The sparse Polynomial Chaos expansion: a fully Bayesian approach with joint priors on the coefficients and global selection of terms

Paul Bürkner, Ilja Kröker, Sergey Oladyshkin, Wolfgang Nowak

Function Approximation

General setup:

$$
y=f(x)+e
$$

with input variables $x \in \mathbb{R}^{D}$ and response $y \in \mathbb{R}$

Given observed data (\tilde{y}, \tilde{x}) find a function $f_{A}(x)$ with

$$
f_{A}(x) \approx f(x)
$$

Polynomial Chaos Expansion (PCE)

Polynomial approximation:

$$
f_{A}(x)=\sum_{m=0}^{M} c_{m} \Psi_{m}(x)
$$

with polynomials $\Psi_{m}(x)$ and coefficients c_{m}
In PCE $\Psi_{m}(x)$ are orthonormal:

$$
\int \Psi_{m}(x) \Psi_{m^{\prime}}(x) p(x) d x=\delta_{m, m^{\prime}}
$$

with $\delta_{m, m^{\prime}}=1$ if $m=m^{\prime}$ and $\delta_{m, m^{\prime}}=0$ otherwise

All we need is unidimensional PCE

Assume independence of input variables x_{d}
If the polynomials $\psi_{d, s}\left(x_{d}\right)$ for are orthonormal for $p\left(x_{d}\right)$, then the tensor product polynomials

$$
\Psi_{\alpha}(x)=\prod_{d=1}^{D} \psi_{d, \alpha_{k}}\left(x_{d}\right)
$$

are orthonormal for $p(x)=\prod_{d=1}^{D} p\left(x_{d}\right)$

Combinatorial Explosion

Fix the maximal joint polynomial order to P
Then we have

$$
M=\binom{P+D}{P}=\frac{(P+D)!}{P!D!}
$$

D-variate polynomials of order P or less:

$$
\psi_{\alpha}(x)=\prod_{d=1}^{D} \psi_{d, \alpha_{k}}\left(x_{d}\right) \quad \text { with } \quad \sum_{d=1}^{D} \alpha_{k} \leq P
$$

Examples:

- For $D=3$ and $P=10$ we have $M=286$
- For $D=6$ and $P=8$ we have $M=3003$

Bayesian PCE

Assume normally distributed errors e $\sim \operatorname{normal}\left(0, \sigma^{2}\right)$
Then the standard Bayesian PCE model is given by:

$$
\begin{aligned}
y & \sim \operatorname{normal}\left(f_{A}(x), \sigma^{2}\right) \\
f_{A}(x) & =\sum_{m=0}^{M} c_{m} \Psi_{m}(x) \\
c & \sim p(c) \\
\sigma^{2} & \sim p\left(\sigma^{2}\right),
\end{aligned}
$$

Flexible estimation with MCMC, for example with Stan and brms
References: Carpenter et al. (2017), Bürkner (2017)

Percentage of Variance Explained

The coefficient of determination R^{2} (percantage of variance explained by the model) can be written as:

$$
R^{2}=\frac{\operatorname{var}\left(f_{A}(x)\right)}{\operatorname{var}\left(f_{A}(x)\right)+\sigma^{2}}
$$

where the variance of the PCE approximation is

$$
\operatorname{var}\left(f_{A}(x)\right)=\sum_{m=1}^{M} c_{m}^{2}
$$

Accordingly, a prior on R^{2} implies a joint prior on the c_{m}

The R2D2 Prior: A global-local shrinkage prior

The R2D2 prior is specified as follows:

$$
\begin{aligned}
R^{2} & \sim \operatorname{Beta}\left(a_{1}, a_{2}\right) \\
\tau^{2} & =\frac{R^{2}}{1-R^{2}} \\
c_{m} & \sim \operatorname{normal}\left(0, \sigma^{2} \tau^{2} \phi_{m}\right) \\
\phi_{m} & \geq 0 \text { and } \sum_{m=1}^{M} \phi_{m}=1 \\
\phi & \sim \operatorname{Dirichlet}(\theta) \\
c_{0} & \sim p\left(c_{0}\right) \\
\sigma^{2} & \sim p\left(\sigma^{2}\right)
\end{aligned}
$$

Reference: Zhang et al. (2020)

(Bayesian) Variable Selection

Choose a number $M_{\text {sel }}$ of polynomials to be selected
Option 1: Choose the polynomials with the largest Sobol indices:

$$
S_{m}=\frac{c_{m}^{2}}{\sum_{m^{\prime}=1}^{M} c_{m^{\prime}}^{2}},
$$

Option 2 (Projpred): Choose the polynomials that imply the largest reduction in KL-divergence from the posterior predictive distribution of the full model:

$$
\mathrm{KL}\left[p(y \mid \tilde{y}), q_{\mathrm{sel}}(y)\right]
$$

Reference: Piironen et al. (2020)

1D Case Study: Sign Function

Sign Function: Conditional Predictions

Conditional predictions for different PCE models of the Signum function based on $P=10$ polynomials and $N=11$ training points.

Sign Function: Results Overview

PCE-Model

- Standard
- Bayesian-Flat
- Bayesian-R2D2

Training-Strategy

- Gaussian-Integration
- - \quad Sobol-Sequence

Results for varying number of training points N with $P=N+1$.

3D Case Study: Ishigami Function

Ishigami function:

$$
y=f(x)=\sin \left(x_{1}\right)+a \sin \left(x_{2}\right)^{2}+b x_{3}^{4} \sin \left(x_{1}\right)
$$

- Hyperparamerters set to $a=7, b=0.1$
- Input variables distributed as $x_{1}, x_{2}, x_{3} \sim \operatorname{uniform}(-1,1)$
- Mean and variance known analytically

Referenece: Ishigami et al. (1990)

Ishigami Function: Conditional Predictions

Conditional prediction for the sparse projpred model of the Ishigami function based on $N=100$ training points and the $P_{S}=25$ most important polynomials.

Ishigami Function: Sobol Indices

Posterior mean Sobol indices and total Sobol indices for the sparse projpred model on the Ishigami function based on based on $N=100$ training points and the $P_{S}=25$ most important non-constant polynomials.

Ishigami Function: Results Overview

Summarized results for the Ishigami function by the size of the training data and model type.

Conclusion

- PCE is an general-purpose function approximation approach
- ... but suffers heavily from the curse of dimensionality
- Sparse or regularized PCEs can help reduce this problem
- Our approach combines regularized PCE with exact sparsity
- ... and achieves highly precise results in several benchmarks

Contact details:

- Email: paul.buerkner@gmail.com
- Website: https://paul-buerkner.github.io
- Twitter: @paulbuerkner

References

Zhang, Y. D., Naughton, B. P., Bondell, H. D., \& Reich, B. J. (2020). Bayesian regression using a prior on the model fit: The R2-D2 shrinkage prior. Journal of the American Statistical Association.

Piironen, J., Paasiniemi, M., \& Vehtari, A. (2020). Projective inference in high-dimensional problems: Prediction and feature selection. Electronic Journal of Statistics.

Carpenter B., Gelman A., Hoffman M. D., Lee D., Goodrich B., Betancourt M., Brubaker M., Guo J., Li P., and Riddell A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software.

Bürkner P. C. (2017). brms: An R Package for Bayesian Multilevel Models using Stan. Journal of Statistical Software.

Ishigami T. and Homma T. (1990). An importance quantification technique in uncertainty analysis for computer models. First International Symposium on Uncertainty Modeling and Analysis.

