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Idea of Bayesian Ideal Observers

General research questions:

• Do humans process information in an ideal (Bayesian) way?
• In what aspects do the responses deviate from optimality?
• What does that tell us about cognitive processes?

Why is Bayesian ideal?

• Bayesian models are fully probabilistic
• If correctly specified they take all uncertainty into account
• Decision are thus based on all available information
• If one fails to follow the rules of probability, a Dutch book can

be made against you so that in the long run you always loose

2



Example: Sensor Fusion

Suppose we have a multisensory observations xa and xv generated
from the same source y :

xa ∼ N(y , σa) and xv ∼ N(y , σv )

xa xv

y
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Bayesian Ideal Observers: Analysis Workflow

Generate the sensory input from the generative model

• As if we were the subject receiving senory input

Fit the sensory input using Bayesian cognitive model(s)

• As if we were the subject processing the sensory input

Extract the expected responses from the fitted model(s)

Compare the distributions of observed and expected responses

• A mismatch indicates a deviation from the expected behavior
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Sensor Fusion: Analytic Posterior

Having observed xa and xv and knowing the corresponding standard
deviations σa and σv , the posterior distribution of y is:

y ∼ N(µy , σy )

where
µy = waxa + wv xv

wa + wv
and σy = 1√

wa + wv

with weights wa = σ−2
a and wv = σ−2

v

Under a quadratic loss function, µy is the optimal point estimate

The subject only reports his / her estimate ŷ of y , which may or
may not be an ideal combination µy of the two sources

We may also directly fit the Bayesian cognitive model in Stan
without having to worry about analytic solutions
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Requirements for Experiments

Subjects must have enough information to process the input in an
ideal way

• Otherwise optimality is not achievable

Expected outcome distributions must be computable

• Analysing ideal observers using fully Bayesian inference is more
flexible than trying to find the posterior analytically

Expected outcome distributions must vary across compared
cognitive models

• Otherwise responses cannot provide any evidence
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Ways to compare distributions

Comparing expected and observed distributions is of central interest

Potential ways to compare two distributions:

• Differences in means: µ1 − µ2

• Differences in standard deviations: σ1 − σ2

• Kullback-Leibler (KL) Divergence:

KL(p||q) =
∫

log
(p(x)

q(x)

)
p(x) d x
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Example: Uncertainty in the Causal Structure

xa xv

y

xa xv

ya yv

Each of the two causal models is true with a certain probability
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Uncertainty in the Causal Structure: Statistical Model (1)

Let C indicate if a common (C = 1) or uncommen (C = 0) source
is true:

If C = 1 : xa ∼ N(y , σa) and xv ∼ N(y , σv )

If C = 0 : xa ∼ N(ya, σa) and xv ∼ N(yv , σv )

The model parameters to be estimated are y , ya, yv , and C

This model cannot be fit in Stan as C is a discrete parameter
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Uncertainty in the Causal Structure: Statistical Model (2)

We don’t model C directly but instead πC = p(C = 1)

The Bayesian cogntive model comes a mixture model:

xa ∼ πC N(y , σa) + (1− πC ) N(ya, σa)

xv ∼ πC N(y , σv ) + (1− πC ) N(yv , σv )

The model parameters to be estimated are y , ya, yv , and πC

This model can be fit in Stan as all parameters are continuous
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Mixture models in Stan

Example: Normal mixture model with two components:

x ∼ πN(µ1, σ1) + (1− π) N(µ2, σ2)

For a single real value x , the Stan code is as follows:
model {

real ps[2];
ps[1] = log(pi) + normal_lpdf(x | mu1, sigma1);
ps[2] = log(1 - pi) + normal_lpdf(x | mu2, sigma2);
target += log_sum_exp(ps);

}

12



Example: Neural Correlates of Bayesian Belief

Paper by Hu et al. (2015): Predict stop signal probabilities

Create a generative model:

• sk = 1 if trial k was a stop trial and sk = 0 otherwise
• rk is the expected probability of trial k being a stop trial
• This implies sk ∼ bernoulli(rk)

In trial 1 we use a simple prior distribution:

r1 ∼ beta2(µ, φ)

where µ and φ represent prior mean and precision
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Updating of Bayesian Belief

For the following trials, the prior will depend on the past:

rk ∼ α δ(rk−1) + (1− α) beta2(µ, φ)

The parameter α indicates the probability that the subject expects
rk to be the same as k − 1

Given the mean E (rk−1|s) of the estimated posterior distribution of
rk−1, we can compute the mean E (rk) of the prior distribution of rk
as follows:

E (rk) = αE (rk−1|s) + (1− α)µ

This can be used to predict behavioral and neuroimaging data
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Updating of Bayesian Belief: Stan Code Snippet

// specify the likelihood
target += bernoulli_lpmf(s | r);
// specify the priors
target += beta2_lpdf(r[1] | mu, phi);
for (k in 2:N) {

real ps[2];
ps[1] = log(alpha) + beta2_lpdf(r[k] | r[k - 1], tau);
ps[2] = log(1 - alpha) + beta2_lpdf(r[k] | mu, phi);
target += log_sum_exp(ps);

}
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