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Optimal Design: Introduction

Simple example: Comparison of two independent groups
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Optimal Design: Introduction

Comparison of two independent groups with unequal variances
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Optimal Design: Definition

Experimental Design:

= The experimental conditions
= The allocation of replications to the conditions

Optimal Experimental Design:

= The design & that optimizes a certain criterion function v
= For instance (&) := Power(T(¢))
= Alternatively ¢(&) := det(Cov(6, €))



Optimal design of the

Wilcoxon-Mann-Whitney-test
with Philipp Doebler and Heinz Holling



The Wilcoxon-Mann-Whitney-Test

= Assumption: Group x has continuous distribution F and group
vy has continuous distribution G.

= Hypotheses:

= Test Statistic:

U:= ZZX(X,’, ¥j)

i=1 j=1
with x(x;, ;) := 1 if x; > yj and x(x;, yj) := 0 if x; < y;.
= Experimental Design & The proportion w of replications
allocated to group x.



Optimal Design of the U-Test: Symmetric Case

Theorem: Let the sample sizes be sufficiently large so that U is
approximately normal. Then, for symmetric continuous
distributions F and G with G(x) = F(x+ a) for some a # 0, the

optimal design is given if w* = 0.5.



Optimal Design of the U-Test: Asymmetric Case

Asymmetric distributions of x and y:
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Optimal Design of the U-Test: Asymmetric Case

Power of the U-Test for asymmetric distribution:
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On the existence of optimal designs for the

partial credits model

with Rainer Schwabe and Heinz Holling
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The (Generalized) Partial Credits Model (PCM)

= A model for ordinal data in item response theory
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The (Generalized) Partial Credits Model (PCM)

= Assume an ordinal response with categories j =0, ..., J

exp (L, (65 — 7))
Z%:o exp (Zé:l CViswp - 7',-5))

= P(Y=j,0p,7i,04) 1=

6, = ability of person p
» 7; = thresholds / difficulties of item /
= «; = discriminations of item i
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Locally optimal designs for the PCM

A design is (only) locally optimal if it is optimal for certain
parameter values, but not for others.

Theorem: A local optimal design of the PCM must satisfy
mo=my=1/2and 71 = ... = my_1 = 0. In this case, the PCM
reduces to the ordinary 2PL model.

Theorem: The locally optimal design of the 2PL model is a
one-point design for which 7; = 6, and «; as high as possible.
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Bayes optimal designs

We assume a weight distribution 'l over parameter values

A Bayesian design criterion could, for instance, look like
0(6) = [ det(Cov(6.) N(6) 06

T might also be called prior distribution
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Bayes optimal designs for the PCM

Lemma: If the weight distribution 1 is symmetric around some
ability 6, « is fixed to any value, the Bayes optimal one-point

design is the locally optimal design for 6.

Theorem: If the weight distribution [T is symmetric around some
ability 6p, « is fixed to any value, the Bayes optimal one-point
design is Bayes optimal if the scale parameter s of 1 does not

exceed a certain value s*(«) > 0.
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Visualization: Bayes optimal designs for the PCM

Values greater 0 indicate non-optimality of the one-point design.
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brms: An R package for Bayesian multilevel

models using Stan

with a lot of coffee
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Example: Effects of Sleep Deprivation on Reaction Times

data("sleepstudy", package = "lme4")
head(sleepstudy, 10)

Reaction Days Subject

249.5600 0 308
258.7047 1 308
250.8006 2 308
321.4398 3 308
356.8519 4 308
414.6901 5 308
382.2038 6 308
290.1486 7 308
430.5853 8 308
466.3535 9 308 18
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The Posterior Distribution

b_Days sd_Subject_ Days

16
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Multilevel Models in Bayesian Statistics with brms

fit <- brm(Reaction ~ 1 + Days + (1 + Days|Subject),
data = sleepstudy)
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The idea of brms: Fitting all kinds of

regression models within one framework
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Example: Censored Recurrance Times of Kidney Infections

fitk <- brm(time | cens(censored) ~
age * sex + (1|patient),

data = kidney, family = weibull())

marginal_effects(fitk, "age:sex")
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Example: Complex Non-Linear Relationships

-o- Latent mean functior- Realized data
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Modeling Non-Linear Relationships with Splines

fits <- brm(y ~ s(x), bdata, chains = 2)

marginal_effects(fits, nsamples = 100, spaghetti = TRUE)
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Example: Number of Fish Caught at a Camping Place

100+

count

50+

nfish
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Modeling Zero-Inflation

form <- bf(nfish ~ persons + child + camper, zi ~ child)

fit_zinb <- brm(form, zinb, zero_inflated_poisson())

marginal_effects(fit_zinb, effects = "child")

child 28



Thank you for your attention!
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