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You are a Bayesian if you quantify uncertainty
with probability
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The Bayes Theorem
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Rethinking the Bayes Theorem

p(0]y) x<py|0)p(d) =p(y,0)

Bayesian Probabilistic Modeling for Ecology



Example: Catching Fish
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Catching Fish: Modeling

Likelihood:

p(yy, | 8) = Poisson(exp(6, + 0,1,,))

Example weakly informative priors:
p(6;) = normal(0,3), p(f,) = normal(0, 1)
Flat (“uninformative”) priors:

0, x1, 0,x1

Joint model:

p(y,0) = (Hp(yn | 9)) p(6) p(6,)

n
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The Innocent Marginal Likelihood

Bayesian Probabilistic Modeling for Ecology



Expectations to summarize distributions

(Almost) all we care about are expectations

Expectation of some function f over the posterior p( | y):

gy (f) /f p(6]y)d

Things that are (behave like) expectations:

= Mean

= Variance / standard deviation
= Median

= Other quantiles
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Monte-Carlo Estimator

Samples can be used to approximate expectations

Having obtained S random samples {6(*)} from p(6 | y):

1S Vary,, (f
S; £(6)) ~ Normal ([Eey(f), argéy())
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Propagation of Uncertainty

Uncertainty can be propagated easily using samples
Suppose, we are interesting in the posterior of 6 = |6, — 0,
Just evaluate 6 = \6(15) — 9(25)\ per sample:
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Markov-Chain Monte-Carlo (MCMC) Sampling

We can’t simply draw samples from the posterior

A Markov Chain is a sequence of values where the value at position
s is based only on the former value at position s — 1:
) 92 9B — . - 9

If the transition distribution is set up correctly, the values
0 ..., 09 will represent (dependent) samples from the posterior
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MCMC Sampling: A Single Chain (10 Iterations)
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MCMC Sampling: A Single Chain (50 Iterations)
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MCMC Sampling: A Single Chain (1000 Iterations)

Bayesian Probabilistic Modeling for Ecology Paul Biirkner 14



Markov-Chain Monto-Carlo Estimator

MCMC samples can be used to approximate expectations

Assume well-behaved MCMC samples {0'*)} over p(@ | ):

O)\*-‘

s Varg, (f)
Zl £(6)) ~ Normal ([Eey(f), E€|SyS)
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Trace Plots: Visualizing a Single Chain
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Probabilistic Programming Languages
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Catching Fish: Results

thetal theta2

-1.75 -1.50 -1.25 -1.00 -0.75

variable mean median sd g5  q95

thetal  -1.29 -1.29 0.14 -153 -1.06
theta2 0.83 0.83 0.04 0.76 0.90
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Catching Fish: Expected posterior predictions
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Catching Fish: Posterior prediction
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What | like and don’t like about Bayesian inference

What | like:

= Intuitive approach to expressing uncertainty

Ability to incorporate prior information

= A lot of modeling flexibility

= Joint posterior distribution of parameters
= Easy propagation of uncertainty

What | don't like:

= Slow Speed of model estimation
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A brief look into my own research
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What actually is a Bayesian Model?

Explicit Py

@
p(ylﬂ)

P - Joint Distribution p(6, y)
L@y
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D - Observed Data j
000 O -rv»
pa(013)

A — Approximator

[ Amortized ] [ Non-Amortized ]

| Algorithm | | Implementation | | S

Bayesian Probabilistic Modeling for Ecolog) Paul Biirkner



Uncertainty of Uncertainty (Meta-Uncertainty)

How can we combine Bayesian and frequentist uncertainties?
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Non-Amortized (Standard) Inference

How can we improved the standard inference setting?
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Amortized Inference

How far can we scale amortized inference?

p(6) p(y | 6)

~
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More about me and my research

= Website: https://paul-buerkner.github.io/

= Email: paul.buerkner@gmail.com

Twitter: @paulbuerkner

= Mastodon: fosstodon.org/@paul_buerkner
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