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Optimal Design: Introduction

Simple example: Comparison of two independent groups

0.0

0.1

0.2

0.3

0.4

0.0 2.5 5.0 7.5 10.0

Group

x
y

2



Optimal Design: Introduction

Comparison of two independent groups with unequal variances
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Optimal Design: Definition

Experimental Design:

• The experimental conditions
• The allocation of replications to the conditions

Optimal Experimental Design:

• The design ξ that optimizes a certain criterion function ψ
• For instance ψ(ξ) := Power(T(ξ))
• Alternatively ψ(ξ) := det(Cov(θ, ξ))
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Optimal design of the
Wilcoxon-Mann-Whitney-test
with Philipp Doebler and Heinz Holling
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The Wilcoxon-Mann-Whitney-Test

• Assumption: Group x has continuous distribution F and group
y has continuous distribution G.

• Hypotheses:

H0 : G(x) = F(x) vs. H1 : G(x) = F(x + a)

• Test Statistic:
U :=

m∑
i=1

n∑
j=1

χ(xi, yj)

with χ(xi, yj) := 1 if xi ≥ yj and χ(xi, yj) := 0 if xi < yj.
• Experimental Design ξ: The proportion ω of replications

allocated to group x.
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Optimal Design of the U-Test: Symmetric Case

Theorem: Let the sample sizes be sufficiently large so that U is
approximately normal. Then, for symmetric continuous
distributions F and G with G(x) = F(x + a) for some a ̸= 0, the
optimal design is given if ω∗ = 0.5.
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Optimal Design of the U-Test: Asymmetric Case

Asymmetric distributions of x and y:
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Optimal Design of the U-Test: Asymmetric Case

Power of the U-Test for asymmetric distribution:
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On the existence of optimal designs for the
partial credits model

with Rainer Schwabe and Heinz Holling
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The (Generalized) Partial Credits Model (PCM)

• A model for ordinal data in item response theory
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The (Generalized) Partial Credits Model (PCM)

• Assume an ordinal response with categories j = 0, ..., J

πj := P(Y = j; θp, τi, αi) :=
exp

(∑j
s=1 αis(θp − τis)

)
∑J

k=0 exp
(∑k

s=1 αis(θp − τis)
)

• θp = ability of person p
• τi = thresholds / difficulties of item i
• αi = discriminations of item i
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Locally optimal designs for the PCM

A design is (only) locally optimal if it is optimal for certain
parameter values, but not for others.

Theorem: A local optimal design of the PCM must satisfy
π0 = πJ = 1/2 and π1 = ... = πJ−1 = 0. In this case, the PCM
reduces to the ordinary 2PL model.

Theorem: The locally optimal design of the 2PL model is a
one-point design for which τi = θp and αi as high as possible.
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Bayes optimal designs

We assume a weight distribution Π over parameter values

A Bayesian design criterion could, for instance, look like

ψ(ξ) =
∫

det(Cov(θ, ξ)) Π(θ) dθ

Π might also be called prior distribution
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Bayes optimal designs for the PCM

Lemma: If the weight distribution Π is symmetric around some
ability θ0, α is fixed to any value, the Bayes optimal one-point
design is the locally optimal design for θ0.

Theorem: If the weight distribution Π is symmetric around some
ability θ0, α is fixed to any value, the Bayes optimal one-point
design is Bayes optimal if the scale parameter s of Π does not
exceed a certain value s∗(α) > 0.

15



Visualization: Bayes optimal designs for the PCM

Values greater 0 indicate non-optimality of the one-point design.
s = 0.3 s = 0.5885 s = 0.7
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brms: An R package for Bayesian multilevel
models using Stan

with a lot of coffee
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Example: Effects of Sleep Deprivation on Reaction Times

data("sleepstudy", package = "lme4")
head(sleepstudy, 10)

Reaction Days Subject

249.5600 0 308
258.7047 1 308
250.8006 2 308
321.4398 3 308
356.8519 4 308
414.6901 5 308
382.2038 6 308
290.1486 7 308
430.5853 8 308
466.3535 9 308 18



Linear Regression vs. Multilevel Regression
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Regression Lines for Specific Subjects
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The Posterior Distribution

b_Days sd_Subject__Days

4 8 12 16 4 8 12 16
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Multilevel Models in Bayesian Statistics with brms

fit <- brm(Reaction ~ 1 + Days + (1 + Days|Subject),
data = sleepstudy)
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The idea of brms: Fitting all kinds of
regression models within one framework
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Example: Censored Recurrance Times of Kidney Infections

fitk <- brm(time | cens(censored) ~
age * sex + (1|patient),

data = kidney, family = weibull())

marginal_effects(fitk, "age:sex")
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Example: Complex Non-Linear Relationships
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Modeling Non-Linear Relationships with Splines

fits <- brm(y ~ s(x), bdata, chains = 2)

marginal_effects(fits, nsamples = 100, spaghetti = TRUE)
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Example: Number of Fish Caught at a Camping Place
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Modeling Zero-Inflation

form <- bf(nfish ~ persons + child + camper, zi ~ child)
fit_zinb <- brm(form, zinb, zero_inflated_poisson())

marginal_effects(fit_zinb, effects = "child")
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Thank you for your attention!
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