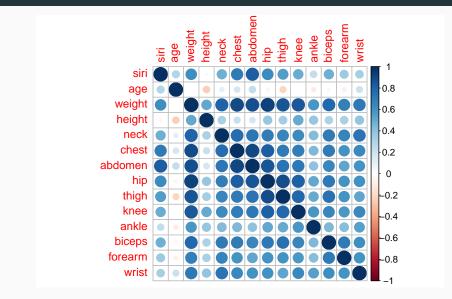
Bayesian model and variable selection using approximate cross-validation and projective predictions

Paul Bürkner

Case Study: Predictors of Body Fat



Part 1: PSIS-LOO-CV

General form of likelihood:

 $siri_i \sim normal(\mu_i, \sigma)$

Model 1:

$$\mu_i = b_0 + b_1 age_i + b_2 weight_i$$

Model 2:

$$\mu_i = b_0 + b_1 \text{age}_i + b_2 \text{weight}_i + b_3 \text{height}_i$$

Model with Age and Weight

```
library(brms)
model1 <- brm(
  formula = siri ~ age + weight,
  data = bodyfat,
  family = gaussian()
)</pre>
```

Summary of the regression coefficients:

	Estimate	Est.Error	Q2.5	Q97.5
b_Intercept	19.08	0.37	18.37	19.79
b_age	2.52	0.39	1.77	3.26
b_weight	5.19	0.38	4.43	5.94

Model with Age, Weight, and Height

```
model2 <- brm(
  formula = siri ~ age + weight + height,
  data = bodyfat,
  family = gaussian()
)</pre>
```

Summary of the regression coefficients:

	Estimate	Est.Error	Q2.5	Q97.5
b_Intercept	19.10	0.35	18.43	19.78
b_age	1.73	0.36	1.05	2.43
b_weight	6.90	0.40	6.10	7.70
b_height	-3.36	0.42	-4.19	-2.55

Does including 'height' improve model fit?

What exactly is model fit?

In-sample fit:

- How close are the model's predictions to the data it was estimated on?
- Problem: High danger of overfitting

Out-of-sample fit:

- How close are the model's predictions to new data?
- Balances under- and overfitting
- Problem: How do we evaluate predictions on new data without actual new data?

Steps in cross-validation:

- (1) Split the data into two Subsets: training data and test data
- (2) Fit the model on the training data
- (3) Evaluate the predictions on the test data
- (4) Repeat (1) to (3) with multiple data splits
- (5) Summarize the results of all splits

Types of cross-validation (selection):

- Leave-one-out cross-validation (LOO-CV)
- K-fold cross-validation (K-fold-CV)
- Leave-group-out cross-validation (LGO-CV)
- Leave-future-out cross-validation (LFO-CV)

Example measures for a single data split:

$$\mathsf{ELPD} = \log p(y|y_{\mathrm{Tr}}) = \log \int p(y|\theta) p(\theta|y_{\mathrm{Tr}}) \ d\theta \approx \log \frac{1}{S} \sum_{s=1}^{S} p(y|\theta^{(s)})$$

$$\mathsf{RMSE} = \sqrt{\int (y - \hat{y})^2 \ p(\hat{y}|y_{\mathrm{Tr}}) \ d\hat{y}} \approx \sqrt{\frac{1}{S} \sum_{s=1}^{S} (y - \hat{y}^{(s)})^2}$$

$$\mathsf{MAE} = \int |y - \hat{y}| \ p(\hat{y}|y_{\mathrm{Tr}}) \ d\hat{y} = rac{1}{S} \sum_{s=1}^{S} |y - \hat{y}^{(s)}|$$

Leave out a single observation y_i and predict by all other observations y_{-i} using the ELPD:

$$\mathsf{ELPD} = \sum_{i=1}^{N} \log p(y_i | y_{-i})$$

(other measures are possible as well)

Important properties of LOO-CV:

- All possible N splits can be evaluated
- Can be approximated using the full model

Importance Sampling

Approximate expectations over a target distribution $f(\theta)$ using an approximating proposal distribution $g(\theta)$:

$$\mathbb{E}_{f}[h(\theta)] = \int h(\theta)f(\theta) \, d\theta = \frac{\int h(\theta)f(\theta) \, d\theta}{\int f(\theta) \, d\theta} = \frac{\int h(\theta)r(\theta)g(\theta) \, d\theta}{\int r(\theta)g(\theta) \, d\theta}$$

Raw importance ratios:

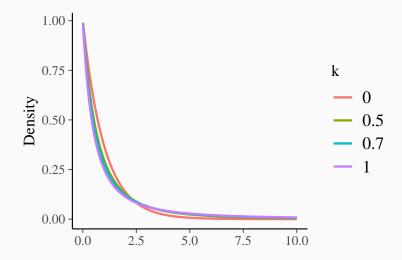
$$r(\theta) = \frac{f(\theta)}{g(\theta)}$$

Approximation via $\theta^{(s)} \sim g(\theta)$:

$$\mathbb{E}_{f}[h(\theta)] \approx \frac{\sum_{s=1}^{S} h(\theta^{(s)}) r(\theta^{(s)})}{\sum_{s=1}^{S} r(\theta^{(s)})}$$

Pareto Smoothed Importance Sampling (PSIS)

Replace the largest importance ratios with quantiles of the generalized Pareto distribution (GPD)



The number of existing moments of the GPD is

$$\#\text{moments} = \begin{cases} \text{if } k > 0 : \text{ floor}\left(\frac{1}{k}\right) \\ \text{else: } \infty \end{cases}$$

Relevant thresholds:

- *k* < 0.5: Finite variance and fast convergence rate
- $0.5 \le k \le 0.7$: Convergence rate is still ok
- k > 0.7: Preasymptotic behavior gets in your way
- *k* > 1: All is lost

PSIS-LOO-CV

Compute the raw LOO importance ratios:

$$r_i^{(s)} = rac{f_i(heta^{(s)})}{g(heta^{(s)})} \propto rac{1}{p(y_i \mid heta^{(s)})}$$

Obtain smoothed importance weights $w_i^{(s)}$ via PSIS

Approximate the *i*th posterior preditive density (PPD):

$$p(y_i | y_{-i}) \approx \frac{\sum_{s=1}^{S} w_i^{(s)} p(y_i | \theta^{(s)})}{\sum_{s=1}^{S} w_i^{(s)}}$$

Sum over the log pointwise contributions:

$$ELPD = \sum_{i=1}^{N} \log p(y_i|y_{-i})$$

Body Fat: PSIS-LOO-CV for Model 1

```
loo1 <- loo(model1)
print(loo1)</pre>
```

##

Computed from 4000 by 251 log-likelihood matrix
##

##		Estimate	SE		
##	elpd_loo	-810.5	11.1		
##	p_loo	3.7	0.5		
##	looic	1621.0	22.2		
##					
##	Monte Car	rlo SE of	elpd_	loo is 0.0	Э.
##					
##	All Paret	to k estim	nates	are good	(k < 0.5).
##	See help	('pareto-k	x-diag	nostic') :	for details.

Body Fat: PSIS-LOO-CV for Model 2

```
loo2 <- loo(model2)
print(loo2)</pre>
```

```
##
```

Computed from 4000 by 251 log-likelihood matrix
##
Estimate SE
elpd_loo -781.7 9.4

- ## p_loo 4.8 0.5
- ## looic 1563.4 18.7

```
## Monte Carlo SE of elpd_loo is 0.0.
```

##

All Pareto k estimates are good (k < 0.5).

See help('pareto-k-diagnostic') for details.

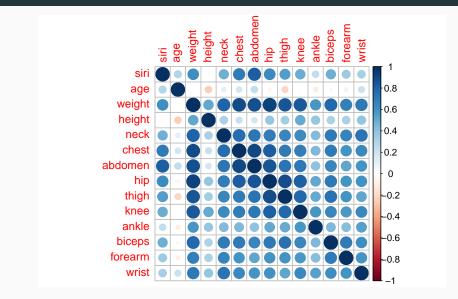
loo_compare(loo1, loo2)

elpd_diff se_diff
model2 0.0 0.0
model1 -28.8 8.3

More detailed summary available via print(loo_compare(loo1, loo2), simplify = FALSE)

Part 2: Projpred

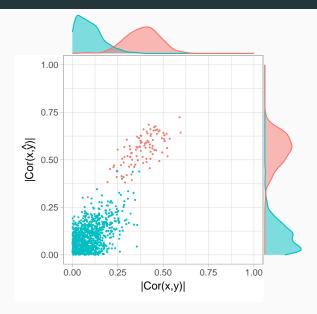
Body Fat: Feature Selection



Goal: Select a minimally sufficient set of predictors/features Relevant aspects:

- What is the reference to compare to?
- How do we compare a model to this reference?
- How to incorporate uncertainty correctly?
- How to do all of this efficienctly?

Reference Models



The KL divergence measures how much one distribution q differs from another distribution p:

$$KL(p || q) = \int \log\left(\frac{p(x)}{q(x)}\right) p(x) dx$$

Application in projective predictions:

Maximize $KL(p(\hat{y}|y)||q(\hat{y}|y))$

- $p(\hat{y}|y)$: PPD of the reference model
- $q(\hat{y}|y)$: PPD of a sub model

For each posterior draw $\theta_p^{(s)}$ from p, find $\theta_q^{(s)}$ that maximizes

$$KL(p(\hat{y}|\theta_p^{(s)}) || q(\hat{y}|\theta_q^{(s)}))$$

Easy to compute for generalized linear models (GLMs):

- Replace the actual responses by the reference predictions
- Perform maximum likelihood estimation

We can further improve efficiency by clustering posterior draws

Ongoing research: Extend projpred to more complex models

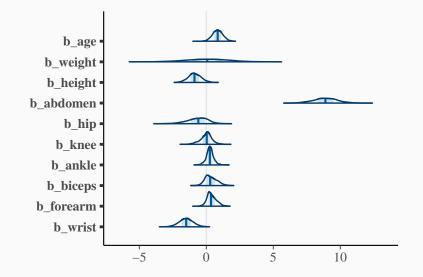
Feature inclusion strategies:

- Check all possible sub models: $\#models = 2^{K}$
- Forward stepwise inclusion: #models = $\frac{K(K+1)}{2}$
- Penalized regression such as Lasso or Elastic Net: #models = K

Decision strategies:

- Choose a measure of predictive accuracy u
- Choose a cross-validation procedure
- Order promising sub models according to their complexity
- Compute u_q for a sub model
- Compare u_q to the u_p of the reference model
- Stop once u_q of the current sub model is close enough to u_p

Body Fat: Fitting the Reference Model

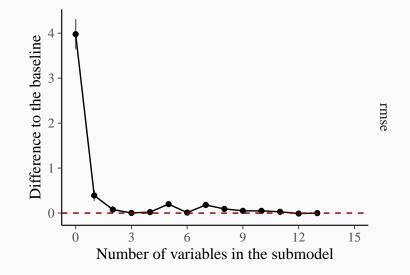


```
library(projpred)
cvvs <- cv_varsel(
  fit_ref, method = 'forward', cv_method = 'LOO',
  nloo = N, verbose = FALSE
)</pre>
```

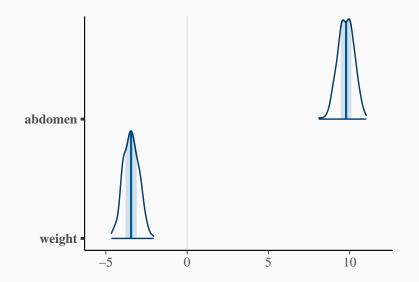
Summarize the results

	size	solution_terms	elpd	elpd.se
2	0	NA	-888.2021	10.341620
3	1	abdomen	-747.0721	9.144744
4	2	weight	-729.9316	8.879844
5	3	wrist	-725.6908	8.791947
6	4	height	-726.6267	8.908563
7	5	chest	-736.6859	9.270678
8	6	age	-725.9468	8.933133
9	7	biceps	-735.7083	9.356540
10	8	neck	-730.6905	9.237834
11	9	forearm	-728.2471	9.276072
12	10	ankle	-728.2443	9.278398

Summarize the results



Summarize the results



References

Johnson, R. W. (1996). Fitting percentage of body fat to simple body measurements. *Journal of Statistics Education*, 4(1). 1–8.

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., & Gabry, J. (2019). Pareto smoothed importance sampling. *arXiv preprint*.

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. *Statistics and Computing*, 27(5), 1413–1432.

Piironen, J., Paasiniemi, M., & Vehtari, A. (2018). Projective inference in high-dimensional problems: prediction and feature selection. *arXiv preprint*.

Catalina A., Bürkner P. C., & Vehtari A. (2020). Projection Predictive Inference for Generalized Linear and Additive Multilevel Models. *arXiv preprint*.