Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks

Marvin Schmitt¹, Paul-Christian Bürkner^{1,2}, Ullrich Köthe³, & Stefan T. Radev³ German Conference on Pattern Recognition 2023

¹ University of Stuttgart

² TU Dortmund University

³ Heidelberg University

Do you have a moment to talk about our

lord and savior

Do you have a moment to talk about our

lord and savior

M. Schmitt, P.-C. Bürkner, U. Köthe, S. T. Radev · Detecting Model Misspecification in Amortized Inference · GCPR 2023

Inverse problems

Statistical modeling:	Parameters θ	Data x
Epidemiology:	Virus attributes	Infection curve (time series)
Image processing:	Crisp image	Blurry image
Physics:	Physical attributes	Graviational wave measurements

Bayesian inference

Figure 1: Maybe Thomas Bayes

Neural posterior estimation (NPE)

The analytic posterior $p(\theta | x)$ and the approximated posterior $p_{\phi}(\theta | \mathcal{H}_{\psi}(x))$ on learned summary statistics $\mathcal{H}_{\psi}(x)$ shall match:

$$\begin{aligned} (\boldsymbol{\phi}^*, \boldsymbol{\psi}^*) &= \operatorname*{argmin}_{\boldsymbol{\phi}, \boldsymbol{\psi}} \mathbb{E}_{p^*(\boldsymbol{x})} \Big[\mathbb{KL} \Big(p\left(\boldsymbol{\theta} \mid \boldsymbol{x}\right) \left\| p_{\boldsymbol{\phi}}\left(\boldsymbol{\theta} \mid \mathcal{H}_{\boldsymbol{\psi}}\left(\boldsymbol{x}\right)\right) \Big) \Big] \\ &= \operatorname*{argmin}_{\boldsymbol{\phi}, \boldsymbol{\psi}} \mathbb{E}_{p^*(\boldsymbol{x})} \Big[\mathbb{E}_{p(\boldsymbol{\theta} \mid \boldsymbol{x})} \big[-\log p_{\boldsymbol{\phi}}(\boldsymbol{\theta} \mid \mathcal{H}_{\boldsymbol{\psi}}(\boldsymbol{x})) \big] \Big] \end{aligned}$$

Assume that the true data distribution $p^*(x)$ equals the simulated p(x):

$$\begin{aligned} (\boldsymbol{\phi}^*, \boldsymbol{\psi}^*) &= \operatorname*{argmin}_{\boldsymbol{\phi}, \boldsymbol{\psi}} \mathbb{E}_{p(\boldsymbol{x})} \Big[\mathbb{E}_{p(\boldsymbol{\theta} \mid \boldsymbol{x})} \Big[-\log p_{\boldsymbol{\phi}}(\boldsymbol{\theta} \mid \mathcal{H}_{\boldsymbol{\psi}}(\boldsymbol{x})) \Big] \Big] \\ &= \operatorname*{argmin}_{\boldsymbol{\phi}, \boldsymbol{\psi}} \mathbb{E}_{p(\boldsymbol{x}, \boldsymbol{\theta})} \Big[-\log p_{\boldsymbol{\phi}}(\boldsymbol{\theta} \mid \mathcal{H}_{\boldsymbol{\psi}}(\boldsymbol{x})) \Big] \end{aligned}$$

If $p^*(\boldsymbol{x}) \neq p(\boldsymbol{x})$, we optimize with respect to the wrong distribution.

What happens when MCMC and NPE encounter OOD data?

What happens when MCMC and NPE encounter OOD data?

Structured summary statistics

Optimize the summary network's output $\mathcal{H}_{\psi}(x)$ towards a unit Gaussian:

$$p(\mathcal{H}_{\psi}(\boldsymbol{x})) \approx \mathcal{N}(\boldsymbol{z} \mid 0, \mathbb{I})$$

Detecting out-of-distribution data

Detecting out-of-distribution data

Experiment 1: Gaussian toy model

Recover mean vector μ of a 2-dimensional spherical Gaussian:

$$egin{aligned} & oldsymbol{\mu} \sim \mathcal{N}(oldsymbol{\mu} \,|\, oldsymbol{\mu}_0, au_0 \mathbb{I}) \ & oldsymbol{x}_k \sim \mathcal{N}(oldsymbol{x} \,|\, oldsymbol{\mu}, au \mathbb{I}) \quad ext{ for } k = 1, ..., K. \end{aligned}$$

Potential misspecifications:

- Prior location μ_0 and scale au_0
- Likelihood scale τ
- Unmodeled noise

Gaussian: Perfect performance for well-specified model

Figure 3: Well-specified case

Gaussian: Perfect performance for well-specified model

Figure 3: Well-specified case

Figure 4: Prior misspecification: $\mu_0 = 2.5$

Gaussian: Inspecting the summary space

M. Schmitt, P.-C. Bürkner, U. Köthe, S. T. Radev · Detecting Model Misspecification in Amortized Inference · GCPR 2023

Gaussian: How many summary statistics?

Gaussian: How many summary statistics?

Gaussian: How many summary statistics?

M. Schmitt, P.-C. Bürkner, U. Köthe, S. T. Radev · Detecting Model Misspecification in Amortized Inference · GCPR 2023

Experiment 3: COVID-19 modeling

Compartmental Models for disease outbreaks (Radev et al., 2021)

- 1. Inference is based on posteriors \rightarrow must be trustworthy
- 2. Are initially well-specified models misspecified at some point?

- Train the network on data from the full model \mathcal{M}^\ast
- Simulate 1000 time series each from
 - \mathcal{M}^* : full model
 - + \mathcal{M}_1 : no intervention sub-model
 - \mathcal{M}_2 : no observation sub-model
- Find discrepancies in the latent summary space

COVID-19: Is the model well-specified for German data?

Frequentist hypothesis test: $H_0: p^*(\boldsymbol{x}) = p(\boldsymbol{x}) \quad H_1: p^*(\boldsymbol{x}) \neq p(\boldsymbol{x})$

Conclusion: Don't reject the null hypothesis \rightarrow model is well-specified.

Power of a frequentist hypothesis test on summary space MMD

Power of a frequentist hypothesis test on summary space MMD

• Neural posterior estimation hinges on a valid simulator

- Neural posterior estimation hinges on a valid simulator
- OOD detection is difficult in data space (entire ML field)

- Neural posterior estimation hinges on a valid simulator
- OOD detection is difficult in data space (entire ML field)
- OOD detection is easier in a structured summary space
- Imposing structure is easy in NPE with learned summaries

- Neural posterior estimation hinges on a valid simulator
- OOD detection is difficult in data space (entire ML field)
- OOD detection is easier in a structured summary space
- Imposing structure is easy in NPE with learned summaries
- Unhappy with MMD or the frequentist hypothesis test?
 - Bring your own distance metric
 - Bring your own test

- Neural posterior estimation hinges on a valid simulator
- OOD detection is difficult in data space (entire ML field)
- OOD detection is easier in a structured summary space
- Imposing structure is easy in NPE with learned summaries
- Unhappy with MMD or the frequentist hypothesis test?
 - Bring your own distance metric
 - Bring your own test
- All implementations in the *BayesFlow* library: bayesflow.org

Marvin Schmitt

Ullrich Köthe R⁶ Ullrich Köthe

Stefan Radev @stefanradev13

Partially funded by

