Optimal Design and Bayesian Data Analysis

Paul-Christian Bürkner 2017-09-20

Optimal Design: Introduction

Simple example: Comparison of two independent groups

Optimal Design: Introduction

Comparison of two independent groups with unequal variances

Experimental Design:

- The experimental conditions
- The allocation of replications to the conditions

Optimal Experimental Design:

- The design ξ that optimizes a certain criterion function ψ
- For instance $\psi(\xi) := \operatorname{Power}(T(\xi))$
- Alternatively $\psi(\xi) := \det(Cov(\theta, \xi))$

Optimal design of the Wilcoxon-Mann-Whitney-test with Philipp Doebler and Heinz Holling

The Wilcoxon-Mann-Whitney-Test

- Assumption: Group x has continuous distribution F and group y has continuous distribution G.
- Hypotheses:

$$H_0: G(x) = F(x)$$
 vs. $H_1: G(x) = F(x+a)$

Test Statistic:

$$U := \sum_{i=1}^{m} \sum_{j=1}^{n} \chi(x_i, y_j)$$

with $\chi(x_i, y_j) := 1$ if $x_i \ge y_j$ and $\chi(x_i, y_j) := 0$ if $x_i < y_j$.

 Experimental Design ξ: The proportion ω of replications allocated to group x. **Theorem:** Let the sample sizes be sufficiently large so that U is approximately normal. Then, for symmetric continuous distributions F and G with G(x) = F(x + a) for some $a \neq 0$, the optimal design is given if $\omega^* = 0.5$.

Optimal Design of the U-Test: Asymmetric Case

Asymmetric distributions of *x* and *y*:

Optimal Design of the U-Test: Asymmetric Case

Power of the U-Test for asymmetric distribution:

On the existence of optimal designs for the partial credits model with Rainer Schwabe and Heinz Holling

The (Generalized) Partial Credits Model (PCM)

• A model for ordinal data in item response theory

The (Generalized) Partial Credits Model (PCM)

Assume an ordinal response with categories j = 0, ..., J

$$\pi_j := P(Y = j; \theta_p, \tau_i, \alpha_i) := \frac{\exp\left(\sum_{s=1}^j \alpha_{is}(\theta_p - \tau_{is})\right)}{\sum_{k=0}^J \exp\left(\sum_{s=1}^k \alpha_{is}(\theta_p - \tau_{is})\right)}$$

- θ_p = ability of person p
- τ_i = thresholds / difficulties of item *i*
- *α_i* = discriminations of item *i*

A design is (only) locally optimal if it is optimal for certain parameter values, but not for others.

Theorem: A local optimal design of the PCM must satisfy $\pi_0 = \pi_J = 1/2$ and $\pi_1 = ... = \pi_{J-1} = 0$. In this case, the PCM reduces to the ordinary 2PL model.

Theorem: The locally optimal design of the 2PL model is a one-point design for which $\tau_i = \theta_p$ and α_i as high as possible.

We assume a weight distribution Π over parameter values A Bayesian design criterion could, for instance, look like

$$\psi(\xi) = \int \mathsf{det}(\mathsf{Cov}(heta,\xi)) \; \mathsf{\Pi}(heta) \; \mathsf{d} heta$$

 Π might also be called **prior** distribution

Lemma: If the weight distribution Π is symmetric around some ability θ_0 , α is fixed to any value, the Bayes optimal one-point design is the locally optimal design for θ_0 .

Theorem: If the weight distribution Π is symmetric around some ability θ_0 , α is fixed to any value, the Bayes optimal one-point design is Bayes optimal if the scale parameter s of Π does not exceed a certain value $s^*(\alpha) > 0$.

Values greater 0 indicate non-optimality of the one-point design.

brms: An R package for Bayesian multilevel models using Stan with a lot of coffee

data("sleepstudy", package = "lme4")
head(sleepstudy, 10)

Reaction	Days	Subject
249.5600	0	308
258.7047	1	308
250.8006	2	308
321.4398	3	308
356.8519	4	308
414.6901	5	308
382.2038	6	308
290.1486	7	308
430.5853	8	308
466.3535	9	308

Linear Regression vs. Multilevel Regression

Regression Lines for Specific Subjects

The Posterior Distribution

The idea of **brms**: Fitting all kinds of regression models within one framework

Example: Censored Recurrance Times of Kidney Infections

marginal_effects(fitk, "age:sex")

24

Example: Complex Non-Linear Relationships

← Latent mean function ← Realized data

Modeling Non-Linear Relationships with Splines

fits <- brm(y ~ s(x), bdata, chains = 2)</pre>

marginal_effects(fits, nsamples = 100, spaghetti = TRUE)

Example: Number of Fish Caught at a Camping Place

form <- bf(nfish ~ persons + child + camper, zi ~ child)
fit_zinb <- brm(form, zinb, zero_inflated_poisson())</pre>

marginal_effects(fit_zinb, effects = "child")

Thank you for your attention!