17

βweek −0.17 0.06 0.01 0.09

βtrtDrugP −0.99 0.90 0.01 0.09

βtrtDrug −1.53 0.88 0.01 0.09

τ ∼ gamma(9, 0.5)

prior-data conflict τ 13.8 5.4 0.10 0.13

posterior differs μ 2.63 0.42 0.01 0.06

posterior differs βweek −0.12 0.05 0.00 0.08

posterior differs βtrtDrugP −0.66 0.46 0.01 0.07

posterior differs βtrtDrug −1.14 0.45 0.01 0.08

Higher sensitivity values indicate greater sensitivity
Prior sensitivity above 0.05 indicates informative prior (bold).
Likelihood sensitivity below 0.05 indicates weak or noninformative likelihood (bold).

E.Motorcycle crash (Gaussian process regres-
sion)

See Fig. 18.

F. COVID-19 interventions (infections and
deaths model)

See Figs. 19, 20.
Fig. 18 Prediction plot for the adjusted model with the data superim-
posed. Shown in the plot are the mean, 50% and 95% credible intervals
for the posterior predictions. The predictions capture the raw data well,
indicating that we have arrived at a reasonable model
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Fig. 19 Likelihood sensitivity
of posterior predictions
(expected deaths due to
COVID-19) for a sequence of
100 days, for each country. The
vertical line indicates the onset
of major governmental
intervention. The dotted line
indicates the sensitivity
threshold of 0.05, above which
we consider sensitivity to be
present
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Fig. 20 Prior sensitivity of
posterior predictions (expected
deaths due to COVID-19) for a
sequence of 100 days, for each
country. The vertical lines
indicate the onset of major
governmental intervention. The
dotted lines indicate the
sensitivity threshold of 0.05,
above which we consider
sensitivity to be present
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