Improving Convergence Diagnostics for MCMC Sampling Algorithms

Paul Bürkner (joint work with Aki Vehtari, Andrew Gelman, Daniel Simpson, and Bob Carpenter)

"If you quantify uncertainty with probability you are a Bayesian."

Micheal Betancourt

Bayes Theorem:

$$p(\theta \mid y) = rac{p(y \mid \theta) p(\theta)}{p(y)}$$

Challenge: Obtain a representation of the posterior distribution General purpose solution: MCMC Sampling

MCMC Sampling: A Single Chain (10 Iterations)

MCMC Sampling: A Single Chain (50 Iterations)

MCMC Sampling: A Single Chain (1000 Iterations)

Expectation of some function *f* over the distribution $p(\theta \mid y)$:

$$\mathbb{E}_p(f) = \int f(\theta) \, p(\theta \mid y) \, \mathrm{d}\theta$$

Having obtained exact random draws $\{\theta_s\}$ from $p(\theta \mid y)$:

$$\frac{1}{S}\sum_{s=1}^{S} f(\theta_s) \sim \mathsf{Normal}\left(\mathbb{E}_p(f), \sqrt{\frac{\mathsf{Var}_p(f)}{\mathsf{S}}}\right)$$

Assuming geometric ergodicity of a Markov Chain $\{\theta_s\}$:

$$\frac{1}{S}\sum_{s=1}^{S} f(\theta_s) \sim \text{Normal}\left(\mathbb{E}_p(f), \sqrt{\frac{\text{Var}_p(f)}{\text{ESS}}}\right)$$

Trace Plots: Visualizing Multiple Chains

Chains with Different Locations

Non-Stationary Chains

Chains with Different Variances

Traditional MCMC Diagnostics

Between Chain Variance:

$$B = \frac{N}{M-1} \sum_{m=1}^{M} (\overline{\theta}^{(.m)} - \overline{\theta}^{(..)})^2$$

Within Chain Variance:

$$W = \frac{1}{M(N-1)} \sum_{m=1}^{M} \sum_{n=1}^{N} (\theta^{(nm)} - \overline{\theta}^{(.m)})^2$$

Potential Scale Reduction Factor:

$$\widehat{R} = \sqrt{\frac{\frac{N-1}{N}W + \frac{1}{N}B}{W}}$$

Effective Sample Size:

$$\mathsf{ESS} = \frac{N\,M}{\hat{\tau}}$$

- (1) We do not detect differences of chains with infinite means
- (2) We do not detect non-convergence in the tails of the distribution
- (3) We cannot properly localize convergence problems

Solution to (1): Rank Normalization of Draws

- Replace the original posterior draws $\theta^{(nm)}$ with their ranks $r^{(nm)}$ computed across all chains
- Normalize the ranks via

$$z^{(nm)} = \Phi^{-1}((r^{(nm)} - 0.5)/S)$$

- Compute \hat{R} and ESS based on $z^{(nm)}$
- We call these measures bulk- \hat{R} and bulk-ESS

Chains with Infinite Mean and Different Locations

Solution to (2): Folding of Draws

• Fold the original draws $\theta^{(nm)}$ around their median

$$\zeta^{(nm)} = |\theta^{(nm)} - \operatorname{median}(\theta^{(nm)})|$$

- Rank normalize $\zeta^{(nm)}$ in the same way as done for $\theta^{(nm)}$
- Compute \widehat{R} based on rank normalized $\zeta^{(nm)}$
- We call thise measure folded- \widehat{R}

Proposed new version of \widehat{R} :

$$\widehat{R} = \mathsf{Max}(\mathsf{bulk} \cdot \widehat{R}, \mathsf{folded} \cdot \widehat{R})$$

Chains with Finite Mean and Different Variances

The empirical distribution function (ECDF) can be estimated as:

$$\Pr(\theta \le \theta^{\star}) \approx \overline{I}^{\star} = \frac{1}{S} \sum_{s=1}^{S} I(\theta^{(s)} \le \theta^{\star}), \tag{1}$$

Efficiency of the α -Quantile Q_{α} :

Efficiency of the indicator I(θ^(s) ≤ Q_α)

Efficiency of small intervals between Q_{α} and $Q_{\alpha+\delta}$:

• Efficiency of the indicator $I(\hat{Q}_{\alpha} < \theta^{(s)} \leq \hat{Q}_{\alpha+\delta})$

Tail-ESS: Minimum ESS of the 5% and 95% quantiles

Data:

- *y_i*: Mean effect of the treatment on SAT scores in school *i*
- σ_i: Standard deviation of the mean effect in school i

Random effects meta-analytic model:

- $y_i \sim \text{Normal}(\theta_i, \sigma_i)$
- $\theta_i \sim \text{Normal}(\mu, \tau)$

Convergence diagnostics for τ based on 4000 samples:

- $\hat{R} = 1.02$
- bulk-ESS = 95
- tail-ESS = 46

Quantile Efficiency of τ

Small Interval Efficiency of τ

- (1) MCMC Sampling is a powerful tool to estimate highly complex Bayesian models
- (2) The current convergence diagnostics for MCMC algorithms have serious flaws and limitations
- (3) We recommend a set of changes to alleviate these problems
- (4) We propose new visualizations for MCMC diagnostics

Thank you!

Reference: Vehtari A., Gelman A., Simpson D., Carpenter B., & Bürkner P. C. (in review). Rank-normalization, folding, and localization: An improved Rhat for assessing convergence of MCMC. ArXiv preprint.

Appendix

Rank Plots: Good Mixing of Chains

Rank Plots: Bad Mixing of Chains

