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Bayesian Statistics

“If you quantify uncertainty with probability you are a Bayesian.”

Micheal Betancourt

Bayes Theorem: (16) p(9)
_ply|0)p(0
P(el}/) - p(y)

Challenge: Obtain a representation of the posterior distribution

General purpose solution: MCMC Sampling



MCMC Sampling: A Single Chain (10 Iterations)




MCMC Sampling: A Single Chain (50 Iterations)




MCMC Sampling: A Single Chain (1000 Iterations)




All we care about are expectations

Expectation of some function f over the distribution p(6 | y):

/f p(f|y)d



Monto-Carlo Estimator

Having obtained exact random draws {6s} from p(6 | y):

1 Varp(f)
55:21 f(#s) ~ Normal (]Ep(f), s)



Markov-Chain Monto-Carlo Estimator

Assuming geometric ergodicity of a Markov Chain {6s}:

1 Varp(f)
55:21 f(6s) ~ Normal (]Ep(f), ESS)



Trace Plots: Visualizing a Single Chain
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Chains with Different Locations
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Traditional MCMC Diagnostics

Between Chain Variance:
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Problems with the Traditional MCMC Diagnostics

(1) We do not detect differences of chains with infinite means

(2) We do not detect non-convergence in the tails of the
distribution

(3) We cannot properly localize convergence problems
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Solution to (1): Rank Normalization of Draws

= Replace the original posterior draws 8("™ with their ranks
r(") computed across all chains

= Normalize the ranks via

2" = o1((r("™ — 0.5)/5)

= Compute R and ESS based on z(nm)

= We call these measures bulk-R and bulk-ESS
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Chains with Infinite Mean and Different Locations
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Solution to (2): Folding of Draws

= Fold the original draws ("™ around their median

¢lm) = 1g(rm) _ median(9("™)]

= Rank normalize ¢(") in the same way as done for 6("™)

= Compute R based on rank normalized ¢om)

= We call thise measure folded-R

Proposed new version of R:

R = Max(bulk-R, folded-R)
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Chains with Finite Mean and Different Variances
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Solution to (3): Efficiency of Quantiles

The empirical distribution function (ECDF) can be estimated as:

Pr(0 < 60*) = T* 52’ 0©) < 0%, (1)

Efficiency of the a-Quantile Q,:
= Efficiency of the indicator /(8() < Q,)
Efficiency of small intervals between Q, and Q,s:

= Efficiency of the indicator /(Qy < 09 < Quis)

Tail-ESS: Minimum ESS of the 5% and 95% quantiles

20



Case Study: Eight Schools Meta-Analysis

Data:

= y;: Mean effect of the treatment on SAT scores in school i
= o;: Standard deviation of the mean effect in school i

Random effects meta-analytic model:

= y; ~ Normal(6;,0;)
= 0; ~ Normal(u, 1)

Convergence diagnostics for 7 based on 4000 samples:

= R=1.02
= bulk-ESS = 95
= tail-ESS = 46
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Quantile Efficiency of 7

ESS for quantiles
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Small Interval Efficiency of 7
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(1) MCMC Sampling is a powerful tool to estimate highly complex

Bayesian models

(2) The current convergence diagnostics for MCMC algorithms

have serious flaws and limitations
(3) We recommend a set of changes to alleviate these problems

(4) We propose new visualizations for MCMC diagnostics
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Thank you!

Reference: Vehtari A., Gelman A., Simpson D., Carpenter B., &
Biirkner P. C. (in review). Rank-normalization, folding, and
localization: An improved Rhat for assessing convergence of MCMC.
ArXiv preprint.
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Appendix
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Rank Plots: Good Mixing of Chains
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Rank Plots: Bad Mixing of Chains
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