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Function Approximation

General setup:
y = f (x) + e

with input variables x ∈ RD and response y ∈ R

Given observed data (ỹ , x̃) find a function fA(x) with

fA(x) ≈ f (x)
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Polynomial Chaos Expansion (PCE)

Polynomial approximation:

fA(x) =
M∑

m=0
cmΨm(x)

with polynomials Ψm(x) and coefficients cm

In PCE Ψm(x) are orthonormal:∫
Ψm(x) Ψm′(x) p(x) dx = δm,m′

with δm,m′ = 1 if m = m′ and δm,m′ = 0 otherwise
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All we need is unidimensional PCE

Assume independence of input variables xd

If the polynomials ψd ,s(xd ) for are orthonormal for p(xd ), then the
tensor product polynomials

Ψα(x) =
D∏

d=1
ψd ,αk (xd )

are orthonormal for p(x) = ∏D
d=1 p(xd )
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Combinatorial Explosion

Fix the maximal joint polynomial order to P

Then we have
M =

(
P + D

P

)
= (P + D)!

P!D!

D-variate polynomials of order P or less:

Ψα(x) =
D∏

d=1
ψd ,αk (xd ) with

D∑
d=1

αk ≤ P

Examples:

• For D = 3 and P = 10 we have M = 286
• For D = 6 and P = 8 we have M = 3003
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Bayesian PCE

Assume normally distributed errors e ∼ normal(0, σ2)

Then the standard Bayesian PCE model is given by:

y ∼ normal(fA(x), σ2)

fA(x) =
M∑

m=0
cmΨm(x)

c ∼ p(c)
σ2 ∼ p(σ2),

Flexible estimation with MCMC, for example with Stan and brms

References: Carpenter et al. (2017), Bürkner (2017)
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Percentage of Variance Explained

The coefficient of determination R2 (percantage of variance
explained by the model) can be written as:

R2 = var(fA(x))
var(fA(x)) + σ2

where the variance of the PCE approximation is

var(fA(x)) =
M∑

m=1
c2

m.

Accordingly, a prior on R2 implies a joint prior on the cm
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The R2D2 Prior: A global-local shrinkage prior

The R2D2 prior is specified as follows:

R2 ∼ Beta(a1, a2)

τ2 = R2

1− R2

cm ∼ normal
(
0, σ2τ2φm

)
φm ≥ 0 and

M∑
m=1

φm = 1

φ ∼ Dirichlet(θ)
c0 ∼ p(c0)
σ2 ∼ p(σ2)

Reference: Zhang et al. (2020)
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(Bayesian) Variable Selection

Choose a number Msel of polynomials to be selected

Option 1: Choose the polynomials with the largest Sobol indices:

Sm = c2
m∑M

m′=1 c2
m′
,

Option 2 (Projpred): Choose the polynomials that imply the largest
reduction in KL-divergence from the posterior predictive distribution
of the full model:

KL [p(y |ỹ), qsel(y)]

Reference: Piironen et al. (2020)
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1D Case Study: Sign Function
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Sign Function: Conditional Predictions

Conditional predictions for different PCE models of the Signum function
based on P = 10 polynomials and N = 11 training points.
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Sign Function: Results Overview

Results for varying number of training points N with P = N + 1.
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3D Case Study: Ishigami Function

Ishigami function:

y = f (x) = sin(x1) + a sin(x2)2 + bx4
3 sin(x1)

• Hyperparamerters set to a = 7, b = 0.1
• Input variables distributed as x1, x2, x3 ∼ uniform(−1, 1)
• Mean and variance known analytically

Referenece: Ishigami et al. (1990)
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Ishigami Function: Conditional Predictions

Conditional prediction for the sparse projpred model of the Ishigami
function based on N = 100 training points and the PS = 25 most
important polynomials.
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Ishigami Function: Sobol Indices

Posterior mean Sobol indices and total Sobol indices for the sparse
projpred model on the Ishigami function based on based on N = 100
training points and the PS = 25 most important non-constant polynomials.
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Ishigami Function: Results Overview

Summarized results for the Ishigami function by the size of the training
data and model type.
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Conclusion

• PCE is an general-purpose function approximation approach
• . . . but suffers heavily from the curse of dimensionality
• Sparse or regularized PCEs can help reduce this problem
• Our approach combines regularized PCE with exact sparsity
• . . . and achieves highly precise results in several benchmarks

Contact details:

• Email: paul.buerkner@gmail.com
• Website: https://paul-buerkner.github.io
• Twitter: @paulbuerkner
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