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Definitions of Probability

Probability as the limit of relative frequencies – examples:

• “In 40% of the elections 2020, Trump will win”
• “The true parameter value lies within 95% of the confidence

intervals”

Probability as the representation of uncertainty – examples:

• “In the election 2020, Trump will win with probability 40%”
• “With 95% probability, the parameter value lies within the

credible interval”
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Prior and Posterior Uncertainty

• Before the data collection, we have certain prior uncertainty
about the effects under study.

• After collecting the data, we update our uncertainty, which
then becomes our posterior uncertainty.

• Bayesian inference gets us from prior to posterior uncertainty.
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Bayes Theorem

• The posterior probability of the parameters given data is

p(θ|y) = p(y |θ)p(θ)
p(y)

• Likelihood: p(y |θ)
• Prior: p(θ)
• Marginal likelihood / Evidence: p(y)

Testing evidence of absence Paul Bürkner 4



A Simple Example

• We are interested in measuring the abundance of a specific
genetic variant.

• We want to model the rate θ (our parameter) that individuals
of the population have the genetic variant of interest.

We need:

• The genetic data for each individual
• The likelihood / generative model (probability of the data

given the parameters)
• The prior (probability of the parameters before seeing the data)
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The Binomial Likelihood

• We call yi the outcome of individual i
• The individual may have the genetic variant (yi = 1) or not

(yi = 0)
• The genetic variant occurs with probability θ
• The genetic variant is absent with probability 1− θ
• We have data on a total of N individuals

The Binomial likelihood for the number of individuals with the
genetic variant y :=

∑N
i=1 yi :

p(y | θ,N) =
(

N
y

)
θy (1− θ)N−y
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Results for Data y = 4, N = 10 and a Flat Prior
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Results for Data y = 4, N = 10 and an Informative Prior
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Sampling from the Posterior distribution

Why Do We need Sampling?

• For simple models, we can compute the marginal likelihood
p(y) =

∫
p(y |θ)p(θ)dθ analytically.

Binomial likelihood with flat prior:

p(y) =
∫ 1

0

(
N
y

)
θy (1− θ)N−y × 1 d θ = 1

N + 1

• For a bit more complex models, integration may be done
numerically.

• For more than 3 or 4 parameters, numerical computation of the
marginal likelihood becomes infeasible

• We need to sample (somehow) from the posterior
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Rejection Sampling

• Sample parameter values from the prior
• Sample data from the likelihood based on the sampled

parameters
• Only keep those parameter values, which produced data

consistent with our observed data
• Repeat this process many times
• The kept parameter values are samples from the posterior
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Rejection Sampling: Examples

Hypothetical Sample 1:

• Sampling from the prior yields θs = 0.7
• Sampling from the binomial likelihood p(y | θ = 0.7,N = 10)

yields ys = 6
• The sample response ys = 6 is different from the observed

response y = 4 so that θs = 0.7 is thrown away

Hypothetical Sample 2:

• Sampling from the prior yields θs = 0.42
• Sampling from the binomial likelihood p(y | θ = 0.42,N = 10)

yields ys = 4
• The sample response ys = 4 is equal to the observed response

y = 4 so that θs = 0.42 is kept
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Using Samples to Approximate Expectations

(Almost) every quantity of interest is an expectation over p(θ|y):

Ep(h) =
∫

h(θ) p(θ | y) dθ

Having obtained exact random samples {θs} from p(θ | y):

1
S

S∑
s=1

h(θs) ∼ Normal

Ep(h),

√
Varp(h)

S


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Evaluation of Hypotheses

Different ways to evaluate hypotheses:

• Estimation with uncertainty intervals
• Posterior probabilities
• Bayes factors

All of them can be used for equivalence testing!

Testing evidence of absence Paul Bürkner 13



Estimation with Uncertainty
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Estimation with Uncertainty

For inference use:

• Point estimates
• Uncertainty intervals (UIs)

Bayesian Uncertainty intervals:

• Credible intervals based on quantiles (CIs)
• Highest posterior density intervals (HDIs)
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Computation of Point Estimates in R

Let posterior be a vector of posterior samples of θ:

head(posterior)

## [1] 0.59 0.49 0.42 0.24 0.32 0.43

Computation of the posterior mean: mean(posterior) = 0.42

Computation of the posterior median: median(posterior) = 0.41

Computation of the posterior mode:

• computationally unstable
• rarely sensible
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Computation of uncertainty intervals in R

Computation of 95%-CIs:

quantile(posterior, probs = c(0.025, 0.975))

## 0.17 0.69

Computation of HDIs may be computationally unstable
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Visualization of Uncertainty Intervals
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Region of Practical Equivalence (ROPE)

• Define a region that is thought to be practically equivalent to
the value being tested.

• Extends the null hypothesis to an interval
• For instance ROPE = [d = −0.1, d = 0.1] in intervention

studies

Three possible outcomes of the hypothesis:

• ROPE and UI do not intersect: Reject the null hypothesis
• UI is completely within ROPE: Accept the null hypothesis
• Else: Evidence is inconclusive
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Visualization of ROPEs: Reject the Null Hypothesis
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Visualization of ROPEs: Accept the Null Hypothesis

0
5

10
15

20
25

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
θ

Blue: credible interval; Green: ROPE = [0.45, 0.55]

p(
θ)

Posterior distribution

Testing evidence of absence Paul Bürkner 21



Visualization of ROPEs: Inconclusive
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Posterior Probabilities

Testing evidence of absence Paul Bürkner 23



Posterior Probabilities

Applicable to interval hypotheses – examples:

If H : θ > 0.5 then

P(H) = P(θ > 0.5) = 1
S

S∑
s=1

1>0.5(θs)

If H : θ ∈ [0.4, 0.6] then

P(H) = P(θ ∈ [0.4, 0.6]) = 1
S

S∑
s=1

1[0.4,0.6](θs)

• S = Number of posterior samples
• θs = Posterior sample number s of parameter θ
• 1I(x) = 1 if x is in the interval I and 1I(x) = 0 otherwise
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Bayes Factors
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Marginal Likelihoods of Models

Marginal likelihood of model M:

p(y |M) =
∫

p(y |θ,M)p(θ|M)dθ

• This is the probability of the data given the model

• Can be considered as a measure of model fit

• Depends heavily on the prior p(θ|M)
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Bayes Factors

• Used to compare two models M1 and M2:

BF12 = p(y |M1)
p(y |M2)

• Closely related to the posterior Odds:

p(M1|y)
p(M2|y) = p(M1)

p(M2)BF12

• p(M1) and p(M2) are the prior probabilites of the models M1

and M2

• Usually p(M1) = p(M2) = 1/2
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The Savage-Dickey Ratio

• Computation of the evidence is complicated and so is the
computation of the BF

• Assume we are testing M1 : θ = θ0 against M2 : θ 6= θ0

• (We could use the word ‘hypothesis’ instead of ‘models’)

• Then the Bayes factor can be computed as

BF12 = p(θ0|y ,M2)
p(θ0|M2)
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Bayes Factors: Visualization
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Bayes Factors: Example

• We assume a flat prior beta(1, 1)
• We observed y = 2 for N = 12.
• The resulting posterior (computed analytically) is beta(3, 11)
• We are interested in the BF at θ0 = 0.5

dbeta(0.5, 3, 11) / dbeta(0.5, 1, 1)

## [1] 0.2094727
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Bayes factor: Influence of Priors
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Bayes Factors: Confirming the Null Hypothesis

• We again assume a flat prior beta(1, 1)
• We observed y = 49 for N = 100.
• The resulting posterior (computed analytically) is beta(50, 52)
• We are interested in the BF at θ0 = 0.5

dbeta(0.5, 50, 52) / dbeta(0.5, 1, 1)

## [1] 7.880895

Testing evidence of absence Paul Bürkner 32



Bayes Factors: Confirming the Null Hypothesis
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