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Bayesian Statistics

“If you quantify uncertainty with probability you are a Bayesian.”

Micheal Betancourt

Bayes Theorem:
p(θ | y) = p(y | θ) p(θ)

p(y)

Challenge: Obtain a representation of the posterior distribution

General purpose solution: MCMC Sampling
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MCMC Sampling: A Single Chain (10 Iterations)
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MCMC Sampling: A Single Chain (50 Iterations)
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MCMC Sampling: A Single Chain (1000 Iterations)
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All we care about are expectations

Expectation of some function f over the distribution p(θ | y):

Ep(f ) =
∫

f (θ) p(θ | y) dθ
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Monto-Carlo Estimator

Having obtained exact random draws {θs} from p(θ | y):

1
S

S∑
s=1

f (θs) ∼ Normal

Ep(f ),
√

Varp(f )
S


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Markov-Chain Monto-Carlo Estimator

Assuming geometric ergodicity of a Markov Chain {θs}:

1
S

S∑
s=1

f (θs) ∼ Normal

Ep(f ),
√

Varp(f )
ESS


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Trace Plots: Visualizing a Single Chain

−2

0

2

0 250 500 750 1000
Iteration

θ 1

9



Trace Plots: Visualizing Multiple Chains
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Chains with Different Locations

−2

0

2

0 250 500 750 1000
Iteration

θ 1

11



Non-Stationary Chains
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Chains with Different Variances
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Traditional MCMC Diagnostics

Between Chain Variance:

B = N
M − 1

M∑
m=1

(θ(.m) − θ(..))2

Within Chain Variance:

W = 1
M(N − 1)

M∑
m=1

N∑
n=1

(θ(nm) − θ(.m))2

Potential Scale Reduction Factor:

R̂ =

√
N−1

N W + 1
N B

W

Effective Sample Size:
ESS = N M

τ̂
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Problems with the Traditional MCMC Diagnostics

(1) We do not detect differences of chains with infinite means

(2) We do not detect non-convergence in the tails of the
distribution

(3) We cannot properly localize convergence problems
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Solution to (1): Rank Normalization of Draws

• Replace the original posterior draws θ(nm) with their ranks
r (nm) computed across all chains

• Normalize the ranks via

z(nm) = Φ−1((r (nm) − 0.5)/S)

• Compute R̂ and ESS based on z(nm)

• We call these measures bulk-R̂ and bulk-ESS
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Chains with Infinite Mean and Different Locations
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Solution to (2): Folding of Draws

• Fold the original draws θ(nm) around their median

ζ(nm) = |θ(nm) −median(θ(nm))|

• Rank normalize ζ(nm) in the same way as done for θ(nm)

• Compute R̂ based on rank normalized ζ(nm)

• We call thise measure folded-R̂

Proposed new version of R̂:

R̂ = Max(bulk-R̂, folded-R̂)
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Chains with Finite Mean and Different Variances
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Solution to (3): Efficiency of Quantiles

The empirical distribution function (ECDF) can be estimated as:

Pr(θ ≤ θ?) ≈ Ī? = 1
S

S∑
s=1

I(θ(s) ≤ θ?), (1)

Efficiency of the α-Quantile Qα:

• Efficiency of the indicator I(θ(s) ≤ Qα)

Efficiency of small intervals between Qα and Qα+δ:

• Efficiency of the indicator I(Q̂α < θ(s) ≤ Q̂α+δ)

Tail-ESS: Minimum ESS of the 5% and 95% quantiles
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Case Study: Eight Schools Meta-Analysis

Data:

• yi : Mean effect of the treatment on SAT scores in school i
• σi : Standard deviation of the mean effect in school i

Random effects meta-analytic model:

• yi ∼ Normal(θi , σi )
• θi ∼ Normal(µ, τ)

Convergence diagnostics for τ based on 4000 samples:

• R̂ = 1.02
• bulk-ESS = 95
• tail-ESS = 46
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Quantile Efficiency of τ
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Small Interval Efficiency of τ
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Summary

(1) MCMC Sampling is a powerful tool to estimate highly complex
Bayesian models

(2) The current convergence diagnostics for MCMC algorithms
have serious flaws and limitations

(3) We recommend a set of changes to alleviate these problems

(4) We propose new visualizations for MCMC diagnostics
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Thank you!

Reference: Vehtari A., Gelman A., Simpson D., Carpenter B., &
Bürkner P. C. (in review). Rank-normalization, folding, and
localization: An improved Rhat for assessing convergence of MCMC.
ArXiv preprint.
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Appendix

26



Rank Plots: Good Mixing of Chains
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Rank Plots: Bad Mixing of Chains
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