A Bayesian Workflow for Data Analysis

Paul Bürkner

The Bayes Theorem

$$p(\theta \mid y) = \frac{p(y \mid \theta) p(\theta)}{p(y)}$$

Rethinking the Bayes Theorem

$$p(\theta \mid y) \propto p(y \mid \theta) p(\theta) = p(y, \theta)$$

Why use Bayesian Statistics?

Advantages and Disadvantages of Bayesian Statistics

Advantages:

- Natural approach to expressing uncertainty
- Ability to incorporate prior information
- Increased modeling flexibility
- Full posterior distribution of parameters
- Natural propagation of uncertainty

Disadvantages:

Slow Speed of model estimation

Topic for Today

(Aspects of) a Bayesian workflow for data analysis

Gelman A., Vehtari A., Simpson D., Margossian, C., Carpenter, B. and Yao, Y., Kennedy, L., Gabry, J., **Bürkner P. C.**, & Modrák M. (2020). Bayesian Workflow. https://arxiv.org/abs/2011.01808

The Probabilistic Programming Language Stan

Stan

https://mc-stan.org/

Stan syntax: Linear Regression

```
data {
  int<lower=1> N; // total number of observations
  vector[N] y; // response variable
  int<lower=1> K; // number of regression coefficients
  matrix[N, K] X; // predictor design matrix
parameters {
  vector[K] b; // regression coefficients
  real<lower=0> sigma; // residual standard deviation
model {
  vector[N] mu = X * b; // predicted means
  b ~ normal(0, 10); // prior
  sigma ~ exponential(1); // prior
  y ~ normal(mu, sigma); // likelihood
```

MCMC Sampling: A Single Chain (10 Iterations)

MCMC Sampling: A Single Chain (50 Iterations)

MCMC Sampling: A Single Chain (1000 Iterations)

All we care about are expectations

Expectation of some function f over the distribution $p(\theta \mid y)$:

$$\mathbb{E}_p(f) = \int f(\theta) \, p(\theta \mid y) \, \mathrm{d}\theta$$

Monto-Carlo Estimator

Having obtained exact random draws $\{\theta_s\}$ from $p(\theta \mid y)$:

$$rac{1}{S}\sum_{s=1}^{S}f(heta_s)\sim \mathsf{Normal}\left(\mathbb{E}_p(f),\sqrt{rac{\mathsf{Var}_p(f)}{\mathsf{S}}}
ight)$$

Markov-Chain Monto-Carlo Estimator

Assuming geometric ergodicity of a Markov Chain $\{\theta_s\}$:

$$\frac{1}{S} \sum_{s=1}^{S} f(\theta_s) \sim \mathsf{Normal}\left(\mathbb{E}_p(f), \sqrt{\frac{\mathsf{Var}_p(f)}{\mathsf{ESS}}}\right)$$

Trace Plots: Visualizing a Single Chain

Trace Plots: Visualizing Multiple Chains

Chains with Different Locations

Non-Stationary Chains

Chains with Different Variances

Traditional MCMC Diagnostics

Between Chain Variance:

$$B = \frac{N}{M-1} \sum_{m=1}^{M} (\overline{\theta}^{(.m)} - \overline{\theta}^{(..)})^2$$

Within Chain Variance:

$$W = \frac{1}{M(N-1)} \sum_{m=1}^{M} \sum_{n=1}^{N} (\theta^{(nm)} - \overline{\theta}^{(.m)})^{2}$$

Potential Scale Reduction Factor:

$$\widehat{R} = \sqrt{\frac{\frac{N-1}{N}W + \frac{1}{N}B}{W}}$$

Effective Sample Size:

$$\mathsf{ESS} = \frac{N \, M}{\hat{\tau}}$$

Problems with the Traditional MCMC Diagnostics

- (1) We do not detect differences of chains with infinite means
- (2) We do not detect non-convergence in the tails of the distribution
- (3) We cannot properly localize convergence problems

Solutions provided in:

Vehtari A., Gelman A., Simpson D., Carpenter B., & **Bürkner P. C.** (2020). Rank-normalization, folding, and localization: An improved Rhat for assessing convergence of MCMC. *Bayesian Analysis*. 1–28. doi:10.1214/20-BA1221

Simulation-Based Calibration

Idea based on the following identity:

$$p(\theta) = \int p(\theta \mid \tilde{y}) \ p(\tilde{y} \mid \tilde{\theta}) \ p(\tilde{\theta}) \ d\tilde{y} d\tilde{\theta}$$

Repeat the following steps multiple times:

- (1) Sample $\tilde{\theta} \sim p(\theta)$
- (2) Sample $\tilde{y} \sim p(y \mid \tilde{\theta})$
- (3) Sample $\{\theta_1, \ldots, \theta_L\} \sim p(\theta|\tilde{y})$
- (4) Compute $rank(f(\tilde{\theta}), \{f(\theta_1), \dots, f(\theta_L)\})$

Talts, S., Betancourt, M., Simpson, D., Vehtari, A., & Gelman, A. (2018). Validating Bayesian inference algorithms with simulation-based calibration. https://arxiv.org/abs/1804.06788

Simulation-Based Calibration: Illustration

Example for a well calibrated posterior:

Cross-Validation

Steps in cross-validation:

- (1) Split the data into two Subsets: training data and test data
- (2) Fit the model on the training data
- (3) Evaluate the predictions on the test data
- (4) Repeat (1) to (3) with multiple data splits
- (5) Summarize the results of all splits

Types of cross-validation (selection):

- Leave-one-out cross-validation (LOO-CV)
- K-fold cross-validation (K-fold-CV)
- Leave-group-out cross-validation (LGO-CV)
- Leave-future-out cross-validation (LFO-CV)

Measures of Predictive Accuracy / Utility

Example measures for a single data split:

ELPD = log
$$p(y|y_{\rm tr}) = \log \int p(y|\theta) \ p(\theta|y_{\rm tr}) \ d\theta$$

 $\approx \log \frac{1}{S} \sum_{s=1}^{S} p(y|\theta^{(s)})$

RMSE =
$$\sqrt{\int (y - \hat{y})^2 \ p(\hat{y}|y_{\rm tr}) \ d\hat{y}} \approx \sqrt{\frac{1}{S} \sum_{s=1}^{S} (y - \hat{y}^{(s)})^2}$$

Leave-One-Out Cross-Validation

Leave out a single observation y_i and predict by all other observations y_{-i} using the ELPD:

$$ELPD = \sum_{i=1}^{N} \log p(y_i|y_{-i})$$

(other measures are possible as well)

Important properties of LOO-CV:

- All possible N splits can be evaluated
- Can be approximated using the full model

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. *Statistics and Computing*, 27(5), 1413–1432.

Importance Sampling

Approximate expectations over a target distribution $f(\theta)$ using an approximating proposal distribution $g(\theta)$:

$$\mathbb{E}_f[h(\theta)] = \int h(\theta)f(\theta) d\theta = \frac{\int h(\theta)f(\theta) d\theta}{\int f(\theta) d\theta} = \frac{\int h(\theta)r(\theta)g(\theta) d\theta}{\int r(\theta)g(\theta) d\theta}$$

Raw importance ratios:

$$r(\theta) = \frac{f(\theta)}{g(\theta)}$$

Approximation via $\theta^{(s)} \sim g(\theta)$:

$$\mathbb{E}_f[h(\theta)] \approx \frac{\sum_{s=1}^S h(\theta^{(s)}) r(\theta^{(s)})}{\sum_{s=1}^S r(\theta^{(s)})}$$

Case Study: Roaches

Research question: Does a treatment reduce the number of roaches?

Data set of 262 apartments with the following variables:

- roach1: Number of roaches counted before treatment within one hour (between 0 and 450)
- y: Number of roaches after treatment (between 0 and 357)
- exposure2: Time frame in which we counted y (between 0.2 and 4 hours)
- treatment: Dichotomous treatment indicator (0 or 1)

Choosing an initial model

```
model1 <- brm(
   y ~ treatment * roach1 + offset(log(exposure2)),
   family = poisson("log"),
   prior = prior(normal(0, 5), class = "b"),
   ...
)</pre>
```

Bürkner P. C. (2017). brms: An R Package for Bayesian Multilevel Models using Stan. *Journal of Statistical Software*. 80(1), 1-28. doi:10.18637/jss.v080.i01

Posterior Predictive Checking

Visualization of Predictions

Model Comparison

```
model2 <- brm(
   y ~ treatment + roach1 + offset(log(exposure2)),
   family = poisson("log"),
   prior = prior(normal(0, 5), class = "b"),
   ...
)</pre>
```

```
## model1 0.0 0.0
## model2 -20.6 91.9
```

Learn More

Learn more about me:

- Website: https://paul-buerkner.github.io/
- Publications: https://paul-buerkner.github.io/publications/
- Email: paul.buerkner@gmail.com
- Twitter: @paulbuerkner

Learn more about Stan:

- Website: http://mc-stan.org/
- Forums: http://discourse.mc-stan.org/