Testing evidence of absence

Tools for Bayesian analysis and equivalence testing

Paul Bürkner

Definitions of Probability

Probability as the limit of relative frequencies - examples:

- "In 40% of the elections 2020, Trump will win"
- "The true parameter value lies within 95% of the confidence intervals"

Probability as the representation of uncertainty - examples:

- "In the election 2020, Trump will win with probability 40% "
- "With 95% probability, the parameter value lies within the credible interval"

Prior and Posterior Uncertainty

- Before the data collection, we have certain prior uncertainty about the effects under study.
- After collecting the data, we update our uncertainty, which then becomes our posterior uncertainty.
- Bayesian inference gets us from prior to posterior uncertainty.

Bayes Theorem

- The posterior probability of the parameters given data is

$$
p(\theta \mid y)=\frac{p(y \mid \theta) p(\theta)}{p(y)}
$$

- Likelihood: $p(y \mid \theta)$
- Prior: $p(\theta)$
- Marginal likelihood / Evidence: $p(y)$

A Simple Example

- We are interested in measuring the abundance of a specific genetic variant.
- We want to model the rate θ (our parameter) that individuals of the population have the genetic variant of interest.

We need:

- The genetic data for each individual
- The likelihood / generative model (probability of the data given the parameters)
- The prior (probability of the parameters before seeing the data)

The Binomial Likelihood

- We call y_{i} the outcome of individual i
- The individual may have the genetic variant $\left(y_{i}=1\right)$ or not ($y_{i}=0$)
- The genetic variant occurs with probability θ
- The genetic variant is absent with probability $1-\theta$
- We have data on a total of N individuals

The Binomial likelihood for the number of individuals with the genetic variant $y:=\sum_{i=1}^{N} y_{i}$:

$$
p(y \mid \theta, N)=\binom{N}{y} \theta^{y}(1-\theta)^{N-y}
$$

Results for Data $y=4, N=10$ and a Flat Prior

Flat prior: beta(1, 1)

Results for Data $y=4, N=10$ and an Informative Prior

Informative prior: beta(7, 3)

Posterior distribution

Sampling from the Posterior distribution

Why Do We need Sampling?

- For simple models, we can compute the marginal likelihood $p(y)=\int p(y \mid \theta) p(\theta) d \theta$ analytically.

Binomial likelihood with flat prior:

$$
p(y)=\int_{0}^{1}\binom{N}{y} \theta^{y}(1-\theta)^{N-y} \times 1 d \theta=\frac{1}{N+1}
$$

- For a bit more complex models, integration may be done numerically.
- For more than 3 or 4 parameters, numerical computation of the marginal likelihood becomes infeasible
- We need to sample (somehow) from the posterior

Rejection Sampling

- Sample parameter values from the prior
- Sample data from the likelihood based on the sampled parameters
- Only keep those parameter values, which produced data consistent with our observed data
- Repeat this process many times
- The kept parameter values are samples from the posterior

Rejection Sampling: Examples

Hypothetical Sample 1:

- Sampling from the prior yields $\theta_{s}=0.7$
- Sampling from the binomial likelihood $p(y \mid \theta=0.7, N=10)$ yields $y_{s}=6$
- The sample response $y_{s}=6$ is different from the observed response $y=4$ so that $\theta_{s}=0.7$ is thrown away

Hypothetical Sample 2:

- Sampling from the prior yields $\theta_{s}=0.42$
- Sampling from the binomial likelihood $p(y \mid \theta=0.42, N=10)$ yields $y_{s}=4$
- The sample response $y_{s}=4$ is equal to the observed response $y=4$ so that $\theta_{s}=0.42$ is kept

Using Samples to Approximate Expectations

(Almost) every quantity of interest is an expectation over $p(\theta \mid y)$:

$$
\mathbb{E}_{p}(h)=\int h(\theta) p(\theta \mid y) \mathrm{d} \theta
$$

Having obtained exact random samples $\left\{\theta_{s}\right\}$ from $p(\theta \mid y)$:

$$
\frac{1}{S} \sum_{s=1}^{S} h\left(\theta_{s}\right) \sim \operatorname{Normal}\left(\mathbb{E}_{p}(h), \sqrt{\frac{\operatorname{Var}_{p}(h)}{S}}\right)
$$

Evaluation of Hypotheses

Different ways to evaluate hypotheses:

- Estimation with uncertainty intervals
- Posterior probabilities
- Bayes factors

All of them can be used for equivalence testing!

Estimation with Uncertainty

Estimation with Uncertainty

For inference use:

- Point estimates
- Uncertainty intervals (Uls)

Bayesian Uncertainty intervals:

- Credible intervals based on quantiles (Cls)
- Highest posterior density intervals (HDIs)

Computation of Point Estimates in \mathbf{R}

Let posterior be a vector of posterior samples of θ : head(posterior)
\#\# [1] $0.59 \quad 0.49 \quad 0.42 \quad 0.24 \quad 0.32 \quad 0.43$
Computation of the posterior mean: mean(posterior) $=0.42$
Computation of the posterior median: median(posterior) $=0.41$
Computation of the posterior mode:

- computationally unstable
- rarely sensible

Computation of uncertainty intervals in \mathbf{R}

Computation of 95%-CIs:
quantile(posterior, probs $=c(0.025,0.975))$
\#\# 0.170 .69
Computation of HDIs may be computationally unstable

Visualization of Uncertainty Intervals

Posterior distribution

Region of Practical Equivalence (ROPE)

- Define a region that is thought to be practically equivalent to the value being tested.
- Extends the null hypothesis to an interval
- For instance $R O P E=[d=-0.1, d=0.1]$ in intervention studies

Three possible outcomes of the hypothesis:

- ROPE and UI do not intersect: Reject the null hypothesis
- UI is completely within ROPE: Accept the null hypothesis
- Else: Evidence is inconclusive

Visualization of ROPEs: Reject the Null Hypothesis

Posterior distribution

Blue: credible interval; Green: ROPE $=[0.45,0.55]$

Visualization of ROPEs: Accept the Null Hypothesis

Posterior distribution

Blue: credible interval; Green: ROPE $=[0.45,0.55]$

Visualization of ROPEs: Inconclusive

Posterior distribution

Blue: credible interval; Green: ROPE $=[0.45,0.55]$

Posterior Probabilities

Posterior Probabilities

Applicable to interval hypotheses - examples:
If $H: \theta>0.5$ then

$$
P(H)=P(\theta>0.5)=\frac{1}{S} \sum_{s=1}^{S} 1_{>0.5}\left(\theta_{s}\right)
$$

If $H: \theta \in[0.4,0.6]$ then

$$
P(H)=P(\theta \in[0.4,0.6])=\frac{1}{S} \sum_{s=1}^{S} 1_{[0.4,0.6]}\left(\theta_{s}\right)
$$

- $S=$ Number of posterior samples
- $\theta_{s}=$ Posterior sample number s of parameter θ
- $1_{l}(x)=1$ if x is in the interval I and $1_{l}(x)=0$ otherwise

Bayes Factors

Marginal Likelihoods of Models

Marginal likelihood of model M :

$$
p(y \mid M)=\int p(y \mid \theta, M) p(\theta \mid M) d \theta
$$

- This is the probability of the data given the model
- Can be considered as a measure of model fit
- Depends heavily on the prior $p(\theta \mid M)$

Bayes Factors

- Used to compare two models M_{1} and M_{2} :

$$
B F_{12}=\frac{p\left(y \mid M_{1}\right)}{p\left(y \mid M_{2}\right)}
$$

- Closely related to the posterior Odds:

$$
\frac{p\left(M_{1} \mid y\right)}{p\left(M_{2} \mid y\right)}=\frac{p\left(M_{1}\right)}{p\left(M_{2}\right)} B F_{12}
$$

- $p\left(M_{1}\right)$ and $p\left(M_{2}\right)$ are the prior probabilites of the models M_{1} and M_{2}
- Usually $p\left(M_{1}\right)=p\left(M_{2}\right)=1 / 2$

The Savage-Dickey Ratio

- Computation of the evidence is complicated and so is the computation of the BF
- Assume we are testing $M_{1}: \theta=\theta_{0}$ against $M_{2}: \theta \neq \theta_{0}$
- (We could use the word 'hypothesis' instead of 'models')
- Then the Bayes factor can be computed as

$$
B F_{12}=\frac{p\left(\theta_{0} \mid y, M_{2}\right)}{p\left(\theta_{0} \mid M_{2}\right)}
$$

Bayes Factors: Visualization

Bayes Factors: Example

- We assume a flat prior beta $(1,1)$
- We observed $y=2$ for $N=12$.
- The resulting posterior (computed analytically) is beta $(3,11)$
- We are interested in the BF at $\theta_{0}=0.5$
dbeta(0.5, 3, 11) / dbeta(0.5, 1, 1)
\#\# [1] 0.2094727

Bayes factor: Influence of Priors

Bayes Factors: Confirming the Null Hypothesis

- We again assume a flat prior beta $(1,1)$
- We observed $y=49$ for $N=100$.
- The resulting posterior (computed analytically) is beta(50,52)
- We are interested in the BF at $\theta_{0}=0.5$
dbeta(0.5, 50, 52) / dbeta(0.5, 1, 1)
\#\# [1] 7.880895

Bayes Factors: Confirming the Null Hypothesis

